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ABSTRACT
Network traffic classification is extremely important in nu-
merous network functions today. However, most of the cur-
rent approaches based on port number or payload detection
are becoming increasingly impractical with the appearance
of dynamic or encrypted applications. Even though some
supervised learning based work were proposed, it is difficult
to collect sufficient flow-labeled traces for training. On the
other hand, online classification needs an early identification,
which is still challenging for most well-known approaches. In
this paper, we propose a semi-supervised learning based traf-
fic classification approach named SMILER, which supports
an early classification from the sizes of the first few packets
(empirically 5 packets) of a flow. Experiments in real net-
works demonstrate that SMILER achieves 94% precision and
96% recall on average for all tested applications; even with
disordered packets SMILER still works well. With a hybrid
scheme, the performance is further improved. Meanwhile,
SMILER performs fast in both classification and updating.
All experimental results show that SMILER is practical for
fast and accurate online traffic classification.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

General Terms
Algorithms, Measurement, Management

Keywords
Traffic Classification, Semi-Supervised Learning, Quality of
Service

1. INTRODUCTION
Accurate and fast traffic classification according to application
protocol types is one of the essential technologies employed
in today’s networking functions, as it is fundamental in the
effective traffic control and network management tasks. For

example, Internet Service Providers (ISP) rely on traffic classi-
fication to optimize network performance and provide quality-
of-service (QoS) guarantees, and network operators also ben-
efit from it in security issues, such as anomaly detection.
On the other hand, application-aware network devices can
achieve higher performance by reducing the sizes of rule-sets
with knowledge of protocol types. In Snort’s latest rule-
set [10], only about 26.3% rules are for HTTP, thus with
knowledge of application types, Snort could achieve better
performance using a relatively smaller sub rule-set. Besides,
researchers also need traffic statistics at application level to
help explore the inherent characteristics of Internet and de-
sign future networks. All these demands make it a critical
technology to classify network traffic accurately and fast in
terms of application protocol type.

One type of traditional approach is based on port number.
The idea was simple but successful because the traditional
applications usually utilize the registered port numbers, e.g.,
the port number 80 is assigned to HTTP protocol. How-
ever, this approach is becoming increasingly less effective
since more and more applications do not use the standard-
ized ports today[24, 13, 19]. In some cases, newly emerg-
ing applications may also employ well-known ports such as
HTTP or FTP to hide themselves.

A more accurate type of approach is based on payload de-
tection, which takes advantage of the Deep Packet Inspec-
tion (DPI) technology. In theory, traffic will be classified
correctly with knowing the syntax of application protocols
and the full examination of the payload. However, there
are several reasons why this kind of approach is not always
practical and efficient: a) Limitation of classification speed.
Due to the high throughput of today’s Internet (more than
tens of Gbps), slow payload scanning becomes a frustrating
solution in most cases; b) Privacy and legal issues. Inter-
net users may not want their traffic content to be inspected;
c) Signature. Accuracy of these approaches relies on pre-
cise signatures, which requires a prompt updating when a
new application appears or the existing one changes. d) En-
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cryption. Payload-encrypted applications also decrease the
efficiency of DPI-based approaches.

Recently, some novel works were proposed [22, 19, 17, 26, 12]
using machine learning technology to classify traffic based on
flow statistical information such as packet size, total bytes
or flow duration. These machine learning based approaches
need no payload detection. However, there are still some
constraints to overcome. First, machine learning based clas-
sifiers vitally require a large amount of labeled flows for
training, which are often difficult to acquire. Second, online
traffic classification on lots of applications requires an early
identification, which challenges the approaches that require
statistics of complete flows, such as total bytes or flow dura-
tion. At last, traffic statistical results may vary in different
networks, but most learning machine approaches are unable
to tune their performance according to practical demands
flexibly.

In light of the above analysis, we consider that a practical on-
line traffic classification approach should satisfy the following
requirements: (i) Accurate classification without accessing
the packet content, especially for encrypted or NATed (Net-
work Address Translation) traffic; (ii) An early identification
from only the first several packets of a flow; (iii) Flexibility
to be tuned according to users’ demands and to be integrated
with other solutions; (iv) High speed in both classification
and updating.

In this paper, we propose a SeMi-supervIsed Learning based
classifiER named SMILER, which provides fast online classi-
fication with only the sizes of the first few packets. Train-
ing with both labeled flows and unlabeled ones, SMILER
guarantees encouraging classification accuracy for all tested
applications while keeping high classification speed. Besides,
our approach employs a confidence factor (c-factor) that in-
dicates the credibility of the results. With a hybrid scheme
(see Section 4.3), SMILER provides the flexibility to tune its
performance to meet different requirements.

The highlights of our approach include:

• Early and accurate results are obtained from the sizes
of the first few packets of each flow, which is essen-
tial for practical online traffic classification approaches.
Especially, SMILER allows a classification on encrypted
flows.

• Disordered packets can be handled. SMILER still works
successfully even if some of the first few packets are out
of order.

• Performance can be tuned flexibly. With a hybrid
scheme, SMILER supports performance adjustment ac-
cording to various demands in different situations.

• Flexibility of collaborating with other approaches is
also provided. For example, it is easy to integrate SMI-
LER with deep inspection solutions such as L7-filter
[16].

