
A Parallel NIDS Pattern Matching Engine and Its
Implementation on Network Processor

Jianming Yu

Research Institute of Information Technology
Tsinghua University, Beijing, China

yujm03@mails.tsinghua.edu.cn

Jun Li
Research Institute of Information Technology

Tsinghua University, Beijing, China

Abstract
 At the heart of almost every modern Network
Intrusion Detection System (NIDS), there is a pattern
matching engine (PME). As pattern matching is the
most time consuming operation in NIDS, it is highly
desired to reduce the pattern matching time of each
packet or flow. This paper proposed a parallel pattern
matching algorithm based on Aho-Corasick (AC)
algorithm and an efficient load balance policy for it.
The method is implemented on Intel’s IXP2850
Network Processor (NP). Experimental results show
that when using eight processors, the pattern
matching time of each packet or flow can decrease to
60.44%~14.42% of using only one processor. Based
on the parallel algorithm, a PME utilizing parallel
processing on three levels is proposed. Experimental
results on IXP2850 show that the throughput speedup
of pattern matching is 13.34~55.48 times.

Keywords: NIDS, pattern matching, parallel
processing, network processor

1.0 Introduction
 Network Intrusion Detection System
(NIDS) are designed to identify attacks or
intrusions against networks. As these threats can

be invisible to firewalls, NIDS provides an
additional layer of security and is being widely
deployed in various network environments.

At the heart of almost every modern NIDS,
there is a PME (pattern matching engine).
Essentially, the pattern matching algorithm
compares the set of patterns in the rule set (also
called signature database) to the payloads of the
packets. Pattern matching is computationally
intensive. The pattern matching routines in Snort,
a famous open source lightweight NIDS [5],
account for up to 70% of total execution time and
80% of instructions executed on real traces [1].

An efficient PME is crucial to NIDS. If the
capacity of NIDS cannot matching the speed of
network, a passive NIDS will drop packets and
thus miss attacks, while an inline NIDS will
create a bottleneck for network performance. On
the other hand, as the number of potential threats
and their associated signatures is expected to
grow, the cost of pattern matching is likely to
increase further. Therefore, the pattern matching
algorithm needs to be highly efficient to keep up
with the increasing volume of network traffic, as
well as the increasing number of patterns.

The Aho-Corasick (AC) algorithm proposed
by A. Aho and M. Corasick [6] is the classic
algorithm for searching multiple patterns

mailto:yujm03@mails.tsinghua.edu.cn

simultaneously. Its time complexity is O(n),
where n is the length of the text which is
compared with the patterns. This means that its
time complexity is independent with the number
of patterns in the rule set. This property makes it
suitable for searching against a large set of rules.

Network processor (NP) is a special-purpose,
programmable hardware chip tailored to
construct networking devices. It combines the
low cost and flexibility of a general purpose
processor with the speed and scalability of
custom silicon (i.e. ASIC chips).

This paper presents a parallel AC algorithm
which can greatly decrease the pattern matching
time of each packet or flow. It is implemented on
Intel’s NP (IXP2850) and the experimental
results show the benefit of utilizing parallel
processing and the hardware characteristics of NP.
The paper also presented the design of a load
balance policy for the parallel AC algorithm and
a strategy to increase the throughput of pattern
matching engine. The effects on pattern matching
algorithm of using multi-processors as well as
multi-threads technology are also analyzed.
 The remainder of this paper is organized as
follows. First section 2 reviews pervious works,
after which section 3 describes the new parallel
PME and its implementation on IXP2850.
Section 4 then presents experiments and
performance analysis of the algorithm and PME.
Finally, section 5 summarizes the contribution of
this research and presents conclusion and future
work.

2. 0 Previous Works
 The pattern matching problem (in NIDS it
refers to string matching only) can be divided
into two categories: single pattern matching
algorithm and multiple pattern matching
algorithm. The pattern matching algorithm can be

described as: assume a string ,

and a finite set of pattern

strings

110 ... −= bdddD

},...,,{ 21 aRRRR = , each composed of an

ordered set of characters from an alphabet A. The
pattern matching problem involves locating and
identifying the substring of D which is identical

to , where

, or to determine that D

does not contain R. Here, a is the number of rules,

m is the length of pattern string , s is the

starting point of the matching substring, and

j
m

jj
j rrrR 110 ... −= aj ≤≤1

j
m

j
mss rrdd 101 −−+ =

jR

)1(0 +−≤≤ mbs .

