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Abstract—In order to provide the service differentiation for 
various network applications, and guarantee delay and 
bandwidth requirement, packet scheduling is considered as a 
hot research topic and a crucial module in network device. In 
high speed network, it is hard to maintain and schedule a great 
number of queues for millions of in-progress flows in memory 
in line speed. In this paper, we propose a scalable per-flow 
scheduling scheme using a small fast memory to achieve fine-
grained service guarantee. A limited number of queues are 
dynamically shared among concurrent flows based on the 
interesting fact that the number of simultaneous active flows is 
only in hundreds whatever the link speed is. The scheduling 
scheme is in a scalable hierarchical manner, in which the first 
layer supplies service differentiation and the second guarantees 
bandwidth and delay. We also implement an instance based on 
this scheme called DQS-SPQ-DRR (Dynamic Queue Sharing-
Strict Priority Queue-Deficit Round Robin). Experiments 
based on real and synthetic traces are conducted to evaluate 
the DQS-SPQ-DRR. The results demonstrate that DQS-SPQ-
DRR is well held in small memory and supplies per-flow 
service guarantee. 

Keywords: scheduling,scalable,per-flow 

I.  INTRODUCTION  
Packet scheduling is the key technique to guarantee the 

service for critical applications. To design a good scheduling 
scheme, several issues should be addressed: 1) how to 
distribute bandwidth to each flow on demand; 2) how to 
guarantee the quality of service for critical applications; 3) 
how to deploy the scheduling schemes easily. 

Using a dedicated queue for each flow and a constant-
time scheduler (such as DRR) [1] can provide bandwidth and 
delay guarantees for service. Unfortunately the number of in-
progress flows can be extremely large. With traffic evolution, 
the number of flows is also growing (in millions scale) and 
possibly exceeds router’s capacity. Caching states for 
millions of flows is a big challenge in high speed network. If 
the states are stored in SRAM, the memory cost is too 
expensive; if they are kept in DRAM, the state lookup and 
update are too slow. Therefore, how to organize the queues 
in SRAM and schedule them in different priorities is a 
significant but unsettled issue.  

A flow is a stream of packets that are identifiable using 
fields in a packet header (such as TCP/IP’s five-tuple). 
Packets of each flow have the same route from the source to 
the destination and require the same grade of service.  

Many researchers [2-4] focus on dealing flows at a time 
scale of seconds or minutes. However, a packet is buffered in 

high speed device only for several microseconds mostly, so 
active flows (flows are not empty currently) should be 
handled at a microsecond time scale. The new discovery is 
that the number of concurrent flows is only in hundreds in 10 
microsecond scale [5]. Based on this observation, it is 
possible to use hundreds of queues and share them among 
active flows [6]. It is very easy to store such a number of 
queues in SRAM. Therefore a data structure called active 
flow list (AFL) is designed to store active flows. When the 
first packet of a flow arrives, an empty queue is allocated and 
a new entry is inserted to AFL; when the queue becomes 
empty, the relative entry in AFL is deleted and the queue is 
freed and can be reassigned to another newly incoming flow. 

In this paper, a novel scalable per-flow scheduling 
scheme is proposed. AFL is used to store active flows in a 
small memory. The scheduler is hierarchically organized for 
enqueue and dequeue operation. The first layer provides 
service differentiation by distributing flows into different 
priority groups. The second provides delay and bandwidths 
guarantee for each flow which can prevent one flow from 
occupying too much resource. It is a scalable scheme and 
each layer can use existing scheduling algorithms to achieve 
service differentiation and guarantee. Our results show that 
all memory required by this scheme is small and well held in 
fast memory; service of critical flows is better guaranteed 
than original solution. 

The rest of the paper is organized as follows. Section II 
introduces the related work. Section III presents the scalable 
hierarchical scheduling scheme. Section IV gives a named 
DQS-SPQ-DRR implementation. Section V discusses the 
experimental results. Section VI concludes the paper and 
future works. 

II. RELATED WORK 
Packet scheduling has been studied extensively and many 

scheduling algorithms and architectures are given. 
IntServ[7] is the pioneer of scheduling architecture. It 

reserves resource for all flows in-progress flows.  It can 
achieve well per-flow service guarantees. However, it has to 
maintain all state information for all flows in its route. Its 
sophisticated implementation is not feasible to the huge 
number of flows. So it is not widely used in Internet.  