In our prototype, SMILER is successfully integrated with
NetMate [23], a flexible and extensible open-source network

measurement tool. We utilize NetMate to collect packets and
classify them into flows. The sizes of the first few packets of
each flow are recorded in SMILER. The classifier of SMILER
is lightweight, which is written in C code. Using the online
prototype, we deployed SMILER system successfully within
a campus network. The results demonstrate that SMILER
provides a fast online classification (more than 6 Mfps1) with
high accuracy over 90% for most applications. In addition,
the best classification can be achieved with the sizes of the
first 5 packets, which is similar as indicated in [1]. With
the hybrid scheme, classification accuracy of SMILER can
be further improved.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III introduces the ba-
sic assumptions and algorithms of semi-supervised machine
learning. Section IV describes the details of designing SMI-
LER system. Section V shows the evaluation and analysis
of experimental results. The conclusions and suggestions for
future work are given in the last section

2. RELATED WORK
In recent years, a number of researchers have been look-
ing for practical methods for the traffic classification prob-
lem. Many of them try to study the Machine Learning (ML)
technology [18], which usually utilizes several statistic fea-
tures to describe the network traffic, including packet length,
inter-arrival time distributions and the flow size [7, 17, 1],
etc. Most ML-based traffic classification approaches focus on
two types of learning: supervised learning and unsupervised
learning. Though a lot of novel works have been proposed,
we summarize the most relevant ones here due to space lim-
itation.

2.1 Supervised Learning Based
Dunigan, T. et al. [7] first used the Principal Component
Analysis (PCA) and density estimation to classify network
traffic into different applications. The features used in [7] in-
cluded packet size, inter-arrival times, and inter-packet cor-
relations. The approach was evaluated only with a small
dataset.

Roughan, M. et al. [22] introduced the Nearest Neighbor
(NN) algorithm into traffic classification. This paper first
categorized the classification features into five different classes:
packet level (e.g., packet length), flow level (e.g., duration),
connection level (e.g., TCP window sizes), intra-flow and
multi-flow, and outlined the classification framework based
on statistical application signatures. By classifying app-
lications into three different types: Bulk data, Interactive
and Streaming, the lowest error rate varied from 2.5% to
3.4%. In [12], FPGA platforms were utilized to accelerate
the identification based on k-NN. A high accuracy (above
99%) was achieved for classifying three multimedia applications
while keeping sustaining 80 Gbps throughput.

Moore and Zue [19] used the Naive Bayes technique to clas-
sify Internet traffic. They took accuracy and trust as the
evaluation metrics and achieved about 65% accuracy, while
the accuracy could be improved to 95% overall with Naive

1fps means flow per second.
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Bayes Kernel Estimation (NBKE) and Fast Correlation-Based
Filter (FCBF) methods.

These approaches using supervised learning can get accu-
racy higher than 90% generally. However, they require large
numbers of labeled flows of each application for training and
are difficult to be deployed directly into online classification.
Hence, other researchers utilize the unsupervised learning
techniques.

2.2 Unsupervised Learning Based
McGregor, A. et al. published a work [17] that applied
Expectation Maximization (EM) algorithm [6] to IP traffic
classification. This work used a fixed set of classification fea-
tures (packet size, inter-arrival statistics, byte counts, etc.)
to cluster flows into different types of applications. The au-
thors took a 6-hour Auckland VI trace from NLANR [9]
for experiments and found that the traffic was divided into
several groups of classes (bulk transfer, small transactions,
multiple transactions, interactive traffic, etc.). However, the
results did not show the influence of different features and
how good the approach actually was.

Zander, S. et al. proposed a work [26] using AutoClass [5].
AutoClass is an unsupervised Bayesian classifier that also
uses the EM algorithm to find the best cluster sets. The work
was evaluated on three 24-hour traffic traces (Auckland-VI,
NZIX-II and Leipzig-II) from NLANR [20]. As a further step
from [17], this work also studied the evaluation and proposed
an intra-class homogeneity metric.

Bernaille, L. et al. proposed a traffic classification approach
using simple k-means clustering algorithm [1]. In contrast
to previous work, this algorithm only detected the first few
packets of a flow, which allowed an early classification. A
similar clustering based work in [2] also utilized cluster algo-
rithm to achieve an early classification with first few packets.
However, both works cannot handle packet disorder and an
additional identification is needed for the clustering results
to get an exact application labeling.

2.3 Others
BLINC [14] proposed a new idea to associate host behav-
iors with application flows. Instead of studying individual
flows, BLINC tried to classify hosts with their services accu-
rately, such as web servers. However, BLINC cannot classify
a single flow with its application type.

Erman et al. [8] first proposed a semi-supervised learning
approach to train the classifier with only a few labeled and
many unlabeled flows. They obtained the accuracy more
than 90% for offline classification. However, when used in
online classification, this approach got the accuracy lower
than 80% even with the first 16384 packets of a flow, which
also indicated a high storage cost and latency in online traffic
classification.

Cao J. et al presented an online application identification
approach [3] based on traffic statistical analysis such as flow
duration, which investigated both host-level identification
and flow-level identification with decision trees. However,
[3] shows that those works based on whole flow statistics
cannot support early detection, which prevents their usage

in online scenarios.

In summary, supervised learning based approaches are
strictly limited to large amount of labeled training flows,
while unsupervised learning based methods do not require
labeling. However, the results are often not that accurate for
the traffic containing multiple types of applications, and la-
beling is still required to get the explicit type of the clustered
traffic. Thus it is appealing to benefit from combining these
two methods. Our approach is based on semi-supervised
learning, and achieves fast and early classification with high
accuracy, which implies it is a practical solution for online
traffic classification in real networks.