 BM algorithm (proposed by R. Boyer and J.
Moore) [3] is the most well-known single pattern
matching algorithm. The initial starting point is:

0=s . Rj is compared with from the

rightmost of R

1... −+mss dd

j. BM algorithm utilizes two
heuristics, bad character and good suffix, to
reduce the number of comparisons (relative to
brutal force pattern matching). The bad character
heuristic works this way: when a mismatching
character appears in Rj, Rj is shifted to right so
that the mismatching character is aligned with the
rightmost position at which the mismatching
character appears in Rj. If the mismatching
character dose not appears in Rj, Rj is shifted to
the position that its leftmost character is one
position past the mismatching character in D. The
good suffixed heuristic is: when a mismatching
occurs, there is a non-empty suffix that matches.
Then Rj is shifted to the next occurrence of the
suffix in Rj. BM takes the far most shift caused
by the two heuristics. R. Horspool [4] improved
the BM algorithm with a simpler and more

efficient implementation (called BMH algorithm)
that uses only the bad-character heuristic.

The AC algorithm is popular multiple pattern
matching algorithm. It accepts all patterns in R to
make up of a FSA (finite state automation) so
that every prefix is represented by only one state,
even if the prefix belongs to multiple patterns.
The AC algorithm deals with the characters of D
one by one and has proven linear performance to
the length of D, regardless of the size of R..

Another widely used multiple pattern
matching algorithm is the MWM algorithm
designed by Wu and Manber[7]. The MWM
algorithm uses bad character heuristic like the
BM algorithm. But it utilizes two byte shift table.
It also performs a hash on the two-byte prefix
into a group of patterns. The MWM algorithm
has shown its advantages to deal with large
amounts of patterns efficiently. However, the
performance of the MWM algorithm depends
considerably on the length of the shortest pattern,
because the maximum number of shifts equals to
this value minus one.
 G. Anagnostakis, E. P. Markatos, S.
Antonatos, and M. Polychronakis proposed an
exclusion-based pattern matching

algorithm [8] based on the following

observation: Suppose that one wants to check
whether D contains R

xBE 2

j. If there is at least one
character of Rj that is not contained in D, then Rj

is not a substring of D. The algorithm

first checks D for missing fixed size sub-strings
of R

xBE 2

j. If all the sub-strings of Rj can be found in D,
standard string matching algorithms, such as the
BM algorithm, is used to determine whether
actual matching are occur. When mismatches are

by far more common than matches,

could achieve a high performance.

xBE 2

All the above described algorithms are
implemented and ever used in Snort.

3.0 Design and Implementation
3.1 Terms used in this paper

Input text T: the payload of one packet or
the reassembled data of the flow of a packet
stream.

Fragment F: one snippet of T.
Pattern P: one option field of NIDS rule,

pattern is used to do string matching with T.
Pattern matching engine PME: part of NIDS

which performs pattern matching on T.
3.2 Description of algorithm
3.2.1 The parallel AC algorithm

In order to decrease the pattern matching
time of each T, multiple processor technology is
utilized. processors are used to construct a
PMC (pattern matching cluster). As shown by the
flow chart in Figure 1, the procedure is: when
one T is received, the load balance unit divides it
evenly into h Fs, and signals the h PMUs (pattern
matching unit) to process the h Fs in parallel. All
PMUs run AC algorithm with the same pattern
set. When pattern matching is over, the h PMUs
will signal the load balance unit and transmit
their results.

h

It is obvious that the fragmentation of T
could introduce false negative if we are not
careful. For example, T is: “abcdefghij”, P is:
“def”. 2=h , so T is divided into two Fs as
follows: “abcde”, “fghij”. Both of the two
substrings miss P and this causes a false negative.
To avoid this problem, the algorithm carries out

fragmentation as follows: Suppose ntttT ...21= ,

the length of the longest pattern is w. If one F

ends with , the next F starts with . Thus

no possible occurrence of a pattern will be
missed by all Fs.

kt 2+−wkt

3.2.2 Load balance policy
 The aim of the load balance policy is to let
the processing time of each PMU to be equal.

The time complexity of AC algorithm is , n

is the length of T. So the load balance policy used
in this work is: let the length of each F is equal.

)(nO

In other words, T is divided as follows:

 The length of each F is calculated by
equations (1):

⎩
⎨
⎧

=+−⋅
−+=

nyhx
wxy

)1(
)1(

 (1)

 Where y is the length of each F. The F

is started with and ended with

, .

thi

1)1(+⋅− xit

1−+⋅ wxit hi ,...,2,1=

3.3 Description of PME
In this work, parallel processing on three

levels is utilized to improve the performance of
NIDS PME., as shown in Figure 1. Firstly, AC
algorithm is adopted to search all the patterns in
the rule set simultaneously. Secondly, parallel AC
algorithm employed on F level to decrease the
latency of processing T. Thirdly, multi-PMC is
utilized on T level to increase the throughput of
PME.