A.Nikologiannis et al. [8] and Aggelos Ioannou et al.[9] 
introduce special hardware to implement thousands of 
queues for per-flow queuing for providing advanced service 
guarantee respectively. It always adopts ASIC for queues 
organization and scheduling. However, in these methods, it 
not only takes high cost and long-term developing cycle, but 
also does not scale up with the increasing of the network. 
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S.Floyd et al. [10] presents CBQ (Class-Based Queueing), 
which has been implemented in many Linux distributions 
[11]. Hierarchical link-sharing is introduced to allow 
multiple agencies, protocol families, or traffic types to share 
the bandwidth on a link in a controlled fashion.  Link sharing 
is organized in tree and each node represents one share such 
as agencies or policy. On the basis of CBQ, H-PFQ 
(Hierarchical Packet Fair Queueing) [12] and HFSC 
(Hierarchical Fair Service Curve) [13] are introduced to 
achieve fair queueing. However, the architectures above only 
deal with the flow aggregation. To get fine-grained service 
guarantee, they have to deepen the hierarchical tree, which 
will increase the scheduling cost a lot. 

A.Kortebi et al. [5] firstly discovers the interesting fact 
that the number of flows in progress is in millions and 
increases with the link speed, but the number of active flows 
is only in hundreds even though there may be tens of 
thousands of flows in progress currently.  Based on this 
discovery, it is a good opportunity to design a new 
scheduling scheme. However this paper only presents a 
simple fair queue schedule scheme which can’t provide 
sufficient service guarantee. 

III. THE DESIGN OF PACKET SCHEDULING SCHEME 

A. Design principles 
The objective of our scheme is as follows: 1) to provide 

per-flow queueing in SRAM; 2) to provide delay and 
bandwidth guarantee for critical flows; 3) to be scalable to 
existing scheduling algorithms. To achieve these, we 
combine AFL, priority group and bandwidth guarantee 
algorithm together.  

In order to providing per-flow queueing, queue is 
organized in AFL. With AFL storing the active flows in a 
linked-list or hash table, only active flows are dynamically 
allocated queues. When a packet with priority from 
configured policy arrives, a look-up action in AFL is 
triggered. If the look-up returns unsuccessful result, the 
queue manager applies a new empty queue from the free 
queue stack. Then the flow and scheduling information of 
this packet is composed and a new entry is inserted to AFL; 
if successful, queue manager updates the scheduling 
information and inserts the packet to the corresponding 
queue. With this method, active flows are dynamically 
mapped to finite physical queues, so only a small number of 
physical queues are needed. 

Another novelty of our scheduling scheme is that it is 
organized in hierarchical manner. In order to provide service 
differentiation, priority group is the first layer. The priority 
of flows is configured by policy.  Users assign different 
priority to flows with different characteristic.  When a packet 
arrives, it will look up the policy and get its priority. How to 
achieve this is beyond the scope of this paper. Usually, 
higher priority group would get more chance to send packets. 
Various current scheduling algorithms that provide service 
differentiation can be employed here. For example, with 
strict priority queue scheduling algorithm, only when the 

higher priority group becomes empty, the lower one gets an 
opportunity to dequeue packets. To prevent low priority 
groups from starving, it can also implement weighted DRR 
(WDRR) scheduling among different groups. With WDRR, 
each group is offered services proportional to its assigned 
weight. It also maintains current credits for scheduling. Each 
scheduling round, the current credits is incremented by its 
quantum. Then this group is served as long as current credits 
are greater than zero. In this way, each group can send 
packets no more than its current credits, so lower priority 
group can get a fraction of services. 

The candidate scheduling algorithms should treat flows 
fairly and prevent a small number flows from occupying too 
many resources in each priority group. DRR is a suitable for 
this use, because it is easy to implement by hardware or 
software and widely deployed in commercial devices. It is an 
O (1) fair scheduling scheme for delay and bandwidths 
guarantee. Its dequeue processing is in a round robin manner. 
During each round, packets no more than its current credits 
are sent to prevent one flow from occupying too many 
resource. 