3. SEMI-SUPERVISED LEARNING

3.1 Denotation and Assumption
Semi-supervised learning [4] that utilizes both labeled and
unlabeled data for training has attracted more and more at-
tention recently because it is usually difficult and expensive
to collect a large amount of labeled training data.

In semi-supervised learning, the training data set is com-
prised of two parts: the labeled samples (each sample is
denoted by a feature-label pair) XL = {(xi, yi)}li=1 and
the unlabeled samples XU = {xj}l+u

j=l+1. For binary classi-

fication, yi ∈ {−1, 1}; for multi-class classification, yi ∈
{1, 2, . . . , N}, where N is the number of tested classes. The
final aim of semi-supervised learning is to learn a discrimi-
nant function f : X → Y , which can calculate the correct
label y for each sample x.

In real network traffic classification, substantial labeled sam-
ples are expensive to obtain. Thus, traditional supervised
methods such as SVM [21] will be inapproprite due to the
lack of labeled training set. On the contrary, unlabeled data
is much easier to collect. For example, gathering network
flows without labels is effortless through monitor tools, e.g.,
tcpdump [11]. Hence, classifying network traffic based on
semi-supervised learning method will be promising, which
utilizes both labeled and unlabeled training data.

Before employing semi-supervised learning, certain assump-
tions have to be proposed first. [4] suggested gathering sam-
ples of the same class in one cluster with high probability.
From this assumption, most samples should locate in regions
that are far from the boundaries between the different clus-
ters.

3.2 Transductive Support Vector Machine
TSVM [27] is an extension of the standard Support Vector
Machine (SVM) to utilize both labeled and unlabeled data,
which is described as follows: Assume that we have l labeled
samples {xi, yi}li=1 and u unlabeled samples {x∗j}uj=1 with

xi, x
∗
j ∈ Rd and yi ∈ {−1,+1}, we want to construct a

linear classifier sign(wTx + b) that uses unlabeled data,
especially when l� u.

For the linear separable case, the problem can be formulated
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in Equation (1).

argmin (y∗1 , · · · , y∗u, w, b) :

1

2
||w||2 (1)

subject to : ∀ni=1 : yi[w · xi + b] ≥ 1

∀uj=1 : y∗j [w · x∗j + b] ≥ 1

In Equation 1, y∗j is the labeling on unlabeled data x∗j . In
this case, TSVM is to find a labeling of y∗1 , · · · , y∗u for the
tested data and a hyperplane < w, b > which separates the
originally labeled data from the newly labeled data with the
margin of the maximum probability.

For non-separable data, we can also use the slack variables
ξi as in the standard SVM, which is shown in Equation (2).

argmin (y∗1 , · · · , y∗u, w, b, ξ1, · · · , ξn, ξ∗1 , · · · , ξ∗u) :
1

2
||w||2 + T

n∑
i=0

ξi + T ∗
u∑

j=0

ξ∗j (2)

subject to : ∀ni=1 : yi[w · xi + b] ≥ 1− ξi

∀uj=1 : y∗j [w · x∗j + b] ≥ 1− ξ∗j
∀ni=1 : ξi > 0

∀uj=1 : ξ∗j > 0

Where T and T ∗ are parameters that allow a trade-off of the
margin size against misclassifying training data or excluding
test data, which can be tuned by users. Besides, the number
of the tested samples to be assigned the label “+1”, can also
be specified manually. This parameter allows a adjustment
for different performance requirements.

The labeling step of the unlabeled training data needs to be
optimized in TSVM, which results in a combinatorial opti-
mization problem. In theory, computing an exact TSVM is
NP-hard, while we could utilize fast solutions to speed up
the processing [15, 25].

There are two main advantages to utilize TSVM in traffic
classification. First, its assumption of cluster agrees with the
scenario of our problem, where plenty of unlabeled flows with
few labeled ones are easy to collect. Furthermore, the classi-
fication phase needs low computation complexity to guar-
antee fast speed. Thus, we can achieve a fast online traffic
classification with good accuracy.

4. SMILER CLASSIFICATION
In this section, we first introduce the framework of our
SMILER system, then discuss the classification methods of
binary-class case and multi-class case. After that, we detail
the design of our hybrid scheme and the solution for traffic
classification with packet disorder.

4.1 System Overview
There are three main parts in our whole system: Meter-
ing, Training and Classification. These three parts include
six components overall: Meter, Judge, Other Slow Classi-
fier (OSC), Trainer, Marker and Classifier. The framework
is shown in Figure1 while functions of each component are
described as follows.
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Figure 1: SMILER System Overview

4.1.1 Metering
There is only one component in this part, the Meter. We
utilize Meter to collect flow information from off-line trace
files or online traffic. There are large numbers of metering
tools existed. We choose NetMate as our basic Meter com-
ponent in our system because it is open-source, and quite
flexible to insert new modules.

The original NetMate supports classifying the incoming
packets into flows based on packet headers e.g., (five tuples).
Based on NetMate, we design a flow-management module to
record the sizes of the first few packets of each flow for the
classification. Noticeably, the packet size results will be col-
lected sequentially with the packet id without waiting till
the end of the flows, which facilitates the processing in the
classification part.

4.1.2 Training
The training part includes the Trainer and the Marker. The
Trainer component will generate the learning machine for the
Classifier with the given training data. Usually, unlabeled
flows can be collected by NetMate directly, while the labeled
ones will be generated by other identification tools such as
L7-filter after the collection. A flexible user interface is also
provided as the Marker, which enables the manual checking
on the labels of training flows. The accuracy of the labels
will be improved with the additional checking step.

