
Toward Fast Regex Pattern Matching using Simple
Patterns

Mohammad Hashem Haghighat
Department of Automation

Tsinghua University
Beijing, China

l-a16@mails.tsinghua.edu.cn

Jun Li
Research Institute of Information Technology

Tsinghua University
Beijing, China

junl@tsinghua.edu.cn

Abstract— Nowadays network solutions employ pattern match-
ing methods to apply protocol identification, traffic billing, load
balancing, or detecting network malicious activities. Although
regular expression (regex) patterns provide a powerful option
to express signatures more effectively, they make the matching
procedure more challenging. Dozens of finite automata based
methods have been proposed to deal with regex patterns and
boost the matching procedure. However, they suffer from high
spatial or temporal complexity.

Recently, we proposed HES as a practical novel method
to match thousands of regex patterns in a reasonable time.
Although HES was extremely faster than DFA, it was unable
to support regex patterns without simple pattern (SP-Free regex
patterns). In this paper we developed Enhanced HES (E-HES) to
handle these kinds of patterns. Experimental results revealed that
E-HES not only supported SP-Free regex patterns, but also it
significantly optimized the regex handler check procedure. It
leads us to match any kind of regex patterns in high bandwidth
networks without spatial or temporal limitation.

Index Terms—Signature Matching, Regular Expression Pat-
terns, Intrusion Detection Systems, Regex Parsing Rules, Network
Security

I. INTRODUCTION

Modern network services, consider packet payloads to per-
form load balancing, traffic billing, protocol identification,
and intrusion detection. Pattern matching methods is the core
feature of these systems, in which input traffic is observed by
a set of pre-defined patterns.

Due to the vast improvement of networking area, any pattern
matching method needs to keep up with high bandwidths.
At first, patterns were described by exact strings1. However,
they were getting more complicated using wildcard characters.
Nowadays, Network security solutions use regular expression
(regex) patterns to express their rules. Most of the rules sets
of Snort [1], Bro [2], Linux application protocol classifier (l7-
filter) [3], Ciscos security system [4], and matching accelerator
on IBM PowerEN processor [5] are described by regex pattern.

Although, several simple pattern matching methods such
as [6–12] were proposed for fast signature search, they were
unable to handle regex patterns. To address this issue, finite
automata as one of the most effective data structure was used.

1We call the Simple Patterns (SP)

Hopcroft et al. first proposed two variants of finite automata
based methods to support regex patterns: DFA2 and NFA3 [13].

A DFA composed by a set of finite states, a finite set of
input symbols (Σ), and a transition function (δ) that maps any
state and an input symbol to just one state. The key advantage
of DFA is the fast matching time, since it is not related to
the number of the patterns. However, DFA suffers from state
explosion problem. As a result, it is not practical.
NFA defined exactly the same as DFA except it maps

a pair of state and input symbol, to several states (instead
of one). NFA solved the state explosion problem, but its
matching time was a big concern. given m regex patterns
having the length of n in the average, NFA required O(n2m)
time to match patterns [14].

Different variant finite automata based solutions were then
proposed to match regex patterns in a reasonable time, while
minimizing the required storage. Yu et al. proposed mDFA,
aiming at grouping all the patterns and creating DFA for each
group, so that each DFA size does not exceed a threshold
[15].

Kumar et al. in [16] compressed DFA and introduced
D2FA based on grouping the states having equivalent set of
outgoing transitions. They also proposed a weighted tree to
handle removed transition, in which the tree affected system
matching time. Kumar et al. then proposed CD2FA in [17]
to improve D2FA. According to D2FA, Becchi and Crowley
also proposed “backwards labeled transitions” and A-DFA
to increase the throughput of D2FA [18], [19].

In [20] Becchi and Crowley also proposed a combination
of DFA and NFA methods, in which, at the first step NFA
was created. Then, only the nodes that avoid state explosion
were transformed to DFA. The size of HFA was close to
NFA, while the matching time was faster.

Smith et al. in [21], [22] proposed XFA to avoid state
explosion by injecting some variables and programs into
original DFA. The key point of XFA was to remember
the progress during the match. The authors also provided
some optimization techniques to remove program and variable

2Deterministic Finite Automata
3Non-deterministic Finite Automata

duplication. XFA matching time was close to DFA, and its
storage requirement was smaller than NFA.