Figure 1. The flow chart of parallel PME

3.4 Implementation on IXP2850
Intel’s NP is a programmable chip tailored

for network-specific applications. IXP2850 is the
newest member of Intel IXP2XXX NP product
line. It integrates a high-performance parallel
processing design on a single chip for processing
complex algorithms, deep packet inspection,
traffic management and forwarding at wire speed.
By combining a high-performance Intel XScale
core with sixteen 32 bit independent
multi-threaded MEs (microengine), IXP2850
provides more than 23.1 giga-operations per
second. The detail diagram of IXP2850 is shown
in Figure 2 [9].

Figure 2. IXP2850 network processor [9]

The implementation of the parallel PME
proposed in this work is shown in Figure 3.

Figure 3. Implementation on IXP2850

We utilize h+1 MEs with each ME run f
threads to construct f PMCs. The threads are
numbered from 0 to f. The h+1 threads have the
same thread number in different MEs make up of
a PMC. For example, PMC0 is constituted by all
the Thread0. Load balance unit is implemented

on thread0 of load balance ME; every thread0 of
ME1 to MEh implements one PMU. All the
threads share memory structure of AC in SRAM.

Furthermore, “defer tokens” characteristic of
IXP2850 is utilized to improve the performance.
Branch decision instruction in IXP2850 would
cause one or more instructions in the execution
pipeline to be aborted. By using “defer tokens”,
one or more instructions that follow a branch
decision instruction are allowed to execute before
the branch takes effect. So the branch latency can
be hidden if there are useful works to fill the
wasted cycles after the branch instruction. With
Intel’s SDK (software development kit), the
deferred token can be inserted automatically by
the assembler’s optimizer, or the programmer can
do it manually [9].

4.0 Experiment and analysis
The added computations induced by the

parallel AC are: the load balance,
synchronization communication and the overlap
fractions of the neighboring fragments. The load
balance algorithm is very simple and its
computation time is short compared with the
pattern matching algorithm. On the other hand, it
is in pipeline with pattern matching; this can hide
the load balance computation time. The
synchronization communication is mainly the
signal exchange between load balance unit and
PMUs. It’s execution time is also very short. The
main added burden is the overlap fractions of the
neighboring fragments.

Suppose the length of the input text is n. The
length of the longest pattern is w. There are h
PMUs in one PMC. The overlap fractions of all

the fragments is: . The processing

time of AC algorithm can be measured by the
length of T. Ignore the time consumed on load
balance; the processing time of the parallel AC

algorithm can be represented as:

)1()1(−⋅− wh

h
whnt p

)1()1(−⋅−+
= (2)

Obviously the latency of processing each T
decreases if tp < n, i.e.

n
h

whn
<

−⋅−+)1()1(1+<⇒ nw (3)

On the other hand, if 1−< wn , the
processing time will worsen, meaning the
algorithm does not apply when the length of T is
shorter than w-1.

The speedup of parallelism on fragment
level is:

])1)(1(/[
h

whnnSh
−−+

= (4)

n
w

hhSh

1)11(11 −
⋅−+= (5)

We can find that the bigger n is, the bigger
Sh is. This characteristic is very useful in NIDS,
because we need to check the data flow in one
session in some situations. In this scenario, n
become very big. Therefore the speedup is high.
When dealing with packets, according to the data
in [8], the average lengths of different packet
traces are all bigger than 300bytes. The length of
longest pattern in snort is 37. So the pattern
matching time will decrease in all the testing
traces according to equation (3).

Equation (5) can also be translated into:

hn
w

n
w

Sh

1)11(11
⋅

−
−+

−
= (6)

So the bigger h is, the bigger Sh is. This
means the pattern matching time decreases along
with the increase of the number of PMU.

We did experiments on Intel’s IXDP2850
dual NPU platform. In the experiments the value
of w is set to 41. The result is shown in Figure 4.

The horizontal axes represent h (i.e. the number

of the PMU). The vertical axes represent =

1/S

1K

h and we let
12 −

=
w

nK .

Figure 4 shows that the processing time

decreases along with the increase of h or . The

results validate our analysis above. When

 and using eight PMUs, the processing

time can be reduced to 60.44%. When

2K

22 =K

502 =K

and using eight PMUs, the processing time can
be reduced to 14.42%.