4.1.3 Classification
The Classification part consists of three components: Clas-
sifier, Judge and OSC. Main semi-supervised learning algo-
rithms are implemented in the Classifier component. For
basic classification, the Classifier component will calculate
the classification results with a c-factor C (The definition
will be given in Section 4.3).

If the hybrid scheme is enabled, there will be one more step.
The Judge component will check the c-factor value with a
given threshold τ , if C ≤ τ (which means the classification
results are not reliable enough), OSC will receive the picked
low-confident flows and return the classification results on
them. Thus different parts of the traffic may be classified
by different components. SMILER provides the potential
to support various types of OSC. In this paper, we take a
DPI-based OSC, which typically classifies traffic accurately
but slowly. However, we can tune the trade-off between the
classification accuracy and the classfication speed by chang-
ing the value of τ . Generally, a smaller τ results in higher
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classification speed with lower accuracy ratio, and vice versa.

4.2 Classifier Design
In real networks, there are various types of network app-
lications in the traffic simultaneously. We design SMILER
to deal with the multi-class case for practical purposes. For
the convenience and clarity of description, here we start with
the binary-class case, which means the classification with
yi ∈ {+1,−1}, then we extend the method to the multi-
class case.

4.2.1 Binary-Class Case
In the binary-class case, we utilize the captured flows to
train a classifier that gives the result of true or false for
testing flows. These training samples can be divided into two
parts according to whether they own labels. We denoted the
labeled set with {xi, yi}Li=1, where xi is the ith sample and
yi is the corresponding application type, and L is the size of
the set. Meanwhile, unlabeled training set is denoted with
{x∗l } and the size is U . We then design a classifier based on
TSVM that predicts the labels of the testing flows with both
labeled and unlabeled training data.

Standard TSVM can be formulated in Equation (3).

min
w,{y∗}Uj=1

λ

2
||w||2 + 1

2L

L∑
i=1

l(yiw
Txi)

+
λ∗

2U

U∑
j=1

l(y∗jw
Tx∗j ) (3)

subject to :
1

U

U∑
j=1

max[0, sign(wTx∗j )] = r

Where λ∗ is given by the user to control the influence of
unlabeled data, and will be determined by cross-validation.
r is usually set as the ratio of the samples with label “+1”
in the labeled set while l is the loss function, which is set as
l(x) = l2(x) = max(0, 1− |x|)2.

Algorithm 1 Algorithm of Single-Class Case

Input:
Labeled training data (x1, y1), · · · , (xn, yn)
Unlabeled training data x∗1, · · · , x∗n
Parameters λ, λ∗ in Equation (3)

Output:
The hyperplane of classification < w, b >

1: Initialization:
(w, b) :=solve svm pro( (x1, y1), · · · , (xn, yn), λ )

2: λ
′
:= 10−5 //some small value

3: while λ
′
< λ∗ do

4: do
5: (w, b, �y∗) :=solve svm pro( (x1, y1), · · · , (xL, yL),

(x∗1, y
∗
1), · · · , (x∗U , y∗U ), λ, λ

′
) //Solve this problem us-

ing the modified finite Newton linear l2-SVM
6: Labels switching procedure
7: while number of the samples switched labels > 0

8: λ
′
= 1.5× λ

′

9: end while
10: return (w, b)

Algorithm 1 shows how to train a TSVM classifier < w, b >
for binary-class. The classifier will calculate R = wxunseen+
b for an unseen sample and give the label, as shown in Equa-
tion (4).

y =

{
+1 R > 0

−1 R < 0
(4)

In Algorithm 1, the function of solve svm pro means to solve
a problem in Equation (5).

min
w

λ

2
||w||2 + 1

2L

L∑
i=1

l2(yiw
Txi) +

λ
′

2U

U∑
j=1

l2(y
∗
jw

Tx∗j ) (5)

Equation (5) is a supervised SVM problem, where λ
′
and

y∗1 , · · · , y∗U are both known parameters.

4.2.2 Multi-Class Case
Real traffic classification requires classifying multiple types
of protocols. Hence the binary-class method of TSVMwill be
incapable of handling this situation. To extend to the multi-
class case, we take advantage of a set of binary-class clas-
sifiers to construct the classifier for multiple classes. Then
the task will be how to design these binary-class classifiers
simultaneously and generate the multi-class classifier based
on them. Generally, there are two types of combination tech-
niques: One verse One and One verse All.

• One verse One
For each pair in the two categories, a binary-class clas-
sifier will be trained. If there are N classes in total,
N(N−1)

2
classifiers will be returned using this method.

After the binary-class classifier generation, a vote is
carried out among all classifiers to gain the final pre-
diction label.

• One verse All
For each category, the whole data set is divided into
two parts: “target” sub one and “non-target” sub one.
With this division, a two-class classifier can be trained.
Thus for N classes, N classifiers will be generated. If
prediction conflict occurs between different classifiers
for the same testing sample, the one with the largest
R
||w|| value will be taken.

