
 1

Towards High-performance Flow-level Packet Processing

on Multi-core Network Processors

ABSTRACT
There is a growing interest in designing high-performance
network devices to perform packet processing at flow level.
Applications such as stateful access control, deep
inspection and flow-based load balancing all require
efficient flow-level packet processing. In this paper, we
present a design of high-performance flow-level packet
processing system based on multi-core network processors.
Main contribution of this paper includes: a) A high
performance flow classification algorithm optimized for
network processors; b) An efficient flow state management
scheme leveraging memory hierarchy to support large
number of concurrent flows; c) Two hardware-optimized
packet ordering strategies that preserve internal and
external per-flow packet orders. Experimental results show
that: a) The proposed flow classification algorithm,
AggreCuts, outperforms the well-known HiCuts algorithm
in terms of classification rate and memory storage; b) The
presented SigHash scheme can manages over 10M
concurrent flow states on IXP2850 NP with extremely low
exception rate; c) The performance of internal packet
ordering scheme using SRAM queue-array is about 70% of
that of external packet ordering scheme realized by
ordered-thread execution.

General Terms
Algorithms, Management, Measurement, Performance

Keywords
Classification, Hashing, Packet Ordering, Network
Processor

1. INTRODUCTION
The continual growth of network communication
bandwidth and the increasing sophistication of types of
network traffic processing have driven the need for
designing high-performance network devices to perform
packet processing at flow level. Applications such as
stateful access control in firewalls, deep inspection in
IDS/IPS, and flow-based scheduling in load balancers all
require flow-level packet processing. Basic operations
inherent to such applications include:

♦ Flow classification: Flow-level packet processing
devices are required first to classify packets into flows
according to a classifier and then to process them
differently. As the new demand for supporting triple play
(voice, video, and data) services arises, the workload for
such devices to perform fast flow classification becomes
much heavier. Therefore, it is challenging to perform flow
classification at line speed on these network devices.
♦ Flow state management: Per-flow states are
maintained in order to correctly perform packet processing
at a semantic level higher than the network layer. Such
stateful analysis brings with it the core problem of state
management: what hardware resources to allocate for
holding state and how to efficiently access it. This is
particularly the case for in-line devices, where flow state
management can significantly affect the overall
performance.
♦ Per-flow packet ordering: Another important
requirement for networking devices is to preserve packet
order. Typically, ordering is only required between packets
on the same flow that are processed by parallel processing
engines. Although there have been some order-preserving
techniques for traditional switch architecture, flow-level
packet ordering for parallel switches still remains as an
open issue and motivates the research today.
Traditionally flow-level packet processing devices rely on
ASIC/FPGA to perform IP forwarding at line-rate speed
(10Gbps) [12][23][24]. As the network processor (NP)
emerges as a promising candidate for a networking
building block, NP is expected to retain the same high
performance as that of ASIC and to gain the time-to-market
advantage from the programmable architecture [16]. In this
paper, we present a design of high-performance flow-level
packet processing system based on a typical multi-core
network processor. Main contributions of this paper are:
♦ A high-performance flow classification algorithm
optimized for network processors: The algorithm we
proposed in this paper, Aggregated Cuttings (AggreCuts),
is based on the well-known HiCuts algorithm, while
optimized for multi-core network processors. Different
from HiCuts, AggreCuts has explicit worst-case search
time. To avoid burst of the memory usage, AggreCuts
adopts a hierarchical space aggregation technique that
significantly compresses the decision-tree data-structure.

 2

♦ An efficient flow state management scheme: The
proposed scheme, Signature-based Hashing (SigHash), is
expected to support more than 10M concurrent flow states
with low exception rate. Different from existed hashing
table design, signatures for collision-resolving are stored in
word-oriented SRAM chips in SigHash, while their
corresponding flow states are stored in burst-oriented
DRAM chips. Consequently, the flow state update speed at
near line rate is guaranteed, and the large-storage
requirement for millions of flows is met as well.
♦ Two hardware-supported packet ordering schemes:
The first scheme is external packet ordering (EPO), which
guarantees that packets leave the device in the same order
in which they arrived. The second scheme is internal packet
ordering (IPO), which not only enforces packet order in
each flow, but also guarantees that packets belong to the
same flow are processed by the same thread. Implemented
on NP, EPO uses ordered-thread execution technique to
maintain external packet order, while IPO employs the
SRAM queue array to implement internal packet ordering.
Experimental results on Intel IXP2850 NP show that:
♦ AggreCuts outperforms the existing best-known
algorithm HiCuts in terms of classification rate and
memory storage. AggreCuts uses an order of magnitude
less memory than HiCuts, while guarantees explicit worst-
case search time. When tested with minimum Ethernet
packets flows against real-life rule sets, AggreCuts reaches
a set-independent 9Gbps throughput on IXP2850 NP.
♦ The presented SigHash scheme can support more
than 10M concurrent flow states on IXP2850 NP, which
is over 20 times more than traditional hash
implementation. When tested with minimum Ethernet
packets flows, AggreCuts reaches 10Gbps flow state
update rate.
♦ The performance of IPO ordering scheme using
SRAM queue-array is close to that of EPO ordering
realized by ordered-thread execution. Experimental
results with real-life traffic also show that even the simple

direct hashing scheme used by thread allocation is well-
suited for our IPO implementation.
This paper is organized as follows. In Sections 2,
backgrounds of network processor and related work are
described. AggreCuts for flow classification and SigHash
for flow state management are presented in Section 3 and
Section 4. In Section 5, two packet ordering scheme, EPO
and IPO are described. Experimental results are discussed
in Section 6. As a summary, in Section 7, we state our
conclusion.