All in all, AFL maintains a small number of mappings 
between active flows and physical queues, while priority 
group differentiates services and DRR provides delay and 
bandwidth guarantee. Existing popular scheduling 
algorithms can also substitute the methods mentioned here 
flexibly. 

B. Scheduling algorithms 
To simplify the description, we adopt the strict priority 

group, i.e., the low priority group is not scheduled until all 
the packets in high priority ones have been sent out. In each 
group, we employ DRR algorithms. The scheduling 
information in AFL includes the flows’ packet number 
PktsNumi, current credit DCi, quantum Qi. Priority group 
should maintain the AFL entry pointer fi to get DRR 
scheduling info, current packet number PktsNum, and 
lastDequeueRound. Fig.1 and Fig. 2 present the pseudo-
codes of enqueue and dequeue algorithms. 

 Enqueue ALG 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11

On arrival of packet p; 
i = ExtractFlow(p); 
pri = GetPriorityFlow(p); 
Search fi->qk in AFL; 
If null 

Assign a new queue qk; 
i->PktsNum=1; 
i->Quantum = Qi 

i->DC = 0; 
InsertAFL(fi,qk); 

Else 
12
13
14
15
16

i->PktsNum++; 
End If 
Insert(p,qk); 
pri->PktsNum++; 
If(pri->packet==1) 

17              Priority[pri]=1; 
18 End If

Figure 1.  Enqueue Module. 
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Enqueue Operation: On the arrival of a packet p with 
its priority, it firstly gets the priority in order to find priority 
group (line 3). If packet p does not belong to any active flow, 
it apply qk from the free management stack and set PksNum 
to 1 and initial the DRR quantum and DC, then the new entry 
inserts to the tail of AFL(lines 5-10). Otherwise it simply 
adds the PktsNum (lines 12).  After searching AFL, insert 
packet p to relative queue qk in priority group pri(lines 14-
15). If it is the first packet in this group, to set the bit in 
bitmap Priority to 1(lines 16-17). 

Dequeue Operation: The dequeue operation firstly gets 
the highest priority group K that is not empty (line2), and 
then extracts the packet p at the head of lastDeqRound queue 
(line 3). Adding a Quantum to the DC of the flow, if DC is 
larger than the p’s length, to send p out and decrease DC by 
the packet size (line 6-7). The loop allows the flow to emit 
up to DC byte. If the packet in this flow becomes empty, 
AFL deletes the entry and breaks the loop (lines 5-15). After 
the loop, lastDequeRound in group K updates (line 16). At 
last if the packet in group K becomes zero, the K-th bit in 
bitmap Priority is set to 0. 

Dequeue ALG 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
15 
16 
17 
18 
19 

20 

While(1)  
Find the first not empty priority group K,; 
p=Headof(K->lastDeqRound,&fi); 
fi->DC += fi->Quantum; 
While(fi->DC > p->length) 
       Dequeue(K->lastDequeueRound); 
       fi->DC -= pac->length; 
       K->PksNum--; 

fi->pkts--; 
                 If(fi->pkts ==0) 
     Delete the fi entry in AFL; 
                      break; 
                 End If 
           End While 

K->lastDequeuRound++; 
if(K->PksNum ==0) 
    Priority[K]=0; 
End if 

End While 

Figure 2.  Dequeue Module. 

IV. SCHEME IMPLEMENTATION 
We have implemented the above scheduling scheme by 

integrating Dynamic Queue Sharing (DQS) [6], strict 
Priority Queue and enqueue-time DRR [16], which is called 
DQS-SPQ-DRR. Please note that, the implemented 
scheduler works in a per-flow manner, and all the control 
information can be fit in SRAM. 

A. DQS 
To speed up the searching and updating on the active 

flow list, hash is utilized to divide the whole AFL into multi 
sub-list. In this case, the AFL operation is executed in small 
sub-list. Flows with the same hash value are directed to the 
same sub-list. The detail of DQS is in [6]. 