Based on HFA and XFA, Wang et al. in [23], [24] intro-
duced PaCC framework containing these procedures: partition,
compression, and matching. The first two procedures were
responsible to avoid DFA being exploded and compress the
final DFA. PaCC achieved more compact data structure
compared to NFA, and its matching time was even faster
than DFA.

Recently Haghighat et. al. proposed a highly efficient and
scalable technique called HES [25]. The key idea behind
HES was to extract all the simple patterns from regex signa-
tures, try to match them, and in case of finding a match, handle
the rest of the regex pattern. HES was extremely faster than
DFA, while its required storage was close to NFA. Although
HES provided a finite automata independent framework, it
still needs to be improved. In [25], we highlighted that HES
only supports rexeg patterns containing at least one simple
pattern, while the rest of regexes were left for the future (we
called them as SP-Free regex patterns). Besides, the way of
handling conditions after matching simple patterns was the
same as brute force method, which, in the worst case, the
input string was read for several times. For example, assume
that RP1 = abc\w ∗ def and RP2 = ghi\w ∗ jkl be two
different regex patterns. HES reads the following input string
almost three times as described below.

input = abcghiaaa · · · aa!defjkl

At first, “abc” and “ghi” are matched. The next match is
“def”, in which, the characters between “def” and “abc”
(“ghiaaa · · · aa!”) are checked with “\w∗”. All the characters
satisfy “RHC” except the last one (“!”). In the next step,
“jkl” is matched, which “aaa · · · aa!def” is then checked with
“\w∗”, as “aaa · · · aa” needs to be read one more time.

In this paper we addressed these shortages and proposed
“Enhanced HES (E-HES)”. The paper structure is explained
as follows. In section II a brief description of HES will be
provided. Then, in section III E-HES will be discussed in detail
including its pre-processing and matching phases. After that,
in section IV E-HES will be evaluated and finally, in section
V the paper will be concluded.

II. HES METHOD

This section introduced HES method proposed in [25] in
brief. HES is a regex pattern matching method, provided
a novel schema to reduce the regex pattern matching costs
to match of simple patterns. In HES pre-processing phase
all the regex patterns are parsed to extract simple patterns
accompanying with metadata, and in its matching phase any
arbitrary simple pattern matching method is called to match
simple patterns and in case of finding a match, extracted
metadata are used to handle the rest of corresponding regex
pattern. Figure 1 illustrates the HES architecture.

The rest of this section explained the HES pre-processing
and matching phases in brief.

Regex Patterns Simple Patterns
Metadata

Pattern Preprocessing Phase

Matching Phase

Input String

Matching Engine
(Simple Pattern) Regex Handler

Regex Parser

Fig. 1: HES Architecture [25].

A. HES Pre-processing Phase

The main goal of the HES pre-processing phase is to
parse regex patterns in order to achieve simple patterns and
metadata. All the regex patterns are categorized into “Operator
Free (OFRP)”, “One-operand Operator (OORP)” and “Two-
operands Operator (TORP)” regex patterns and created by the
combination of “Simple Patterns (SP)”, “Character Sets (CS)”,
and “Regex Operators (RO)”. In [25] We proposed four regex
parsing rule sets as expressed in Figure 2.

Rule set 1:

1.1: <RP> = <OFRP>
∣∣∣ <OORP> ∣∣∣ <TORP>

Rule set 2:

2.1: <OFRP> = <OFRP-CS>
∣∣∣ <OFRP-SP>

2.2: <OFRP-CS> = <OFRP><CS>
∣∣∣ <CS>

2.3: <OFRP-SP> = <OFRP-CS><SP>
∣∣∣ <SP>

Rule set 3:

3.1: <OORP> = <NRP>"("<RP>")"<RO><NRP>

3.2: <TORP> = <NRP>"("<RP>"|"<RP>")"<NRP>

3.3: <NRP> = <RP>
∣∣∣ "⊥"

Rule set 4:

4.1: <RO> =
{
"∗","+","?","ˆ","{n}","{n,m}"

}
4.2: <CS> =

 Any character set such as "\d",

"\s","\w","[ci − cj]", and so on.