We have tested both methods, and found that the One verse
One method performs better than the latter one in solv-
ing traffic classification problems. Each time a one-verse-all
classifier is trained, flows of “non-target” applications are
considered as in one class, which can usually unbalance the
training data. Besides, although samples of the “non-target”
category may be gathered into several clusters according to
their protocol types, we use the hyperplane classifiers as the
binary-case classifier in the original feature space. However,
it will be difficult for such a classifier to classify several clus-
ters into two categories correctly. Moreover, the performance
of the final combined classifier is strongly influenced by these
hyperplane classifiers, while each One verse One classifier
only needs to deal with one pair from each category, which
makes it much easier to obtain the correct results.
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Figure 2: Classification Plane using HTTP Flows

An alternative explanation can be obtained intuitively. Sam-
ples with d features can be viewed as points in a d-
dimensional hyperspace. The One verse One classifier has
N(N−1)

2
hyperplanes as the final classifiers, which divide the

classification space into more subspaces than the One verse
All based method (only with N hyperplanes). Thus the One
verse One based method promises more precise results in the
classification.

Based on the above analysis and experimental results, we
choose the One verse One method in SMILER. Both the
training and classification procedures are described in Algo-
rithm 2.

Algorithm 2 Algorithm of Multi-Class Case

Input:
Labeled training data (x1, y1), · · · , (xL, yL)(yi ∈
{1, · · · , N})
Unlabeled training data x∗1, · · · , x∗U
Parameters λ, λ∗ in Equation (3) Tested sample xunseen

Output:
Predict label yunseen for one test sample xunseen

Training Part:
2: for each pair of categories i, j ∈ {1, · · · , N}, i < j do

train a one-verse-one classifier < wij , bij > using
Algorithm 1.

4: end for
Classification Part:

6: set y = [0, . . . , 0] ∈ RN

for each category i, j ∈ {1, · · · , N}, i < j do
8: if wijxunseen + bij > 0 then

y(i) = y(i) + 1
10: else

y(j) = y(j) + 1
12: end if

end for
14: return yunseen = argmax

i
y(i)

4.3 Hybrid Scheme
The key idea of our hybrid scheme is to apply a confi-
dence factor (c-factor) to help SMILER determine intelli-
gently which part of traffic should be transferred to OSC.
The definition of c-factor is put forward based on the obser-
vation of SMILER’s classification results.

For testing data x, the classifier gained in SMILER is a set
of hyperplanes < wij , bij >. Each hyperplane works out a
discrimination value R = wx + b for x. R can be viewed
as an assigned distance from the hyperplane. If R ≥ 0, x
will be regarded as a certain class. Specially, when R = 0,
the training data locates just at the hyperplane. We infer
that the smaller the R is, the less confident the classification
result will be. Moreover, our experimental results turn out
to support this inference. Figure2 shows a hyperplane to
classify HTTP flows. In this figure, most HTTP flows locate
above the hyperplane (with positive R values), while only
few flows locate below it. Notice that even for flows with
negative R values, they still stay close to the hyperplane.

In Figure2, the testing set consists of 866 HTTP flows, which
are shown as the rings, and the hyperplane is shown as a
dotted line. If the data is positive (above the hyperplane),
it can be classified correctly. Figure2 also shows that some
samples are misclassified as negative (below the hyperplane),
most of which locate near the hyperplane.

It is commonly believed that if the distance value to the
hyperplane is larger, the prediction label will be more reli-
able. We define a confidence factor C based on this distance
value. This factor should range in [0.5, 1.0] and be propor-

tional with |R|
||w|| . When |R|

||w|| approaches ∞, C should ap-

proach 1.0. When |R|
||w|| = 0, the testing sample locates at

the hyperplane, which indicates an equal probability to be
either class, so C should be 0.5 at this time.

Based on the analysis above, we give the definition of c-factor
in Equation (6).

C =
1

1 + e
− |R|

||w||
(6)

In our experiments, the final classifier is not a single hy-
perplane but a combination of different hyperplanes. Hence
for each testing sample, every hyperplane gives the value

of |R|
||w|| , which will result in different C values. The min-

imum, maximum or mean value of C can be taken to
present the confidence of the global classifier. In theory,
when using the global classifier to classify a sample, only
a few hyperplanes including the correct one will get close
to the sample, while other hyperplanes will keep far from
the sample location. Thus Cmax and Cavg are usually quite
large, which can not present the confidence precisely. This
makes us believe that Cmin is the most effective parame-
ter to measure the confidence, which will be taken when
|R|
||w|| = min{ |Rij |

||wij || |i, j ∈ {1, 2, . . . N}, i < j}

4.4 Packet Disorder
In real networks, some packets may be out of order after
multi-path transferring. Currently, most solutions are based
on the packets reassembly technique. This technique may
cause some problems for fast online traffic classification. For
example, if the classification approach needs information of
the first k packets of a flow, the classification cannot be
started until all the k packets arrive and are reassembled.
Even worse, some packet may be lost and need to be re-
transferred, thus such type of classification will cause large
processing latency and storage complexity.
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Table 1: Global Statistics of Traces
Trace Date Flow Packet Byte

trace08 08/12 377503 37296499 32768012521

trace10 10/07 3394 2252118 2203749653

Table 2: Application Statistics of Traces

Apps
trace08 trace10

Flow % Byte % Flow % Byte %

HTTP 24.32 7.64 19.17 41.32

P2P 30.11 29.90 44.04 29.34

DNS 7.60 0.34 N/A N/A

HTTPS 1.64 0.21 7.0 1.95

FTP 1.13 0.14 6.23 11.80

SSH 0.98 0.13 11.90 0.33

IM 0.81 0.10 0.73 0.30

SMTP 0.74 0.06 1.00 4.78

We solve this problem by designing the classifier compatible
with missing features. All valid features should be no less
than 0, and we set the values of the missing features to 0.
Since R = wx + b, the procedure is the same as setting the
corresponding w to 0. That means when some feature is
missed, we use an approximate hyperplane to do the classi-
fication instead of the exact one. The new hyperplane will
be parallel to the dimension of the missing feature in the fea-
ture space. Commonly, this modification might bring some
accuracy loss.