2. BACKGROUND AND RELATED WORK
In this section, we first introduce the Intel IXP2850
network processor, and then discuss related work.

2.1 The Intel IXP2850 Network Processor
2.1.1 Architecture of IXP2850
Network processors are typically characterized as
distributed, multi-processor, multi-threaded architectures
designed for hiding memory latencies in order to scale up
to very high data rates. The architecture of Intel IXP2850 is
motivated by the need to provide a building block for
10Gbps packet processing applications. A simplified block
diagram and its description of the Intel IXP2850 are shown
in Figure 1 and Table 1 respectively. Details of IXP2850
can be found in [17-20].

2.1.2 Programming Challenges
Network processing applications are targeted at specific
data rates. In order to meet these throughput requirements,
NPs must complete the packet processing tasks on a given
packet before another packet arrives. To keep up with the
back-to-back arrival of minimum size packets at line rate,
the NP faces the following programming challenges [21]:
♦ Achieving a deterministic bound on packet
processing operation: Due to the line rate constraint, we
need to design the network algorithms in such a way that
the number of clock cycles to process the packet on each
microengine (ME) does not exceed an upper bound.
♦ Masking memory latency through multi-threading:
Even if the packet can be processed within a definite time

Table 1: Hardware overview of IXP2850

Intel XScale
core:

Each IXP2850 includes an XScale core. The
Intel XScale core is a general purpose 32-bit
RISC processor.

Multithreaded
microengines

The IXP2850 network processor has 16 MEs
working in parallel on the fast packet-
processing path, running at 1.4 GHz clock
frequency.

Memory
hierarchy

IXP2850 has 4 channels of 64MB QDR SRAM
running at 233 MHz and 3 channels of 2GB
RDRAM running at 127.3 MHz.

Build-in
media
interfaces

IXP2850 has flexible 32-bit media switch
interfaces. Each interface is configurable as
media standard SPI-4 or CSIX-L1 interfaces. Figure 1 Architecture of IXP2850

 3

interval, it is not sufficient to meet the line rate processing
requirements because memory latencies are typically much
higher than the amount of processing budget.
♦ Maintaining packet ordering in spite of parallel
processing: Another significant challenge in programming
the NPs is to maintain packet ordering. This is extremely
critical for applications like media gateways and traffic
management.
In the following sections, we will address these issues by
employing hierarchical memory, parallel processing and
efficient data-structure to achieve optimized packet
processing performance on the Intel IXP2850 NP.

2.2 Related Work on NP
D. Srinivasan and W. Feng in [23] implemented the basic
bit-vector flow classification algorithm on Intel IXP1200
network processor. They compared parallel mapping and
pipelined mapping of the algorithm and showed that
parallel mapping has better processing rate. The limitation
of their work is that the bit-vector algorithm can only
support 512 rules, which is too small compared to current
real-life rule sets [10]. Recent work presented by D. Liu et
al. in [13] proposed a modified recursive flow classification
(RFC) algorithm, named Bitmap-RFC, which reduces the
memory requirements of RFC by applying a bitmap
compression technique. Experimental results show that the
Bitmap-RFC algorithm achieves 10Gbps speed on Intel
IXP2800 NP. Although Bitmap-RFC obtained high
throughput on NP, it still requires large memory storage
compared to other algorithms such as HiCuts and
HyperCuts. Moreover, the total amount of memory words
loaded from SRAM is 5 times larger than that of the
original RFC algorithm. This affects the SRAM bandwidth
utilization, and hence might reduce the overall performance
of the whole application.
Flow state management is becoming more critical for
network devices to guarantee semantic-level security.
Leading security enterprises like CheckPoint have been
developing there own stateful firewalls, which provide
deep inspection into the network traffic flows rather than
scanning the packets individually. Besides, flow state
management is also a compulsory segment for TCP
reassembly [26] [27]. Although the basic techniques used
for flow state management, such as exact match by hashing,
have been well-studied [28], how to efficiently implement
flow state management on multi-core network processor
still remains as an open issue. To address this issue, two
questions must be well answered: what hardware resources
to allocate for holding state and how to efficiently access it.
This is particularly the case for in-line devices, where flow
state management can significantly affect the overall
performance.
Another important requirement for networking devices is to
maintain packet order. Typically, packet ordering is only

required between packets on the same flow that are
processed by parallel processing engines. In network
devices processing at network layer, the external packet
ordering (EPO) scheme is sufficient, but applications that
process packets at semantic levels require internal packet
ordering (IPO), in which packets belong to the same flow
are handled by the same thread [26]. Generally, the EPO
scheme can exploit greater-degree of concurrency and is
expected to achieve finer-grain distribution of workload
across microengines than the IPO scheme [33]. However,
the EPO scheme also might incur higher overhead for
accessing per-flow state, since with this scheme the
concurrent access to the shared flow-state by multiple
threads must be synchronized using inter-thread signals and
memory-locks.

3. FLOW CLASSIFICATION
There are a number of network services that require flow
classification, such as policy based routing, stateful access-
control, differentiated qualities of service, and traffic
billing. In each case, it is necessary to determine which
flow an arriving packet belongs to in order to determine
whether to forward it, what class of service it should
receive, or how much should be charged for transporting it.
In this section, we present a high-performance flow
classification algorithm optimized for the multi-core
network processor.