4.3: <SP> =

 Any simple pattern without

regex operator and character set.

Fig. 2: Regex Pattern Parsing Rules [25].

All the regex patterns are parsed by the provided parsing
rules, in which the extracted information are stored into the
following data structure.
• Title: Determines a unique title of the extracted simple

pattern.
• Quantity: Preserves the total number of instances of each

simple pattern. Also for each simple pattern instance, the
following attributes are stored.
– Regex Pattern Reference (RPR): Specifies the regex

pattern reference.
– Instance Identity: Determines a unique identifier for

the instance.

– Not Operator Check: Reverses the matching condi-
tion, when this attribute was set to “True”.

– Previous Simple Patterns: Refers to previous in-
stance/s of the current simple pattern, that should be
matched before.

– Regex Handler Check: Expresses the regex operators
and/or character sets that placed between current in-
stance and its PSP.

– Last Simple Pattern: Denotes the last simple pattern
of each regex pattern.

• Length: Stores the simple pattern length.
• Text: Preserves the pattern text.

B. HES Matching Phase

In the HES matching phase, the generated HES data struc-
ture is used to match the regex patterns as follows.

1) Consider an empty set top store already matched simple
patterns.

2) Read input string and try to find a match using any simple
pattern matching method.

3) In case of finding a match, find its entry in the HES data
structure. For each instance of the match perform below
procedure.

a) Check its corresponding PSP which has been inserted
into the candidate set before.

b) Handle its corresponding RHC.
c) If the RHC condition is satisfied and NOC flag was

set to “False”, add the simple pattern instance to the
candidate set. Otherwise, remove the instance PSP
from the candidate set.

C. Discussion

HES provided a highly scalable and flexible infrastruc-
ture to match regex patterns. It reduced the regex pattern
matching problem to finding simple patterns. As a result,
it is significantly faster than DFA. Also, it has minimum
storage requirement which makes it practical to handle tens
of thousands regex patterns.

Experimental results showed a great improvement of match-
ing time, compared to the state-of-the-art techniques, while
using almost the same storage as NFA. However, RHC condi-
tions need to be handled in more optimum way. In other words,
when a simple pattern is matched, the input characters between
the matched pattern and its PSP were read to check whether
the corresponding RHC wes satisfied or not, that affects the
matching time. Also, HES was unable to support SP-Free
regex patterns as explained in [25].

In this paper we focus on solving these problems, in which,
in the next section, our novel method will be proposed in
detail.

III. E-HES METHOD

In this section, E-HES is explained in detail. E-HES Uses
the HES idea to match regex patterns, in which, all the simple
patterns are first, extracted in the pre-processing phase, and
then, a simple pattern matching method is used to find a

match. E-HES provides a novel algorithm to handle RHCs
which resolved the HES problem, discussed in Section II.

A. E-HES Pre-processing Phase

This section describes the E-HES pre-processing phase,
which contains the following steps: 1) Parsing Regex Patterns,
2) Parsing RHCs, 3) Partitioning Character Sets, 4) Rewriting
Character Sets, 5) Creating Character Map. The rest of this
section describes above steps in more detail.

1) Parsing Regex Patterns: The first step of the pre-
processing phase is to parse all the regex patterns in order
to extract simple patterns and metadata, according to the HES
method discussed in Section II.

Tables I expressed the metadata and simple patterns, ex-
tracted from the following regex patterns.
• RP1 = abcd\d+\w ∗ cmd
• RP2 = tty[a− z]{4}efgh
• RP3 = abcd[3− 7] + ijklm
• RP4 = (\s+ [6− 9]+)+

TABLE I: An example of parsing different regex patterns.