5. EVALUATION AND ANALYSIS
5.1 Traffic Traces and Testbed Setup
As most current publicly available trace sets (e.g., NLANR
[9]) do not contain any application information for security
and privacy reasons, our evaluations are based on real traces
collected in a large institute containing hundreds of various
servers in a campus network. The trace set consists of two
parts: trace08 (collected in 2008) and trace10 (collected in
2010). However, it would be of great help for researchers if a
reliable and accurate marked trace bench could be proposed.

For time consideration, these traces are not quite huge but
both are collected in different periods for the purpose of cred-
ibility. To validate SMILER’s classification results, we first
label the testing flows in the traces by examining the con-
tent2.

The basic statistic information and the application distri-
bution are shown in Table 1 and Table 2 respectively. In
Table 2, we find that HTTP and P2P based applications
take a large percentage in both flow and byte. Comparing
the two trace files, some interesting characteristics are ob-
served. For example, the byte percentage of HTTP increases
by more than 400% after two years while the flow percentage
decreases, which is mostly due to the video applications over
HTTP have increased a lot in recent years. Besides, the per-
centage of HTTPS also increases a lot, which implies that
people are paying more and more attention to their security

2Note only the popular applications are labeled to test.

and privacy. From the traces, we focus on 6 representative
applications for our evaluations, including Web (non-video
HTTP), Video (over HTTP), FTP, SMTP, BT and SSH.
Although only 6 famous applications are considered in our
current evaluations, we will continue to collect more results
on other applications.

Our test bed is integrated with NetMate, which is used as
the metering platform. The test bed is running on Ubuntu
10.04 OS (Linux kernel v2.6.32-24-generic), installed on a
PC with Intel CPU T7500 (2.2 GHz, 4 M Cache) and 2 GB
DDR-II memory. All programs are written in C codes.

5.2 Performance Parameters
In order to evaluate the efficiency of SMILER, we utilize a
few performance parameters. To describe these parameters,
several definitions are declared first. For an application cat-
egory A:

True Positive (TP) The flows of application A are clas-
sified as A correctly, which is a correct result for the classi-
fication;

True Negative (TN) The flows not in A are classified as
not in A, which is also a correct result;

False Positive (FP) The flows not in A are misclassified
as A. For example, a non-P2P flow is misclassified as a P2P
flow. FP will produce false warnings for the classification
system;

False Negative (FN) The flows in A are misclassified as
some other category. For example, a true P2P flow is not
identified as P2P. FN will result in identification accuracy
loss.

The performance parameters utilized in our evaluations, in-
cluding precision, recall and accuracy, are also widely em-
ployed in traffic classification and many machine learning
technologies. Following are the definitions:

Precision The percentage of samples classified as A that are
really in class A, which can be calculated with TP/(TP +
FP ). Precision can be given for a specified class or for mul-
tiple classes on average;

Recall The percentage of samples in class A that are
correctly classified as A, which can be calculated with
TP/(TP + FN). Recall can be given for a specified class
or multiple classes on average, too;

Accuracy The percentage of samples that are correctly clas-
sified, which can be calculated with (TP+TN)/(TP+TN+
FP +FN). Notice this overall accuracy is calculated totally
with all tested classes;

Besides the above parameters, we also adopt a confusion ma-
trix to help describe the details of the classification results.

Confusion Matrix An N ×N matrix, whose element (i, j)
is the percentage of flows which belong to class i but are
misclassified as class j. This matrix shows the details of
the incorrect classification results, which can be used for
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Figure 3: Precision, Recall and Accuracy Results
with Different Number of Packets

exploring inherent characteristics of each application.

5.3 Classification Results
5.3.1 Results with Different Packet Number
Our approach tries to classify a flow with only the sizes of
the first k packets (without TCP control packets). In theory,
large k would improve the accuracy of the classification re-
sults, but increase the latency. Thus it is appealing to choose
a suitable k to achieve an accurate result in time.

To find out a reasonable k, we carry out the classification
experiments with different k values. To train SMILER, we
take 100 labeled flows and 250 unlabeled flows randomly
from the training set. Each experiment is repeated 5 times
on different training samples with k from 2∼10, and we take
the average one as the final result. Experimental results of
precision, recall and accuracy are shown in Figure3.

Precision In Figure3, the average precision curve increases
from about 80% to more than 94% when packet number in-
creases from 2 to 4. For packet number over 4, the average
precision keeps over 93%, where the best one is 95.2% with
5 packets. In addition, the variance of precision among dif-
ferent applications is reduced from around 40% to less than
20% when packets number increase from 2 to 4, while for
more than 4 packets, the variance only changes little. This
result implies that the precision increases notably with the
increasing of packet number when k ≤ 4, and keeps stable
when k > 4.

We also check the category of applications with the worst and
the best precision with the smallest packet number, which
are Video (over HTTP) and BT respectively. This interest-
ing result depicts that it is very challenging to classify popu-
lar video applications (around 60% precision) with only few
packet sizes, while BT can be tackled quite well with few
packets (nearly 100%).