B. Strict priority queue 
Strict priority queue is the easiest scheme to achieve 

service differentiation. Each flow gets its priority from 
configured policy, so when it arrives in AFL, the assigned 
queue for the flow inserts to relative priority group to which 
it belongs. Since SPQ is from high to low priority, dequeuue 
scheduling may check for packets for several DRR rounds in 
each empty group. Avoid polling empty group is a good idea 
to enhance performance. To solve the problem, one bitmap 
indicating which group currently has packets is maintained. 
Instead of polling all groups, it simply read the bitmap and 
search for bits that are set in this bitmap.  Especially many 
modern processors families (such as IXP, CAVIUM) support 
the instruction FFS (Find First Set) [14] [15]. The instruction 
searches one bitmap for the location of the first bit that is set. 
The result is the location (bit position) of that first set bit.  
With the solution, the group selection processing only 
searches a bit vector to determine the current state efficiently.  

C. Enqueue-time DRR 
In current design, network processor is usually multi-core 

architecture, so it is good at processing packets in parallel. 
For example, there can be several processes to send packets 
to different queues. DRR dequeue processing, however, does 
not have the same characteristics. Each round of DRR needs 
to run sequentially. It does not allow for one queue to start 
the second round until all other queues have finished the first 
round. So dequeue processing has to be always in a single 
thread or process.  

In this condition, with more than one core performing 
enqueue and only one core doing dequeue, the unbalance 
results in the need to simplify dequeue process. We introduce 
the enqueue-time DRR which sorts the packets into DRR 
rounds at enqueue-time. So it moves the calculating 
scheduling info expense from deque-time to enqueue-time. 
The detail of enqueue-time DRR is in [16]. 

D. Complexity analysis 
The memory required for DQS-SPQ-DRR is quite small. 

Let’s denote each entry as flowing: 
DQS: it only stores the mapping of queue and active flows. 
Here, the number of hash slots is W; the number of physical 
of queue is N; the number of active flows is L; the number of 
bits to identify a flow is B; the number of bits for DC and 
Quantum is Q, for PktsNum and BytesNum are both C. Then 
the memory requirement for the mapping scheme when sub-
tables are organized in double linked-list.  

MDQS = W + L (2logL+logN +B +2Q+2C)    (1) 
SPQ:  It only needs maintain the priority bitmap and some 
scheduling information. The layer of priority group is P; the 
number of bits for PktsNum is C too; the max DequeRound 
is D; the number of bits for CurEntry is I. 

MPQ = P + P(C+logD+I)   (2) 
Enqueue-time DRR: For each round, it should maintain the 
head and tail of pointer for each dequeue round. As denoted 
above, the memory required is: 

 MDRR = 2PDI                  (3) 
So the total memory need is 
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M= MDQS + MPQ+ MDRR   (4) 
For example given M=512 slots, N=512 queues, active flow 
L= 512, B=32, Q =32, C=32.P=64, D = 64, I=32. The 
memory required only about 363Kbit and can be 
implemented in SRAM easily. 

The time cost of this scheme includes enqueue time and 
dequeue time.  Search, insert and delete AFL accounts a big 
portion of enqueue time. However, it is also a piece of cake. 
From thesis [6], we can get: 

Tsearch = 1 + (L-1)/2M                  (5) 
Tinsert = L/M     (6) 
Tdelete = 1      (7) 

The enqueue time cost of priority queue and enqueue-time 
DRR are both O (1).The total enqueue time cost is this, i.e. 

Tenqueue = MAX (Tsearch, Tinsert) + TPQ+TDRR (8) 
Dequeue procedure is easy. The scheduler goes through per-
round linked-list sequentially and sends out packets from 
each round linked-list. If the queue becomes empty, the 
relative entry in AFL is deleted.  The time cost is O (1), i.e. 

Tdequeue = Tdelete + TPQ+TDRR               (9) 
Here we also set M=512 slots and active flow L= 512 as 
memory calculation above. The enqueue time is 2.5 and 
dequeue time is 1. 

V. PERFORMANCE EVALUATION 
We evaluate the performance of DQS-SPQ-DRR by 

means of synthetic traffic and Internet trace data.  

A. Original trace statistics 
We use three real traces from [17]: 
a) NLANR1: It was collected on November 24st, 2002 

at the University of Leipzig Internet OC3 access link. 
b) NLANR2: It was collected on August 14st, 2002 at 

the OC48 link from IPLS Abilene router towards CLEV. 
c) NLANR3: It was collected on June 1st, 2004 at the 

OC192 link from IPLS Abilene router node towards KSCY.  
Here we set the statistic time scale to be 10 milliseconds. 