3.1 Algorithm Selection
Flow classification has been proved to be theoretically hard,
and hence it is impossible to design a single algorithm that
performs well for all cases [5]. Fortunately, real-life flow
classification rule sets have inherent characteristics that can
be exploited to reduce the temporal and spatial complexity.
In literatures [3] [7] [8] [9] [10], a variety of characteristics
of real-life rule sets were presented and exploited in
designing efficient flow classification algorithms. All these
algorithms can be categorized as field-independent search
and field-dependent search [11]:
♦ Field-independent search: Algorithms such as RFC [7]
and HSM [8] perform independent parallel searches on
indexed tables; the results of the table searches are
combined in multiple phases to yield the final classification
result. All the entries of a lookup table are stored
consecutively in memory. The indices of a table are
obtained by space mapping and each entry corresponds to a
particular sub-space and stores the search result at current
stage. Algorithms using parallel search are very fast in term
of classification speed while they require comparatively
large memories to store the big cross-producting tables.
♦ Field-dependent search: HiCuts [3] and HyperCuts [9]
are examples of algorithms employing field-dependent
searches, i.e., the results of fields that have already been
searched determine the way in which subsequent fields will
be searched. The main advantage of this approach is that

 4

the intelligent and relatively simple decision-tree classifier
can be used. Although in most cases, decision-tree
algorithms require less memory than field-independent
search algorithms [12], they tend to result in implicit worst-
case search time and thus cannot ensure a stable worst-case
classification speed.
Because the large memory requirement of field-
independent search algorithms can hardly be satisfied by
current SRAM chips on network processors [13], in this
paper, the proposed algorithm is based on HiCuts, one of
the best-known field-dependent search algorithms.

3.2 Reduce Memory Accesses
Although HiCuts has good time/space tradeoffs and works
well for real-life rule sets, the straightforward
implementation of HiCuts without any NP-aware
optimization on multi-core network processors suffers from:
♦ Non-deterministic worst-case search time: Because
the number of cuttings varies at different tree nodes, the
decision-tree may have non-deterministic worst-case depth.
Thus, although worst-case search time is the most
important performance metric in packet classification
applications, HiCuts does not have an explicit bound for
search.
♦ Excessive memory access by linear search: Although
the number of rules for linear search is limited to 4~16 in
HiCuts, it still requires tens of memory accesses to off-chip
SRAM chips. Experimental results show that linear search
is very time-consuming on network processors.
Thus an ideal decision-tree based flow classification
algorithm optimized for network processors must have
explicit worst-case bounds for search and avoid the linear
search at leaf-nodes. Our motivations to design such an
algorithm are:
♦ Fix the number of cuttings at internal-nodes: If the
number of cuttings is fixed to 2w (w is a constant referred as
stride), the current search space is then always segmented
into 2w sub-spaces at each internal-node. This guarantees a
worst-case bound of O(W/w), where W is the bit-width of
the packet header.
♦ Eliminate linear search at leaf-nodes: Linear search
can be eliminated if we “keep cutting” until every sub-
space is full-covered by a certain set of rules. The rule with
the highest priority in the set is then the final match.
Consider the common 5-tuple flow classification problem,
where W=104. If w is fixed to 8, then the worst-case search
time (memory access) is limited to 104/8=13, and in this
case, no linear search is required because in the longest
tree-paths, every bit has been “cut” by the decision tree.

3.3 Compress the Data Structure
Admittedly, both motivations tend to result in memory
burst due to the fixed stride and the elimination of linear

search. Therefore, the main optimization task now becomes
how to effectively reduce the memory storages required by
the decision tree data structure. Note that in HiCuts, in
order to maximize the reuse of child nodes, the sub-spaces
with identical rules are aggregated by employing pointer
arrays to lead the way for search. However, the use of
pointer arrays will dramatically increase the memory
storage because the size of each array is considerably large
when the number of cuttings is fixed. For example, if w is
fixed to 8, each internal-node will store 256 pointers to link
its child-nodes. In typical cases, a decision-tree contains
tens of thousands internal-nodes, the total memory required
to store the pointer arrays will exceed tens of mega-bytes,
which is too large for current SRAM chips [18].
To effectively reduce the memory usage of these pointer
arrays, [11, 13, 22] and [29] employ the bit-compression
technique to aggregate consecutive pointers: First, use an
Aggregation Bit String (ABS) to track the appearance of
unique elements in the pointer array, and then compress a
sequence of consecutively identical pointers as one element
in a Compressed Pointer Array (CPA). More specifically,
each bit of an ABS corresponds to an entry in the original
pointer array, with the least significant bit corresponding to
the first entry. A bit in an ABS is set to ‘1’ if its
corresponding entry in the original pointer array is different
from its previous one, i.e. bit set in an ABS indicates that a
different sequence of consecutively identical pointer starts
at the corresponding position. Whenever a bit is set, its
corresponding unique pointer is appended in the CPA.
Accordingly, the n-th pointer in the original point array can
be found by: first adding the first n bits in the ABS to get
an index, and then use the index to load the pointer from
CPA.
Ideally, all the pointer arrays should be compressed using
ABS and CPA. However, loading such a bit-string also
may cause excessive memory accesses. Assume w=8, the
size of the ABS is thus (256 bits)/32=8 32-bit long-words.
Therefore at each internal-node, we have to load 8 long-
words from the off-chip SRAM. Since the tree-depth is 13,
the overall memory accesses to classify a single packet is
then 13*8=104 long-words, which is too much for a
practical memory bandwidth budget to reach multi-Gbps
packet classification rate [1] [20].
Fortunately, in our experiments on a variety of real-life rule
sets, we found that the number of child nodes of a certain
internal tree node is commonly very small: with 256
cuttings at each internal-node, the average number of child
nodes is less than 10. This observation is very consistent to
the results reported in [3] [9] [10]. Such small number of
child nodes indicates that the pointer array is very sparse,
i.e. the number of bits set in ABS is also sparse. Thus, this
observation motivates us to further compress the ABS to
effectively reduce the number of memory accesses.