Recall As shown in Figure3, the average recall curve is quite
similar with the one of average precision, which is increased
from about 80% to 94% with packet number from 2 to 4.
With packet number increasing from 4 to 10, the average re-
call fluctuates between 93.61% (with 8 packets) and 95.09%
(with 5 packets), which also implies that more than 4 packet
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Figure 4: Classification Results for Applications
with 5 Packets

Table 3: Confusion Matrix
ratio %WebVideo FTP SMTP BT SSH

Web 88.29 6.34 3.77 0.97 - 0.63

Video 6.31 92.36 0.98 - 0.18 0.18

FTP 0.80 0.60 98.60 - - -

SMTP - - - 99.21 0.79 -

BT 0.85 0.13 0.13 - 98.39 0.49

SSH - - - - - 100.00

sizes guarantee a good result. The variance of recall is over
60% with only 2 packet sizes, and decreases sharply with
more than 4 packets. For example, with 5 packet sizes, the
variance is only 11.7%. We further check the detailed results
with 2 packets. The worst application is Video (over HTTP)
as well, which suggests that the identification of Video (over
HTTP) is an appealing question for today’s traffic classi-
fication research.

Accuracy Figure3 also illustrates the accuracy of all app-
lications classification, which shows a growth from 81.6% to
93.9% when packet number rises from 2 to 4, and for more
than 4 packets, the accuracy keeps over 93.6%. Surpris-
ingly, the best accuracy is also obtained at 5 packets, which
is 95.1%. This result is quite similar to that indicated in
[2], which achieves above 90% accuracy with 4 packets by
enterprise trace.

Best Number Selection From results in Figure3, we sum-
marize a basic conclusion as follows. When the packets num-
ber k is small (such as 2), the results are not good for all the
metrics and the variances are large. This is partly because
only two features have not enough information to represent
the characteristics of the flows’ distribution. With the in-
creasing of k, the performance improves rapidly at first and
then keeps at a high level, and the best performance occurs
at 5 packets.

With the first 5 packets, Figure4 shows the precision and re-
call results of all tested applications, including Web, Video,
FTP, SMTP, BT and SSH. From Figure4, the precision
ranges from 86.04% to 99.73%, while the recall ranges from
88.29% and 100%. All these results show that SMILER
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Figure 5: Accuracy Comparison between SMILER
and Supervised Learning

achieves good precision and recall at the same time for all
applications.

Confusion Matrix In Table 3 we give the confusion matrix
with the first 5 packets. From this matrix, we can see the
detailed classification results of all tested applications. Take
the first column for example, 6.31% Web flows are misclas-
sified as Video, with 0.80% as FTP and 0.85% as BT. Most
error ratio values are small, while the largest one occurs be-
tween Web and Video, which implies the distributions with
sizes of the first 5 packets between Web and Video flows are
similar. The possible reason is that they both utilize HTTP
protocol, thus similar initializations might be utilized.

In summary, the best results can be achieved when k equals
to 5. Consequently, we take the sizes of the first 5 packets
as our classification features in the following experiments.

5.3.2 SMILER vs Supervised Learning
To validate the effectiveness of SMILER, we compare the
performance of SMILER with the representative supervised
learning classifier, SVM. In each experiment, 25 flows are
labeled for training the super learning approach and different
numbers of unlabeled flows are also provided randomly for
the training.

Figure5 shows the comparison results in terms of precision,
recall and accuracy. In experiment “Super”, we classify traf-
fic using super learning approach which is trained by 25 la-
beled flows, and for other experiments, we utilize SMILER
trained with different unlabeled flows (100, 200, 300 and 400)
besides the labeled ones. From Figure5, we can see that on
all three performance parameters, SMILER obtains better
results than the supervised one. Specially, experiment“SMI-
LER 300” achieves an average accuracy of 94.53%, while for
the super learning classifier it is only 90.81%. All the results
show that after the unlabeled data is added for training, the
precision, recall and accuracy results are all improved.

We also notice that with unlabeled training data growing
from 300 to 400, the performance doesn’t increase but drop a
little. This may be because of the random data selection and
the over-fitting caused by excessive training data. On the
basis of our experiment results, we suggest the ratio between
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Figure 6: Performance Results with Different Num-
ber of Disordered Packets

the labeled data and the unlabeled one be chosen around 10.

5.3.3 Packet Disorder
Out of order packets are difficult to handle for most ma-
chine learning based traffic classification approaches because
disordered packets cause the missing of features for online
classification. To evaluate the performance of SMILER with
packet disorder, we carry out experiments with different
numbers of out of order packets. Since the definitions of
packet disorder vary from each other, to show a fair compar-
ison, we consider packets with wrong order as loss in our ex-
periments, because we believe that a practical online traffic
classification should achieve an early identification even with
incomplete information. We randomly drop several packets
from the first five packets and compare the average results
in terms of precision, recall and accuracy.

Figure6 shows the results, from which we can see that packet
disorder brings down all three performance metrics, however
our approach still works successfully for all cases. It is clear
that better performance is achieved with less out of order
packets. Specially, our approach achieves about 70% average
accuracy with a single out of order packet. On the other
hand, the performance of SMILER increases almost linearly
by reducing disordered packets. All the results demonstrate
the good stability of SMILER for packet disorder.