Title 1 1,3 1 1 2 2 1 2 2 3 2 4 1

Quantity 2 1 1 1 1 1

RPR* 1 3 1 2 2 3 4

II† 1 1 2 1 2 2 1

NOC‡ F F F F F F F

PSP§ ⊥ ⊥ 1 ⊥ 1 1 ⊥
RHC¶ ⊥ ⊥ \d+ \w∗ ⊥ [a-z]{4} [3-7]+ (\s+[6-9]+)+

LSP** F F T F T T T

Length 4 3 3 4 5 3

Text abcd cmd tty efgh ijklm null
* Regex Pattern Reference
† Instance Identity
‡ Not Operator Check
§ Previous Simple Patterns
¶ Regex Handler Check
** Last Simple Pattern

2) Parsing RHCs: The metadata extracted from the previ-
ous step contains RHCs. RHCs are regex patterns, composed
from regex operators and character sets. As a result, they are
parsed by provided regex parsing rules in Figure 2 to fill the
data structure illustrated in Figure 3.

As depicted in Figure 3, the RHC data structure is similar
to HES, while the character sets are stored with the same logic
as preserving the simple patterns.

Definition 1. Let “RHC”, “RO”, and “CS” be the regex
handler check, regex operator, and character set, respectively.
The following functions are defined to compute the “Previous
Character Set” of each RHC.

• firstCS(RHC)→ {CS}: Returns the first character set
of given RHC.

• lastCS(RHC) → {CS}: Returns the last character set
of given RHC.

• findPCS(CS,RO)→ {CS}: Returns the previous char-
acter set of given CS based on RO.

Character Sets

Character Set 1

Title

Quantity

First

RHC Reference (RR)

Instance Identity (II)

Not Operator Check (NOC)

Previous Character Set (PCS)

Last Character Set (LSP)

Second

Third

...

Text

Character Set 2

Character Set 3

...

Fig. 3: HES Data Structure Fields.

For instance, \d+\w∗, [a − z]{4}, [3 − 7]+, and
(\s + [6 − 9]+)+ are extracted RHCs from the example
provided in Table I. Parsing RHCs results in the following
RHC data structure shown in Table II.

TABLE II: An example of parsing different RHCs.

Title 1 2 1 1 2 2 2 2 1 3 2 1 4 1 1 4 1 2

Quantity 1 1 1 1 1 1

RR* 1 2 1 2 2 2 3 2 4 1 4 1

II† 1 2 1 1 1 2

NOC‡ F F F F F F

PCS§ {⊥,1} {1,2} ⊥ {⊥,1} {⊥,1,2} {1,2}
LCS¶ T T T T F T

Text \d \w [a− z] [3− 7] \s [6− 9]

* RHC Reference
† Instance Identity
‡ Not Operator Check
§ Previous Character Set
¶ Last Character Set

3) Partitioning Character Sets: The third step is to partition
each two character sets in case that they have some elements
in common to achieve “Disjoint Character Sets”. Disjoint
character sets of above example are defined as below.

\d, \w −→ \d, [a− Z]

[a− Z], [a− z] −→ [A− Z], [a− z]
\d, [3− 7] −→ [01289], [3− 7]

[3− 7], [6− 9] −→ [3− 5], [6− 7], [8− 9]

[01289], [8− 9] −→ [0− 2], [8− 9]

⇒ Disjoint Character Sets =

{[0− 2], [3− 5], [6− 7], [8− 9], [a− z], [A− Z], \s}

4) Rewriting Character Sets: The next step is to rewrite all
the extracted character sets according to the disjoint character
sets. The result is stored into a matrix named Ψ, in which the
following rewrote the character sets of the above example.

Ψ =

[a-z] [A-Z] \s [0-2] [3-5] [6-7] [8-9]

0 0 0 1 1 1 1 \d
1 1 0 1 1 1 1 \w
1 0 0 0 0 0 0 [a-z]
0 0 0 0 1 1 0 [3-7]
0 0 0 0 0 1 1 [6-9]
0 0 1 0 0 0 0 \s

5) Creating Character Map: The last step in the E-HES
pre-processing phase is to create a character map according to
the disjoint character sets.