 5

Figure 2 illustrates how to use the Hierarchical
Aggregation Bit-String (HABS) proposed in [29] to further
compress the data structure. Define the size of HABS as 2v,
the number of pointers as 2w, and u=w-v. To compress the
2w pointers: First, divide the 2w pointers into 2v sub-arrays.
Then set the bits in HABS to ‘1’ if the 2u consecutive
pointers in its corresponding sub-array are different from
the pointers in previous sub-array, i.e. a bit set in an HABS
indicates that a different sequence of consecutively
identical sub-array of pointers starts at the corresponding
position. On the same time, whenever a bit is set, its
corresponding sub-array of pointers is appended in the
CPA. According to this scheme, the n-th pointer in the
original point array can be located by: 1) extract the higher
v bits of n to get a v-bit value m; 2) extract the lower u bits
of n to form a u-bit value j; 3) add 0~m bits of the HABS to
get a sub-array index i; 4) use ((i<<u)+j) as the index to
load the corresponding pointer from CPA.
Different from [29], in the implementation of AggreCuts,
the size of HABS is set to 8 and HABS is stored together
with the cutting information and the next-node address base
within a single 32-bit long-word (see Table 2). Such a data-
structure can be effectively accessed by the word-oriented
SRAM controller on IXP2850 and the computation of
HABS can be done within 3 cycles using POP_COUNT
instruction [24]. The overall data-structure of a sample
decision-tree built by AggreCuts is depicted by Figure 3.

4. FLOW STATE MANAGEMENT
Flow state management experiences a large number of
updates over a short period of time as new sessions are
initiated, and old sessions are closed down. Current session
tables to store flow states can also be exceptionally large,
on the order of 1 million entries. Hashing algorithms are
well-suited for exact match problems and thus widely used
for flow state management. A hash table is made up of two
parts: an array and a mapping function. The array is used as
a table to store the data and the mapping function, also
known as the hashing function, is used to convert the input
space into array indices. In this section, we propose an
efficient hashing scheme to implement flow state
management on multi-core network processors.

4.1 Hash Function Selection
Hash functions are used to convert the input of width W
bits into a hash key of width N bits. To reduce the
probability of collisions, it is important to select an
appropriate hash function. In order to choose such a hash
function to achieving high performance of flow state
management, we compare three typical hash functions:
FNV Hash [15], Jenkins Hash [16] and CRC Hash [31].
The evaluation packet set is the real flow packets collected
at the edge firewall of large enterprises. The five-tuple
fields i.e. source IP, destination IP, source port, destination
port and transport layer protocol, are concatenated to form
the 104-bit hash input. The load factor l is defined by n/m,
where m is the total number of buckets in the hash table
and n is the maximum number of buckets that are occupied
at the same time.
Table 3 shows the collision rate of the three typical hash
functions. The test is done with different load factor l,

0 31 63

Rule 0

15 47

Rule 1

P
0

P
0

P
0

P
0

P
0

P
0

P
0

P
0

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

Rule 2

1 1 0 0 1 0 0 0

P
0

P
0

P
0

P
0

P
0

P
0

P
0

P
0

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
1

P
2

P
2

P
2

P
2

P
2

P
2

P
2

P
2

Original Pointer Array

HABS

Compressed
Pointer Array

Cuttings

Figure 2. Hierarchical Aggregation Bit-String

Table 2. Compact Tree Node Structure

Bits Description Value

31:30 dimension to
Cut (d2c)

d2c=00: src IP; d2c=01: dst IP;
d2c=10: src port; d2c=11: dst port.

29:28 bit position to
Cut (b2c)

b2c=00: 31~24; b2c=01: 23~16
b2c=10: 15~8; b2c=11: 7~0

27:20 8-bit HABS if w=8, each bit represent 32 cuttings;
if w=4, each bit represent 2 cuttings.

19:0
20-bit Next-
Node CPA
Base address

The minimum memory block is 2w/8*4
Byte. So if w=8, 20-bit base address
support 128MB memory address space;
if w=4, it supports 8MB memory
address space.

Note: We use d2c=11, b2c=00 to indicate the cutting of the 5th
dimension, the 8-bit transport layer protocol.

00 00 10001000 0x40000

11 00 10100000 0x60100

01 01 10110100 0x62000

10 00 10001000 0x62500

01 00 10001001 0x63000

00 02 10000100 0x63700

11 01 HABS 0x65000

01 00 HABS 0x65200

01 00 HABS 0x67000

01 00 HABS 0x67800

10 01 10101010 0x68200

10 01 10101010 0x68500

00 01 11100000 0x70000

01 00 10000101 0x71000

01 00 11000000 0x50000

00 01 10000000 0x52000

11 00 10100000 0x55000

10 00 10100001 0x58000

11 00 10100000 0x60000

11 00 11000010 0x71500

00 01 10000010 0x73000

2-bit
d2c

2-bit
b2c

8-bit
HABS

20-bit
Next Node Address Base

Figure 3. Data-structure of a Sample AggreCuts Tree.

Table 3. Evaluation of Typical Hash Functions
Collision Rate Hash

Function l=1:1 l=1:2 l=1:4 l=1:8
CRC 0.368670 0.107371 0.028602 0.007501
FNV 0.367435 0.106284 0.028365 0.007384
Jenkins 0.368289 0.106969 0.028541 0.007563

 6

ranging from 1:8 to 1:1. The collision rate is defined as the
number of collisions divided by the total number of input
packets. From Table 3, it is clear that the performance of
the three different hashing algorithms is very close to each
other. Because each microengine on IXP2850 has an on-
chip CRC unit, which provides very fast CRC computation
[24], we choose to use the CRC as the hashing function.