Figure 4. Performance of speedup vs. K2 and h

Note that when and ,

increases a little bit. This is mainly caused by the
synchronization communication. The
synchronization time is increase along with the
increase of PMUs. When n is small, the speedup
of parallelism will decrease.

22 =K 5≥h 1K

To analyze the effectiveness of parallelism
on T level, we implemented multi-PMC with one
ME. Each PMC deals with one T with the same
length. All the PMCs use the same AC FSA in the
SRAM. The result is shown in Figure5. The
horizontal axes represent f (i.e. the number of the

PMCs). The vertical axes represent = (the

time of all f PMCs complete pattern matching) /
(the time of running only one PMC). And we

let

3K

5
12 =

−
=

w
nK . We can find that, increasing

the number of PMCs almost has no effect on the
processing time of each PMC. In other word, the
time of using f PMC to processing f different
“input text” with the same length n is almost
equal to the time of running one PMC to
processing an input text of length n. Therefore
the throughput of PME can increase f times when
using f PMCs.

Figure 5. Performance of processing time vs. f

There are two reasons for this. First, there
are many I/O operations (mainly SRAM and
DRAM accesses) in pattern matching algorithm.
The processor must wait for the I/O operation to
complete. Hence, there are many idle cycles.
Second, in the MEs of IXP2850, each context has
its own register set, Program Counter, and
Context Specific Local Registers. This eliminates
the need to move context specific information
to/from memory and ME registers when doing
context swap. So the contexts waitting for I/O to
complete can be swapped out with almost no cost,
and allows other context to do computation.

Above all, the speedup of using all the three
level parallelism is (using 8 PMUs and 8 PMCs):

48.55~24.138
1442.0
1~8

6044.0
1

⇒××=S (7)

5.0 Conclusions and future work
We have studied the performance of NIDS

pattern matching algorithms, and presented the
parallel AC algorithm. We implemented the
parallel algorithm on NP and designed a simple
and efficient load balance policy for it. Based on
the parallel AC algorithm, a new NIDS PME
utilizing parallel processing on three levels is
proposed.

Experimental results show that the
processing time of the parallel AC algorithm
decreases along with the increasing of h and

ratio
1−w

n
. When using eight PMUs, the

processing time decrease to 60.44% ~14.42%,
reflecting speedup of throughput of PME for
13.34~55.48 times when using eight PMUs and
eight PMCs at the same time.

Furthermore, our results also allow for some
more general observations to be made on the
design and analysis of parallel NIDS pattern
matching algorithms and the application of NP in
NIDS.

Future work could include better load
balance policy for parallel AC algorithm.
Improve the performance of AC algorithm based
on the characteristic of NP, such as increase the
memory efficient. Design load balance policy for
different pattern matching clusters. Apply
network processor in other modules of NIDS.

Acknowledgments
This work was supported by the research

grant provided to Tsinghua University by Juniper
Networks, Inc.

Reference
[1] S. Antonatos, K. G.. Anagnostakis, and E. P.
Markatos. “Generating realistic workloads for

network intrusion detection systems.” Proc. ACM
Workshop on Software and Performance, 2004.
[2] M. Fisk and G. Varghese. “An analysis of fast
string matching applied to content-based
forwarding and intrusion detection.” Technical
Report CS2001-0670, University of California –
San Diego, 2002.
[3] R. Boyer and J. Moore. “A fast string
searching algorithm.” Communications of the
ACM, 20(10): 762-772, 1977.
[4] R. Horspool. “Practical fast searching in
strings.” Software Practice and Experience, 10(6):
501-506, 1980.
[5] M. Roesch. “Snort: Lightweight intrusion
detection for networks.” Proc. 1999 USENIX
LISA Systems Administration Conference, 1999.
[6] A. Aho and M. Corasick. “Efficient string
matching: An aid to bibliographic search.”
Communications of the ACM , 18(6): 333-343,
1975.
[7] S. Wu and U. Manber. “A fast algorithm for
multi-pattern searching.” Technical Report
TR94-17, University of Arizona, 1994.
[8] K. G. Anagnostakis, E. P. Markatos, S. An-

tonatos, and M. Polychronakis. “ : A do-

main-specific string matching algorithm for int-
rusion detection.” Proc. 18

xBE 2

th IFIP International
Information Security Conference (SEC2003),
2003.
[9] Intel Corporation. “Intel IXP2850 Network
Processor Hardware Reference Manual.”
http://www.intel.com/design/network/products/np
family/ixp2850.htm