Definition 2. Let Σ be the set of all possible input characters,
and Ω = {ω1, ω2, · · · , ωk} be the disjoint character sets.
Then, Φ as the mapping function of input character to disjoint
character set is defined as follows:

∀ci ∈ Σ : Φ(ci) =

{
ωj , if ∃j · ci ∈ ωj

\o, else
(1)

where \o is defined as below:

\o =
(k⋃

j=1

ωj

)′
(2)

Considering one byte characters, there are 256 different
possible values. The mapping table based on below disjoint
character sets is explained in Table III.
Ω = {[0− 2], [3− 5], [6− 7], [8− 9], [a− z], [A− Z], \s}.

TABLE III: Mapping all the characters according to the
disjoint character sets.

ASCII Code Mapping Function (Φ) Description
9

\s

Horizontal Tab
10 Line Feed
11 Vertical Tab
12 Form Feed
13 Carriage return
32 Space

[48 ∼ 50] [0− 2] Numbers 0 to 2
[51 ∼ 53] [3− 5] Numbers 3 to 5
[54 ∼ 55] [6− 7] Numbers 6 and 7
[56 ∼ 57] [8− 9] Numbers 8 and 9
[65 ∼ 90] [A− Z] English upper case letters
[97 ∼ 122] [a− z] English lower case letters

[0 ∼ 8]

\o The rest of the characters

[14 ∼ 31]
[33 ∼ 47]
[58 ∼ 64]
[91 ∼ 96]

[123 ∼ 255]

B. E-HES Matching Phase

The matching phase of E-HES contains six steps: 1) System
Initialization, 2) Buffering Input Characters, 3) Calling a

Simple Pattern Matching Method, 4) Handling Corresponding
RHCs, 5) Checking for the whole Regex Pattern Match,
6) and Checking all the SP-Free regex patterns, as described
in Algorithm 1.

Algorithm 1 E-HES Matching Phase

1 //System Initialization
2 candidate ←− NULL
3 buffer ←− initialize buffer
4 foreach input characters as c
5 //Buffering Input Character
6 buffer ←− buffer character c
7 //Calling a Simple Pattern Matching Method
8 SP ←− call SP_matcth(c)
9 //Handling corrensponding RHCs

10 foreach SP instances
11 if SP instance has no PSP
12 if SP.RHC is satisfied in buffer and
13 SP.NOC is False
14 candidate.add(instance,position)
15 end
16 elseif PSP exists in candidate
17 if SP.RHC is satisfied in buffer and
18 SP.NOC is False
19 candidate.update(instance, position)
20 else
21 candidate.remove(PSP)
22 end
23 end
24 //Checking for the whole Regex Pattern match
25 if SP.LSP is True
26 publish SP as a regex pattern match
27 end
28 //Checking all the SP-Free Regex Patterns
29 foreach SP-Free regex patterns as SPF-RP
30 if SPF-RP is satisfied in buffer
31 publish SPF-RP as a regex pattern match
32 end
33 end
34 end
35 end

At first, the system is initialized by considering an empty set
to preserve matching candidates. Also the procedure expressed
in Algorithm 2 is performed in order to provide a data structure
to buffer input characters.

Algorithm 2 Buffer Initialization

input: Nothing
output: Buffer

1 //Creating the buffer data structure
2 foreach ω ∈

(
Ω ∪ {\o}

)
3 buffer[ω].next ←− NULL
4 buffer[ω].last_node ←− buffer[ω]
5 end
6 //Storing the most recent buffered item
7 buffer[current] ←− NULL

The second step in the matching phase is to map and buffer
incoming characters according to Equation 1 as below.

1) Compute Φ(c) for each input character c.
2) Generate and initialize a new buffer node.
3) Link the generated node to the buffer.
4) Update buffer’s most recent node.

The whole procedure is defined in Algorithm 3.

Algorithm 3 Buffering input characters

input: Character and its position
output: Buffer

1 //Find the corresponding disjoint character set
2 ω ←− Φ(c)
3 if the most recent buffered item is not ω
4 //Generate and initialize a new buffer node
5 n: generate new buffer node
6 n.previous ←− buffer[ω].last_node
7 n.position ←− position
8 n.next ←− NULL
9 //Link the node to the buffer

10 buffer[ω].last_node.next ←− n
11 //Update the buffer’s most recent node
12 buffer[current] ←− ω
13 end

In the third step of the matching phase, a simple pattern
matching method is called. In case of finding a match, all its
instances are extracted and their RHCs are handled in the forth
step of the E-HES matching phase. In other words, a simple
pattern may be existed in different regex patterns, in which the
RHC procedure is performed for each simple pattern instance
individually. The RHC procedure is explained as follows.