4.2 Hash Table Design
The data-structure of hash table is of great importance to
the design of efficient flow state management, which takes
the advantage of the parallelism of multi-core and multi-
threaded network processor. The hash table data structure
explains how we organize the flow state entries.
The traditional hash scheme, which is named DirectHash in
this paper, stores flow states in a single hash table indexed
by the hashing value and normally uses link lists to handle
hash collisions. Each entry in the link list stores a full flow
state consisting of the 5-tuple header, sequence and ACK
sequence number, and other flow information according to
different applications. When collision occurs, the link list
entries will be checked one by one to find out the exact
match. Although DirectHash is simple to implement on NP,
this scheme suffers from:
♦ SRAM Size Limit: Assuming that 10M concurrent
flow states were to support with a load factor of 1:1, and
each flow state entry is 32 bytes in size, the total size of the
hash table by DirectHash will be 320MB, which is too
large compared to the 64MB SRAM chips on IXP2850.
♦ Excessive Memory Accesses: According to our
experiments (see Table 3), with load factor of 1:1, the hash
collision rate will be greater than 30%, which means more
than 30% of packets will be stored in the link list, and thus
results in excessive memory accesses.
To address these problems, we employ the idea of
hierarchical hashing introduced in [1] and propose a
signature-based hashing scheme named SigHash. As shown
in Figure 4, the SigHash uses two hash tables: the signature
table in SRAM and the flow state entry table in DRAM.
Both the tables are indexed using 20 lower order bits of the
hash value returned by the hash function. Therefore, both
the primary and secondary tables contain 220 buckets. Each
bucket is further organized as 4 bins. Each bin corresponds
to a rule that has been inserted into the hash table. The
primary table is a compact table that stores hash signatures
in each bin. A signature is a contiguous set of 8 bits taken
from the hash index returned by the hash function. These 8
bits are distinct from the set of 20 bits used as an index into
the two tables. In comparison to DirectHash, SigHash is
more efficient because:
♦ The relatively high speed memory usage of SRAM is
significantly reduced by the hierarchical memory
management. n concurrent flows with load factor l only

need n/l*4 Bytes SRAM memory storage, together with
n/l*sizeof(flow state) Bytes DRAM.
♦ Assisted by the signature checking in SRAM, only one
SRAM access is required if the number of collisions are
less than 5. To check out whether the incoming flow
matches the corresponding flow state in DRAM, additional
one DRAM access is required. Thus, SigHash always
provides deterministic performance when there are four or
less collisions
♦ If the collision entries exceed 5, the packet will be sent
to the slow path and be treated as an exception in XScale
core. However, experimental results with real-life traffics
[5] indicate that, with an appropriate choice of load factor,
the number of exceptional packets can be very small. From
Figure 5 we can see that, when the load factor is smaller
than 1, the exception rate is less than 2%.

5. PER-FLOW PACKET ORDERING
Another important requirement for networking devices is to
maintain packet order. Typically, ordering-preserving is
only required between packets on the same flow that are
processed by different processing engines. In network
devices processing at network layer, the external packet

Figure 4. Data-structure of SigHash

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

4 2 1 0.5 0.25 0.125

Ex
ce

pt
io

n
ra

te

Load factor
Figure 5. Load Factor Selection for SigHash

 7

ordering (EPO) scheme is sufficient, but applications that
process packets at semantic levels require internal packet
ordering (IPO), in which packets belong to the same flow
are handled by the same thread. In this section, we discuss
how to efficiently implement EPO and IPO in Intel IXP
2850 network processor.

5.1 External Packet Ordering
5.1.1 Ordered-thread Execution
EPO can be realized by ordered-thread execution strategy
suggested by [1]. In this design, every dispatch loop
assumes that the packets are in order when it receives them
from the previous processing state. It uses an ordered
critical section to read the packet handles off the scratch
ring from the previous state. The threads then process the
packets, which may get out of order during packet
processing. At the end of the dispatch loop, another ordered
critical section ensures that the threads write the packet
handles to the scratch ring in the correct order. The
implementation of ordered critical sections typically uses
strict thread ordering enforced via inter-thread signaling.
Details of ordered-thread execution can be found in [1].

5.1.2 Mutual Exclusion by Atomic Operation
In the EPO scheme, packets belong to the same flow may
be allocated to different threads to process, thus mutual
exclusion is needed because multiple threads may access
the same flow state entry in the hash table. Mutual
exclusion can be implemented by locking. IXP2850 NP
provides an efficient way to implement a lock using SRAM
atomic instructions such as sram_test_and_set(). In our
design, once a thread is accessing the session entry data
structure, the MUTEX lock bit is set by an atomic
operation so that any other thread cannot access the same
session entry. Here the access mainly includes write
operations. At the end of the packet processing, the thread
clear the MUTEX lock bit so that other threads can access
the shared memory.

5.2 Internal Packet Ordering
5.2.1 Internal Packet Ordering via SRAM Q-Array
Internal packet ordering requires that packets belong to a
certain flow should be processed by the same thread. This
requirement can be meet using multiple memory queues,
each of which corresponds to a certain thread. The
IXP2850 hardware supports a 64-element SRAM Queue
Array per SRAM channel, providing fast access to these
queues through a 64-element hardware cache in the SRAM
controller. Figure 6 shows how to implement IPO using
SRAM Queue Array: Packets belong to the same flow
(with the same CRC hash value) will first be put into the
same SRAM Queue, and then be processed by the
corresponding thread.