5.3.4 Hybrid Scheme
Flexibility of supporting hybrid scheme is another advan-
tage of SMILER. To validate the accuracy improvement by
hybrid scheme, we carry out experiments with different c-
factor values using a DPI based OSC. In Figure7, we show
the accuracy results with a c-factor relax ratio, which means
the upper-bound of accepting flows over c-factor. For exam-
ple, 25% relax ratio means we choose the splitting margin
as min(C) + 25% × (max(C) −min(C)). From Figure7, we
can see that the accuracy is improved by transferring flows
to the OSC. With 40% relax margin, nearly 100% accuracy
is achieved for all three definitions of C.

Figure7 also demonstrates that the performance using Cmin

is better than that with Cmax and Cavg, which is inferred by
our analysis in Section 4.3. All results illustrate that our hy-
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Figure 7: Accuracy Comparison of Hybrid Scheme
with Different C-factors
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Figure 8: Classification Speed Comparison

brid scheme improves the classification accuracy effectively.

5.3.5 Classification Speed and Updating Time
We compare the classification speed of SMILER-ML (pure
machine learning based) and SMILER-Hybrid (10% of SMI-
LER’s traffic is processed by OSC) with the traditional DPI
(packet content detection) based classifier. To estimate the
typical classification speed of the DPI classifier, we assume
that only 16 bytes data per packet in the first five ones of
each flow are examined, and the data structures of DPI only
require 2 M bytes storage, which is quite favorable for sim-
ulating current DPI classifiers. 10 experiments are carried
out, among which each one runs a classification of 30 sec-
onds. Besides, we use the million flow per second (Mfps) as
the classification speed unit.

The comparison results are shown in Figure8. Figure8 illus-
trates that both SMILER-ML (over 6 Mfps) and SMILER-
Hybrid (over 1.5 Mfps) achieve much higher classification
speed than DPI based one (only about 0.2 Mfps). This is
because SMILER imposes no detection of packet content,
which is usually quite expensive in both time and storage.
All results in Figure8 propose that SMILER is also quite fast
and lightweight in speed.

Meanwhile, the preprocessing phase of SMILER is also very
fast in our experiments. For example, training with a dataset

of 1000 flows (100 labeled and 900 unlabeled ones) only needs
less than 0.1 second, which is much smaller than the prepro-
cessing of DPI based methods (usually more than tens of sec-
onds on large rule-set). This quick preprocessing promises
SMILER as a practical approach in updating.

5.4 Discussion
Experimental results show that SMILER achieves superior
performance in terms of precision, recall and accuracy. By
utilizing the sizes of the first 5 packets of flows, SMILER
provides an average precision of about 94%, recall over 96%
and accuracy over 95% for all tested applications. These
results imply an inherent relationship between packet sizes
and application types. Compared with supervised learning
approaches, SMILER also provides an evident performance
improvement by employing unlabeled flows.

Although experimental results prove SMILER a practical
online classification approach, there are still several interest-
ing observations to be discussed. To compare SMILER with
supervised learning approaches, we repeat each experiment
5 times with randomly chosen training data and a perfor-
mance jitter is obtained among them. Take the supervised
learning one for example, the fourth accuracy result is about
10% higher than the second one. This indicates that train-
ing data selection can affect the classification result, which
is universal in machine learning based approaches actually.

An interesting question is why the sizes of the first few pack-
ets can determine the application types so accurately in SMI-
LER. Since various network applications are designed for dif-
ferent specialized aims, we guess the main reason might be
the similar design requirements for applications of the simi-
lar goal. For example, we observe that most packets in the
first five ones of Video over HTTP and FTP flows are 1518-
byte sized, but this number is quite small in IM protocols
(e.g., Gtalk). This similarity may be due to the reference to
related protocols when new applications are designed.

Another question is how to design a novel hybrid scheme.
The hybrid schemes aims to take advantage of other app-
roaches to improve the accuracy. Take the DPI based OSC
for example, accuracy can be improved by transferring se-
lected flows to OSC, however, an unsuitable selection may
even result in worse performance. If most easily-classified
flows are transferred to OSC, the classification speed will be
reduced seriously without any accuracy improvement. That
is the main reason why we utilized a distance-based c-factor
to optimize this selection. Experimental results show that
our current c-factor works well for all tested applications.
However, it is still an interesting topic to design effective
c-factors in future.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a practical online traffic classi-
fication approach called SMILER, which utilizes semi-
supervised learning technologies to classify traffic based on
the sizes of the first few packets of each flow. SMILER al-
lows an early identification without any inspection of packet
content. With disordered packets, SMILER still works well.
Furthermore, a hybrid scheme is proposed to help SMILER
satisfy various performance requirements.
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In order to evaluate SMILER, we deploy our approach in a
real campus network. Experimental results show that SMI-
LER achieves about 94% precision, over 96% recall and over
95% accuracy on average with only the sizes of the first 5
packets of each flow. Even with disordered packet, SMILER
still shows a good robustness in performance. Our approach
also performs well in classification speed and updating time.
The average classification speed is over 6 Mfps, which is tens
of times higher than that of packet content inspection based
approaches. With large training sets (e.g., 1000 flows), SMI-
LER only requires less than 0.1s to generate the new classi-
fier. The hybrid scheme further improves the classification
performance. All these results prove that SMILER is quite
practical for fast and accurate online traffic classification.

Through the experimental results, there are still several open
issues. For example, with very short flows (less than three
packets) or lots of disordered packets, SMILER’s accuracy
might be reduced, which implies that approaches that are
more robust should be designed in future. Our future work
also includes improving the classification performance of
SMILER and evaluating on various network environments.
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