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ABSTRACT
In this paper, we propose ParaRegex, a novel approach for
fast parallel regular expression matching. ParaRegex is a
framework that implements data-parallel regular expression
matching for deterministic finite automaton based meth-
ods. Experimental evaluation shows that ParaRegex pro-
duces a fast matching engine with speeds of up to 6 times
compared to sequential implementations on a commodity
8-thread workstation.
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1. INTRODUCTION AND MOTIVATION
Regular expression (regex) matching has been widely used

in today’s network security systems, where the payloads of
network packets are matched against a set of rules spec-
ified by regular expressions. To perform regex matching,
regexes are constructed to Nondeterministic Finite Automa-
ton (NFA) or Deterministic Finite Automaton (DFA). DFA
becomes the prior choice for practical time-sensitive appli-
cations because it requires only one state transition lookup
per input character and is hence fast. However, due to the
increasing number of rules and the complicated semantics
of regular expressions, state-of-the-art regex matching tech-
niques hardly meet the demands of network speed.

Parallelism is becoming more and more popular and im-
portant, which produces new ideas to solve the performance
bottlenecks of regex matching. In order to parallelize the
regex matching, the input data can be partitioned into sev-
eral segments and assigned to each thread. For all but the
first input segment, the DFA state at the beginning is un-
certain. For example, the initial state of the DFA for the
second input data segment is determined by the final state
of the DFA for the first segment. The basic idea of existing
parallel implementations is that starting from the set of all
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Table 1: Average number of active states of four
different rulesets after any 1 and 2 input

Ruleset bro50 bro217 snort24 snort34
Number of regexes 50 217 24 34

DFA states 667 8094 8630 10212
after any 1 input 4.60 37.63 62.42 78.70
after any 2 input 1.02 5.17 19.19 31.69

initial states, each thread computes the sub-result based on
the input of each segment independently, and then the sub-
results of all the threads can be reduced by joining them in
sequential order [1, 2, 3].

Obviously, the huge overhead of this speculative imple-
mentation introduces significant computation load. Given a
DFA with |Q| states, input data with size m, and n process-
ing threads, the time complexity of mapping and matching
procedure is O(|Q|m/n) and reducing procedure is O(|Q|n).
This reveals that these parallel implementations based on
enumeration fail to obtain higher matching speed than the
sequential implementation when the DFA is large.

However, the scenario will be quite different when con-
sidering with the input data. In this paper, the states that
need to be traversed from are defined as active states. In
a real-world situation, the simultaneously active states tend
to move to very few states after reading any character, which
means that the number of concurrent active states is likely
to decrease sharply under several arbitrary input characters.
As shown in Table 1, the average number of active states af-
ter one arbitrary input character is less than one percent of
the total states number of the DFA. We define the reduction
of the number of active states as states convergence, which
brings hope for efficient parallelization of regex matching.

2. DESIGN AND IMPLEMENTATION
ParaRegex is proposed to implement fast parallel regex

matching with low overhead, with MSU (Middle State Unit)
as its key structure. MSU consists of two parts: a state and
a mapping vector. The state denotes the ID of an active
state, and the mapping vector is a bit vector that associates
the original initial states to the state of this MSU.

Figure 1(a) and 1(b) explain how ParaRegex works in
practice. As shown in Fig.1(a), there are two input seg-
ments Sk and Sk+1. Initially, each original state corresponds
to an MSU, and the mapping vector of the MSU indicates
which state has been traversed from. The first bit of the first
MSU’s mapping vector is set to 1 while others are set to 0,
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Figure 1: (a) Mapping, matching and (b) reduction procedure of ParaRegex using MSUs
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Figure 2: Comparison of ParaRegex and enumeration approach (a) overhead (b) vs. DFA (c) vs. D2FA

denoting that this MSU derives from state 0. After reading
the input character Ck1 from the input segment Sk, state 0,
state 2 and state 3 all jump to state 0, so the first, third and
fourth MSUs are merged into one MSU whose state is state
0 and mapping vector is the union of MSU 0’s, MSU 2’s and
MSU 3’s mapping vectors.

Once all threads have completed their tasks, the set of
MSUs corresponding to each segment would be reduced.
The state in each MSU is encoded to a bit vector named
state vector, and then the previous MSU’s state vector per-
forms an AND operation with the latter MSU’s mapping
vector. If the result of AND operation is 1, the two MSUs
are supposed to be reduced into one which is composed of
the previous MSU’s mapping vector and the latter MSU’s
state.

Benefiting from the fast OR and AND operations of bit
vectors, the processing of multiple MSUs can be very effi-
cient. It must be noted that ParaRegex does not modify
or create new DFAs, but just provides a general mechanism
that is orthogonal to other work. In other words, state-of-
the-art work on regex matching can be easily parallelized
using ParaRegex by replacing original states with MSUs or
just attaching a mapping vector to the original state.

3. EVALUATION
We carry out the preliminary evaluation with an Intel

Core i7-4790 CPU (4 cores with 8 threads), and use the
Regular Expression Processor [4] as the basic implementa-
tion of regex matching and pthread for the thread library.
Four rulesets picked from Bro and Snort are tested (Table
1), while the Darpa network traffic is treated as the input
data.

We compare ParaRegex to a general enumeration approach
[1, 2, 3]. Figure 2(a) shows the matching time on different
rulesets and traffic. By introducing the MSU structure, the
processing speed of ParaRegex is at least one to two orders
of magnitudes faster than that of enumeration approach.
Figure 2(b) shows the speed improvement of ParaRegex on

different rulesets, treating [4] as a baseline. As the number
of threads in use increases, the matching speed of ParaRegex
grows and maximum speed is obtained when 8 threads pro-
cess simultaneously in parallel. We also apply ParaRegex to
D2FA [5] and gain up to 6 times speedup (Fig. 2(c)). More
experiments on other rulesets and traffic, which are omitted
from this paper, draw the similar conclusion.

4. CONCLUSIONS AND FUTURE WORK
This paper introduces ParaRegex, a framework orthog-

onal to state-of-art DFA-based regular expression match-
ing methods. ParaRegex employs MSUs to implement low-
overhead and high-efficiency parallel matching engine with
nearly linear speed improvement. Our future work will fo-
cus on conducting experiments on other distributed process-
ing platforms like Hadoop or Spark, and further parallelize
multiple active MSUs by specific hardware. We hope all
these platforms and algorithms can effectively work together
to achieve high performance regular expression matching in
parallel.
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