5.2.2 Workload Allocation by CRC Hashing
In this paper, a pure hash-based workload allocation
module is implemented to achieve internal packet ordering.
With direct hashing, the load balancing module applies a
hash function to a set of fields of the five-tuple, and uses
the hash value to select the outgoing queue in the SRAM
Queue Array. In our study, two hashing schemes are
evaluated: hashing of the destination address (H = DestIP
mod N) and hashing of the five-tuple packet header using
CRC (H = CRC32 (five-tuple) mod N). We found that CRC
hashing scheme performs much better than the destination
address hashing over different real-life traffic traces. Such
results are consistent to the evaluations in [31]. Therefore,
we choose the CRC hashing as our workload allocation
scheme.
Note that in [32], W. Shi, M. H. MacGregor and P.
Gburzynski have proved that pure hashing is not able to
well balance the workload due to the Zipf-like distributions
of flow-size in real-life traffic. However, in practice, the
performance of hash-based load balancing module is good
enough in our system (see the experiments in Section 6.4.1)

6. PERFORMANCE EVALUATION
6.1 Development Kits and Test Environments
There are two basic programming choices in the Intel
Software Developer Kit (Intel SDK): programming in
assembly language (Microcode) or programming in C
language (MicroC). To make better compatibility with Intel
SDK, and to avoid dependency on compiler optimizations,
all the application and algorithms are developed using
Microcode assembly with the software framework provided
by Intel SDK4.0 [25].
To evaluate the performance, the application was tested and
run in the IXP2850 Developer Workbench, which offers a
cycle-accurate simulator of the IXP2850 NPs. This
environment provides access to several performance
metrics that reflect the actual IXP2850 hardware. The
application was also tested on a dual-IXP2850 platform to
ensure the code accuracy and compatibility on hardware

Packet
Receive

Packet
Transmit

Flow-level
Packet

Processing

Flow-level
Packet

Processing

Flow-level
Packet

Processing

Flow-level
Packet

Processing

Flow-level
Packet

Processing

Flow-level
Packet

Processing

Flow-level
Packet

Processing

64 threads in multi-
processing mode

64-entry SRAM
Queue Array

Fast Scratch Ring

In
co

m
in

g
Pa

ck
et

s

O
ut

go
in

g
P

ac
ke

ts

Figure 6. Internal Packet Ordering via Sram Queue Array

 8

6.2 Performance of AggreCuts
We compare three main performance metrics of the
AggreCuts to the HiCuts algorithm: the worst-case memory
access, total memory usage and throughput on IXP2850.
The testing rule sets, denoted as SET01~SET07, are all
real-life 5-tuple ACLs obtained from large enterprises and
from [30]. The size of these rule sets ranges from 68
(SET01) to 1530 (SET07). AggreCuts-4 refers to w=4, i.e.
at each internal node, the current search space is cut into 24
sub-spaces. Similarly, AggreCuts-8 refers to w=8.

6.2.1 Worst-case Memory Access
Worst-case memory access, indicating the worst-case
classification speed, is the most important performance
metric in evaluation of a flow classification algorithm.
From Figure 7 we can see that the worst-case memory
accesses of AggreCuts-8 and AggreCuts 4 are less than 1/6
and 1/3 of that of HiCuts respectively. This is because the
worst-case tree depth of HiCuts depends on the data-
structure of the rule set, while that of AggreCuts is set-
independent due to the explicit cutting scheme. Such a
definite worst-case memory access is expected to guarantee
stable performance of high-speed flow classification on the
network processor.

6.2.2 Memory Usage
The memory usages of AggreCuts-4, AggreCuts-8 and
HiCuts against the 7 real-life rule sets are shown in Figure
8. It can be seen from the figure that: AggreCuts-4 uses
nearly an order of magnitude less memory than HiCuts.
AggreCuts-8 also has much better spatial performance than
HiCuts. More specifically, AggreCuts-4 uses less than
1.4MB memory against all the 7 rule sets, and AggreCuts-8

uses less than 5.3MB memory, both of which are less than
the size of a single chip of SRAM on the IXP2850 network
processor (there are four 8MB SRAM chips on IXP2850).
In comparison, the memory usage of HiCuts is larger than
28MB, which is nearly the total amount of all the four
chips of SRAM.

6.2.3 Throughput on NP
To evaluate the throughput of the worst-case performance
on IXP2850, we use minimum 64Byte Ethernet packets as
the input traffic and set each packet to match the longest
tree depth (i.e. each packet will incur the worst-case
memory access). Figure 9 shows the throughput achieved
by AggreCuts-4, AggreCuts-8 and HiCuts. From this figure,
we see that AggreCuts-8 reaches nearly 9Gbps throughput
and AggreCuts-4 also has a stable 6Gbps performance. In
comparison, the throughput of HiCuts is less than 2Gbps,
and as the number of rules increases, its performance
slowly decreases.

