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ABSTRACT
Network verification, which is mainly about checking net-
work states against network invariants or operator beliefs, has
been a popular research thesis recently. Fast calculation of
all-pair reachability of the network beforehand for further
query or overall analysis can be a huge assistance to net-
work verification. In this paper, we propose a new fast all-pair
reachability calculation algorithm Atomic Predicates Flood-
ing(APF). Experiments on real-life datasets show that the
new algorithm based on network atomization is about three
to four orders of magnitude faster than existing algorithms
without network atomization. On most kinds of datasets, APF
is even 2 to 5 times faster than the Warshall based all pair
reachability algorithm with atomization. We believe that our
method is essential for developing more practical and more
efficient network and verification tools.

1 INTRODUCTION
Computer network is getting more and more complex these
days. Often, the whole picture of the network exceeds what
an operator can grasp. Therefore, some automatic network
verification tools which take the network configuration files
and network topology as input, calculate and report the infor-
mation required by the operator to troubleshoot the network
are eagerly needed.

Essentially, the basis of network verification is reachability
calculation. Since the intents or invariants operators are inter-
ested in mainly include reachability query, blackhole or loop
detection, slice confirmation etc., all of them can be taken
down to calculate the reachable packet header set between
certain pairs of network nodes. On the bootstrap stage of
network verification, fast calculation of the reachable packet
header set between all pairs of nodes (referred to as all-pair
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reachability in further discussion) can give related verification
work a huge boost.

Simply put, to calculate the all-pair reachability of a net-
work is to find out: for each pair of nodes in the network, what
is the full set of packet header that can travel from one node
to another? Basically, it can be done by traversing the network
from each node, injecting all-wildcard packets (packet with
all possible packet headers) at that node, looking up the rout-
ing table along the path to reduce the remaining packet header
set, and combining all packet headers out of all possible paths.

Most of the rules in a network (except some non-deterministic
rules and packet modification rules) can be represented in this
form: r = (match,action). Taken into consideration the prior-
ity of each rule on a network device, the ruleset of a network
node can be represented as R, R = {(r j , rpj ) | j = 1, 2, ..., |R |},
rpj is the priority of rule r j , and since thematch of different
rules may overlap, thematch space of rules with higher prior-
ity will shadow thematch space of rules with lower priority.

To provide fast reachability calculation, network verifica-
tion tools use different kinds of data structures to represent
rules. Works like [5] and [6] use Binary Decision Diagram
(BDD), [2] uses disjoint difference Normal Form (ddNF), [7]
goes further with BDD: they use BDD to compute atomic
packet header set of a rule set. Atomic means that this set of
packet header will be treated identically in this network, and
AP-Verifier calls this equivalent set of packet header AP of
the network rule set. Here in APF algorithm, we adopt this
atomization method to reduce the complexity of rules and
eliminate the overlap between rules.

In this paper, we propose a fast algorithm, Atomic Predi-
cates Flooding(APF), derived from the network atomization
method addressed by AP-Verifier[7], for calculating the all-
pair reachability of networks. Experiments carried out on
real-life datasets with different sizes show that the proposed
algorithm is around 10 times faster than the normal flooding-
based algorithms with network atomization, 2-5 times faster
than the Warshall[3] algorithm with network atomization on
most kinds of datasets, and more than 1000 times faster than
non-atomization methods.

2 ALGORITHM
Some of the existing work such as HSA[4], AP-Verifier[7],
and ATPG[8] can calculate all-pair reachability with a O(n!)
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Table 1: Time used to calculate all-pair reachability of different networks

GridNet Pacific-Wave Karen Myren Palmetto Garr ASNET-AM Viatel US Carrier Cogent

#Router 9 18 25 37 45 55 65 88 158 197
#Link 20 27 30 40 70 72 79 92 189 245

Avg Path Len 5.17 3.89 4.46 3.34 7.65 4.49 4.61 40.22 11.09 10.82
#AP 168 242 438 411 875 563 683 1054 2418 2970

Flooding(s) 0.0044742 0.0055724 0.017149 0.020283 0.39961 0.11353 0.16418 9.2644 9.0112 15.058
Warshall(s) 0.005538 0.001015 0.003154 0.004064 0.02905 0.012734 0.022401 0.65428 0.61620 1.1065

APF(s) 0.000999 0.0009912 0.002591 0.002126 0.01835 0.005744 0.008095 0.5208 0.1542 0.2057

worst-case complexity by flooding all-wildcard packets in
network. However, by adopting the atomization method and
focus on each AP’s reachability, our algorithm gets a much
better complexity. In APF algorithm, we calculate the all-
pair reachability by calculating the all-pair reachability of
the network only with a single AP and summing the results
up. Specifically, our algorithm floods the network with each
AP represented packet header set from every source nodes to
every destination nodes to get a submap of the reachability
for each AP. Then we merge those submaps together to obtain
the reachability of the whole network.

After rule atomization, for each AP, each node has only
one port that may contain it (the atomization process combine
all rules with the same action together), then calculation of
single source node reachability of an AP can be fulfilled by
traversing the whole network only once, and that is O(|V |)
complexity. To calculate all pair reachability, calculate the
single source node reachability from each node, and cost
O(|V |2) complexity. We can treat each propagation from one
node to another(essentially checking the existence of the AP
in nodes’ integer set) as O(1) time complexity. Based on the
inference above, the total time complexity to calculate all-
pair reachability using this algorithm is O(N · |V |2) (N is the
number of AP).

3 EVALUATION
We compared our algorithm with ATPG, AP-Verifier and
the baseline flooding algorithm with network atomization by
using the classical dataset in network verification, Stanford
Backbone Network. ATPG takes 56056.8ms to calculate it
and AP-Verifier takes 218.4ms, while the baseline flooding
algorithm takes 29.4ms and our algorithm takes only 8.29ms.

Then, we generate some datasets from the network topolo-
gies from the Internet Topology Zoo[1], and use these data
sets to evaluate the performance of APF and compare it with
the basic flooding algorithm and Warshall algorithm(the clas-
sic algorithm to calculate transitive closure[3]) with network
atomization. Details about the datasets and experiment result
can be found in Table1. To quantitatively demonstrate the
complexity of the datasets, we introduce two key factor: Av-
erage Path Length and the number of AP. The average path

length factor indicates the round for ruleset looking up per
packet propagation, and the AP number indicates the number
of equivalent packet header classes in this network.

Experiment results demonstrated that our algorithm gives
a huge boost on calculating reachability.APF is 5 to at most
20 times faster than the baseline flooding method, and faster
than Warshall algorithm on most of the datasets, especially
datasets with higher AP number or average path length.

4 CONCLUSION
This paper develops a fast all-pair reachability calculate algo-
rithm based on network atomization. Experiments on real-life
datasets show that this algorithm is more than 1000 times
faster than existing algorithms without network atomization,
5 to 10 times faster than existing algorithms with atomization.
With this proposed algorithm, network operators can get the
all-pair reachability relationship of a middle-sized network
in less than 1 second. We believe that this tool can provide
huge assistance to network operators and become a key part
of network analysis.
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