1) Check the instance length with the instance’s PSP and
current positions.

2) For each character set of RHC, try to find at least one
buffer entry (ω) that violates the RHC rule (i.e. Ψ(ω) =
0), then return “False” value.

a) Set current position as pivot.
b) Define Ξ = instance.RHC.LCS which is the last

character set of the RHC as the acceptable character
sets.

c) Compute bitwise-or of Ψ[Ξ] as acceptable disjoint
character sets.

d) Find the most recent nodes of the buffer (for each
disjoint character set) based on the pivot.

e) Determine the most recent character set of the buffer
as ωrecent.

f) Return “False” when ωrecent is not satisfied, according
to the acceptable disjoint character sets.

g) Update pivot according to condition that ωrecent is not
satisfied with the acceptable character set.

h) Update Ξ based on previous character set of ωrecent.
i) Perform items 2c to 2h until the pivot value becomes

less than instance’s PSP position or ⊥ is added to the
acceptable disjoint character set.

3) If all the buffered data obey the whole RHC rule, return
“True” value.

The pseudo-code of handling RHC is expressed by Algo-
rithm 4

Algorithm 4 Handling the RHC of an Instance

input: Instance and Buffer
output: True or False

1 //Initializing required variables
2 Ξ←− instance.RHC.LCS
3 βstart ←− instance.PSP.position + instance.PSP.length
4 βend ←− current position - 1

5 //Checking the previous match and current positions
6 if (instance.PSP.position + length of the match)
7 is greater than the current position
8 return False
9 end

10 foreach ω ∈
(
Ω ∪ {\o}

)
11 ∆[ω]←− buf[ω].last_node
12 end
13 while βend is greater than βstart or ⊥ ∈ Ξ do
14 /* Finding acceptable ω according to
15 acceptable Character Sets */
16 ψ ←− bitwise_or(Ψ[Ξ]);
17 foreach ω ∈

(
Ω ∪ {\o}

)
18 //Finding the most recent nodes of all ω
19 while ∆[ω] is greater than βend do
20 ∆[ω]←− ∆[ω].previous
21 end
22 end
23 //Finding the ω of the most recent node
24 ωrecent ←− index of max(δ.position) ∀δ ∈ ∆
25 //Checking the most recent ω is not acceptable
26 if ψ[ωrecent] equals to 0
27 return False
28 end
29 //Finding the previous check position
30 βend ←− max(δ.position) ∀δ ∈ ∆,Ψ[indexδ][ωrecent] = 0
31 Ξ←− ωrecent.PCS
32 end
33 //Returning True when everything were satisfied
34 return True

The fifth step in the matching phase is to publish the regex
match result, which is done when all the SPs of a regex pattern
are matched (see Algorithm 1 Lines 28∼33).

Finally, in the sixth step, all the SP-Free regex patterns are
checked in the buffer, acording to algorithm 4, in order to
publish the regex patterns match, which contains no simple
pattern.

To clarify the matching procedure, suppose the regex
patterns, provided in Section III-A. Hence, input characters
are mapped based on Table III. Now, assume that string
“abcd543 cmd5433 789 898989898tty” is taken as input. As
a result, Algorithm 3 generates the E-HES buffer as shown in
Figure 4, where the left array represents the disjoint character
set and the right boxes are buffer nodes including string
position.

12

8

0

16

5

17

9

4

18

20

21

30

[8-9]

[3-5]

\o

[6-7]

\s

[a-z]

[0-2]

[A-Z]

Fig. 4: Buffering input string “abcd543 cmd5433 789
898989898efgh” based on disjoint character sets
Ω = {[0− 2], [3− 5], [6− 7], [8− 9], [a− z], [A− Z],\s}.