6.3 Performance of SigHash
Two hash schemes are implemented on the platform of
Intel IXP2850 Network processor: the DirectHash scheme
based on SRAM and the SigHash scheme based on SRAM
as well as DRAM. From Figure 10, we can see that the
DirectHash scheme reaches 8.3Gbps throughput with 64
threads, while the SigHash scheme reaches 10Gbps line
speed. The figure also shows that when the number of
threads exceeds 40, the performance of DirectHash does
not increase linearly. This is because the SRAM read CMD
FIFO becomes a bottleneck as more and more threads
issues memory access commands concurrently. In contrast,
the SigHash scheme takes the advantage of the DRAM

0

10

20

30

40

50

60

70

80

90

100

SET01 SET02 SET03 SET04 SET05 SET06 SET07

M
em

or
y

Ac
ce

ss
es

 (3
2-

bi
t w

or
ds

)

Rule Sets

HiCuts

AggreCuts-4

AggreCuts-8

10

100

1000

10000

100000

SET01 SET02 SET03 SET04 SET05 SET06 SET07

M
em

or
y

U
sa

ge
 (M

B
)

Rule Sets

HiCuts

AggreCuts-4

AggreCuts-8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

SET01 SET02 SET03 SET04 SET05 SET06 SET07

Th
ro

ug
hp

ut
 (M

bp
s)

Rule Sets

HiCuts
AggreCuts-4
AggreCuts-8

Figure 7. Worst-Case Memory Access Figure 8. SRAM Usage Evaluation Figure 9. NP Throughput

0

2

4

6

8

10

12

8 16 24 32 40 48 56 64

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Threads

DirectHash

SigHash

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8

P
ac

ke
t d

ro
p

ra
te

Time (sec)

Queue Length=512

Queue Length=1024

Queue Length=2048

0

2

4

6

8

10

12

8 16 24 32 40 48 56 64Number of Threads

Th
ro

ug
hp

ut
 (G

bp
s)

IPO EPO

Figure 10. DirectHash vs. SigHash Figure 11. Workload Allocation Figure 12. EPO vs. IPO

 9

interleaving storage mechanism which evenly distributes
consecutive memory access into three channels. Moreover,
with 64MB SRAM and 2GB DRAM on the IXP2850 NP,
the SigHash scheme can support over 10M concurrent
sessions while the DirectHash scheme can only maintain
less than 500K concurrent flow states.

6.4 Performance of Packet Ordering
6.4.1 Workload Allocation by CRC Hashing
Using packet traces (CESCA-I) from NLANR PMA [34],
simulation is performed on the CRC hashing load
balancing module to evaluate the impact of IPO on the
utilization of microengines caused by the load distribution
fluctuation.
In simulation, packets are distributed into 64 queues, the
length of the queue can be 512, 1024 or 2048 packets. The
total processing capacity of the 64 threads is assumed to
match the input packet rate. As shown in Figure 11, tested
with three different queue lengths, the average packet drop
rates caused by the queue overflow are below 6%, i.e. the
utilization of microengines is higher than 94%. This also
indicates that, on average, there are 64*6%=4 threads
working in idle time.

6.4.2 EPO vs. IPO
The EPO scheme is implemented by ordered-thread
execution and the IPO scheme is realized through SRAM
queue array. Figure 12 shows that, the EPO scheme reaches
the line speed of 10Gbps with 64 threads, while the IPO
scheme achieves its maximum throughput of 7.4Gbps. The
reason why IPO scheme runs at a lower rate mainly
contains two aspects: First, the IPO scheme forces each
flow to be processed in a specified thread. This flow-level
workload distribution brings in the non-uniformity in load
balancing. Secondly, the flow-level workload allocation
incurs additional processing overhead, especially the
memory access to load packet headers for CRC
computation. Nevertheless, the IPO scheme is expected to
achieve higher performance if more threads could be
allocated, since it can be seen from Figure 12 that the
throughput of the IPO scheme still grows linearly when
running on 64 threads.

7. CONCLUSION
In this paper, we present a high-performance flow-level
packet processing system based on multi-core network
processors. At first, a high performance flow classification
algorithm optimized for network processors is proposed
that outperforms the existing best-known HiCuts algorithm.
Secondly, an efficient flow state management scheme using
signature-based hashing is presented, which can support
10M concurrent flows on the IXP2850 network processor
and reach 10Gbps line speed. In addition, two hardware-
supported packet ordering strategies that preserve internal
and external packet orders respectively are implemented

and evaluated on the IXP2850 NP. Experimental results
show that the performance of internal packet ordering
scheme using SRAM queue-array is close to that of
external packet ordering scheme realized by ordered-thread
execution.
In future work, we plan to implement TCP stream
reassembly and pattern matching building blocks on the
IXP2850 NP. Although both tasks are hard due to deeper
content to inspect and more complicated states to maintain,
they can be implemented as degenerated or simplified
versions [26] [27]. Our future work also includes the
implementation of flow-level load balancing [31-33] and
application-level flow detection [35-37] on the IXP2850
NP. Note that all these work in our future work are based
on the proposed flow-level packet processing systems. We
believe that, as the continual growth of network traffic rates
and the increasing sophistication of types of network traffic
processing, more and more complicated network
applications will emerge using parallel processing network
devices to perform high-speed packet processing at flow
level.

8. REFERENCES
[1] U. R. Naik and P. R. Chandra, “Designing High-

performance Networking Applications”, Intel Press,
2004.

[2] T. Sherwood, G. Varghese, and B. Calder, “A
Pipelined Memory Architecture for High Throughput
Network Processors,” Proc. of the 30th International
Symposium on Computer Architecture, 2003.

[3] P. Gupta and N. McKeown, “Packet Classification
Using Hierarchical Intelligent Cuttings”, Proc. Hot
Interconnects, 1999.

[4] P. Gupta and N. McKewon, “Algorithms for Packet
Classification”, IEEE Network, March/April, 2001.

[5] M. H. Overmars and A. F. van der Stappen, “Range
Searching and Point Location among Fat Objects”,
Journal of Algorithms, 21(3), 1996.