Output bandwidth is shared among all the active flow and 
the output capacities are set to make the traffic load of each 
trace to be 0.95, as shown in Table 1. The load is defined as 
the ratio of the average rate and the output bandwidth. From 
the table, we get that average rate of each trace is far less 
than its original output capacity. 

TABLE I.  PACKET TRACE STATISTICS SUMMARY. 

Trace NLANR1 NLANR2 NLANR3 
average trace rate 14.4Mbps 372Mbps 557Mbps 
original output capacity 155Mbps 2.5Gbps 10Gbps 
regulate output capacity 15.2Mbps 392Mbps 586Mbps 
packets number 10M 20M 100M 
flows in progress 53K 75K 100K 
MTU 1500byte 1537bytes 9000bytes 

 
The complementary distribution of AFL size is shown in 

Fig. 3, which indicates the number of active flows. We 
observe that it is only in the number of hundred (256 in the 
worst case), much less than the number of flows in progress.  
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Figure 3.  Complementary distribution of AFL size. 
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(a)relative deviation of 1Mbps Flow 
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(b)relative deviation of 32Mbps Flow 
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(c)relative deviation of 128Mbps Flow 

Figure 4.  CDF of relative deviation for flows of various rate 

539



B. Performance results 
The following experiment results about the three trace 

data are similar. In order to simplify the description, 
NLANR3 with the highest speed is selected to show the 
performance. We add six constant rate flows to the 
NLANR3. The rates of the flows are 1Mbps, 8, 16, 32, 64 
and 128 Mbps and the packet is 1024 bytes. As a result, to 
get traffic load as 0.95, the link capacity is regulated to 
848Mbps. To guarantee delay and bandwidth of these 6 
flows, trace flows are set lower priority than them. 

To verify the performance of DQS-SPQ-DRR, we 
compare it with DQS-FIFO that each packet is scheduled as 
its enqueue sequence and DQS-DRR that packets are 
scheduled in round robin manner without service 
differentiation. 

In the following, we focus on bandwidth and delay of 
these six flows. The expected delay of a flow is defined as 
the average incoming interval among packets, i.e. 

Expected = packet length/flow rate   (10) 
To compare the result of these three algorithms, we 

define “relative deviation” to show the deviation between 
experiment and expected result. 
Relative deviation= (experiment – expected)/expected (11) 

Here we only present the comparisons of 1Mbps, 
32Mbps and 128Mbps flows. The same thing happens for 
the other three flows. 

 Fig. 4 shows the cumulative distribution of relative 
deviation. We can get that DQS-SPQ-DRR performs the 
best among the three schemes no mater of the protected 
flow rate. DQS-FIFO and DQS-DRR perform almost the 
same, because both of them don’t treat flows different and 
flows are not protected finely. Another fact is that smaller 
rate flows can get better service guarantee for all the 
algorithms. For example, about 90% of the interval is exact 
to expected interval with 1Mbps flow in DQS-SFQ-DRR.  If 
the flow rate goes to 128Mbps, the relative deviation is 
more dramatic. However, more than 95% of the interval 
falls in the rage [-0.5, 0.5] for DQS-SFQ-DRR. 

VI. CONCLUSION 
We propose a novel scalable per-flow scheduling scheme 

which use a small fast memory to achieve fine-grained 
service guarantee. The queue and scheduler’s data structure 
can be all stored in SRAM. It is a per-flow queuing scheme 
by only maintaining dynamic queue for active flows in active 
flow list (AFL).  The scheduler is organized as a hierarchical 
manner, in which the first layer providing service 
differentiations and the second does the service guarantee.  

The advantages of this architecture lies in 1) it only 
maintains a small number queues to achieve per-flow 
queuing; 2) it is a scalable hierarchical architecture and 
compatible to existing scheduler algorithms; 3) it can use 
SRAM to achieve the best performance for high speed 
network. 

An instance implementation called DQS-SPQ-DRR is 
presented to evaluate the performance. Trace-driven 

experiment shows that under DQS-SPQ-DRR, the AFL 
length is still in the number of hundreds.  The guaranteed 
flow acquires its service quarto no matter of the variation of 
the other background traffic. 
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