[6] Y. Qi, B. Xu and J. Li, “Evaluation and Improvement
of Packet Classification Algorithms”, Proc. of the 1st
International Conference on Network and Services
(ICNS), 2005.

[7] P. Gupta and N. McKeown, “Packet Classification on
Multiple Fields”, Proc. ACM SIGCOMM, 1999.

[8] B. Xu, D. Jiang and J. Li, “HSM: A Fast Packet
Classification Algorithm”, Proc. of the 19th
International Conference on Advanced Information
Networking and Applications (AINA), 2005.

[9] S. Singh, F. Baboescu, G. Varghese and J. Wang,
“Packet Classification Using Multidimensional
Cutting”, Proc. of ACM SIGCOMM, 2003.

 10

[10] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A.
T. Campbell, “Directions in Packet Classification for
Network Processors”, Proc. of the 2nd Workshop on
Network Processors (NP2), 2003.

[11] J. van Lunteren and T. Engbersen, “Dynamic Multi-
Field Packet Classification”, Proc. of IEEE
GLOBECOM, 2002.

[12] D. E. Taylor, “Survey & Taxonomy of Packet
Classification Techniques”, Technical Report,
Washington University in Saint-Louis, USA, 2004.

[13] D. Liu, B. Hua, X. Hu and X. Tang, “High-
performance Packet Classification Algorithm for
Many-core and Multithreaded Network Processor”,
Proc. of the 6th IEEE International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), 2006.

[14] P. Piyachon and Y. Luo, “Efficient Memory
Utilization on Network Processors for Deep Packet
Inspection”, ACM Symposium on Architectures for
Network and Communications System (ANCS2006),
2006.

[15] L. Zhao, Y. Luo, L. Bhuyan and R. Iyer, “SpliceNP: A
TCP Splicer using A Network Processor”, ACM
Symposium on Architectures for Network and
Communications System (ANCS), 2005.

[16] X. Hu, X. Tang and B. Hua, "High-Performance IPv6
Forwarding Algorithm for Multi-core and
Multithreaded Network Processor". Proc. of ACM
SIGPLAN 2006 Symposium on Principles and Practice
of Parallel Programming (PPoPP2006), 2006.

[17] Intel Corporation, “Intel IXP2850 Network Processor
Hardware Reference Manual”, 2004.

[18] Intel Corporation, “Intel IXDP2850 Advanced
Development Platform System User’s Manual”, 2004.

[19] B. Carlson, “Intel Internet Exchange Architecture and
Applications”, Intel Press, 2003.

[20] E. J. Johnson and A. R. Kunze, “IXP2400/2850
Programming”, Intel Press, 2003.

[21] M. Venkatachalam, P. Chandra and R. Yavatkar, “A
Highly Flexible, Distributed Multiprocessor
Architecture for Network Processing”, Computer
Networks, 2003.

[22] Y. Qi and J. Li, “Towards Effective Packet
Classification”, Proc. of the IASTED Conference on
Communication, Network, and Information Security
(CNIS 2006), 2006.

[23] D. Srinivasan and W. Feng, “Performance Analysis of
Multi-dimensional Packet Classification on
Programmable Network Processors”, Proc. of the 29th

Annual IEEE International Conference on Local
Computer Networks (LCN), 2004.

[24] Intel Corporation, “Intel IXP2400 and IXP2800
Network Processor Programmer’s Reference Manual”,
2004.

[25] http://www.intel.com/design/network/products/npfamil
y/ixp2xxx.htm

[26] S. Dharmapurikar and V. Paxson, “Robust TCP stream
reassembly in the presence of adversaries”.
Proceedings of the 14th USENIXSecurity Symposium,
2005.

[27] G. Varghese, J. A. Fingerhut and F. Bonomi,
“Detecting evasion attacks at high speeds without
reassembly”, Proc. of ACM SIGCOMM, 2006.

[28] G. Varghese, “Network Algorithmics”, Elsevier Press,
2005.

[29] Y. Qi, B. Xu, F. He, X. Zhou, J. Yu and J. Li,
“Towards Optimized Packet Classification Algorithms
for Multi-Core Network Processors”, Proc. of the 2007
International Conference on Parallel Processing (ICPP),
2007.

[30] http://www.arl.wustl.edu/~hs1/PClassEval.html
[31] Z. Cao, Z. Wang, E. Zegura, “Performance of

Hashing-Based Schemes for Internet Load Balancing”,
Proc. IEEE INFOCOM, 2000.

[32] W. Shi, M. H. MacGregor and P. Gburzynski, “A
Scalable Load Balancer for Forwarding Internet
Traffic: Exploiting Flow-level Burstiness”, ACM
Symposium on Architectures for Network and
Communications System (ANCS), 2005.

[33] T. L. Riché, J. Mudigonda, and H. M. Vin,
“Experimental Evaluation of Load Balancers in Packet
Processing Systems”, Proc. of the 1st Workshop on
Building Block Engine Architectures for Computers
and Networks (BEACON-1), 2004.

[34] http://pma.nlanr.net/Special/
[35] A. W. Moore and D. Zuev, "Internet Traffic

Classification Using Bayesian Analysis Techniques,"
Proc. of the ACM SIGMETRICS, 2005.

[36] T. Karagiannis, K. Papagiannaki and M. Faloutsos,
"BLINC: Multilevel traffic classification in the dark"
(2005). Proc. of ACM SIGCOMM, 2005.

[37] S. Sen, O. Spatscheck and D. Wang, “Accurate,
Scalable In-network Identification of p2p Traffic using
Application Signatures”, Proc. of the 13th international
Conference on World Wide Web, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