Reading the input string results in matching the following
simple patterns.

match −→ abcd position: 0
match −→ cmd position: 8
match −→ efgh position: 29

candidate: NULL
match: abcd

title = 1_1,3_1
Quantity = 2
First instance:
PSP=⊥, RHC=⊥, NOC=F, LSP=F
Handling RHC
Satisfied due to RHC=⊥

⇒ add RPR_II = 1_1 to candidate
Second instance:
PSP=⊥, RHC=⊥, NOC=F, LSP=F
Handling RHC
Satisfied due to RHC=⊥

⇒ add RPR_II = 3_1 to candidate
Checking SP-Free Regex Patterns

First instance: 4_1
PSP=⊥, RHC=(\s+[6− 9]+)+, NOC=F, LSP=T
Handling RHC
βstart = 0

Round 1:
Ξ : {[6− 9]}
βend : 0
Ψ : {0000011}
∆ : {0 null null null null null null}
max_node: [a− z]

Not Satisfied due to Ψ
[
[a− z]

]
= 0

--
candidate: {1_1, 3_1}
match: cmd

title = 1_2
Quantity = 1
First instance:
PSP=1, RHC=\d+\w∗, NOC=F, LSP=T
Handling RHC
βstart = 4
Round 1:

Ξ : {\d, \w}
βend = 8
Ψ : {0001111} ∨ {1101111} = {1101111}
∆ : {0 null 7 null 4 null null}
max_node: \s

Not Satisfied due to Ψ[\s] = 0
⇒ remove the instance

Checking SP-Free Regex Patterns
First instance: 4_1
PSP=⊥, RHC=(\s+[6− 9]+)+, NOC=F, LSP=T
Handling RHC
βstart = 0

Round 1:
Ξ : {[6− 9]}
βend : 0
Ψ : {0000011}
∆ : {0 null 7 null 4 null null}
max_node: \s

Not Satisfied due to Ψ[\s] = 0
--
candidate: {3_1}
match: efgh
title = 2_2
Quantity = 1
First instance:
PSP=tty, RHC=[a− z]{4}, NOC=F, LSP=T
Not Satisfied due to tty in not in

candidate
Checking SP-Free Regex Patterns
First instance: 4_1
PSP=⊥, RHC=(\s+[6− 9]+)+, NOC=F, LSP=T
Handling RHC
βstart = 0
Round 1:

Ξ : {[6− 9]}
βend : 30
Ψ : {0000011}

∆ : {9 null 20 null 12 17 21}
max_node: [8− 9]
Ψ
[
[8− 9]

]
= 1

Round 2:
Ξ : {\s, [6− 9]}
βend : 20
Ψ : {0010011}
∆ : {9 null 20 null 12 17 18}
max_node: \s
Ψ[\s] = 1

Round 3:
Ξ : {⊥, \s, [6− 9]}
βend : 12

Satisfied due to ⊥ ∈ Ξ
LSP is True
⇒ report RP4 as a match

IV. EXPERIMENTAL EVALUATION

HES handled RHCs in a very simple way (just checking
all the characters between matched pattern and its PSP).
Although this procedure is enough for most cases, in some
situations, dealing with RHCs needs reading the input for
several times.

In this paper, E-HES was proposed to deal with RHCs in
optimum way. The aim of this section is to observe the E-HES
method using experimental tests. E-HES is compared with
the state-of-the-art finite automata based techniques as well
as HES, in terms of matching time and storage requirement.
The source codes of DFA, NFA, and HFA are available in [26].
The overhead of “regex handler module” is then investigated.

A. Evaluation Setup

We used AC algorithm [6] as the HES and E-HES matching
modules. Also, we utilized two different pattern sets, to serve
our observation.

1) Snort [1] regex pattern sets.
2) Bro [2] regex pattern sets.
Several input data sets ranging from 1KB to 1GB are

randomly generated, with different matching probabilities. The
memory and CPU of the test system was 32GB and Core i7-
6700HQ, respectively.

B. Matching Time

The main concern of any signature matching method is to
keep up with the increase of line speed. In other words, using
thousands of regex patterns, a signature matching method
has to check the input string with minimum overhead. In
this section, E-HES was compared with both HES and finite
automata based techniques, in which their throughput are
illustrated in Figure 5.

As illustrated in Figure 5, E-HES was slower than HES due
to buffering input string. However, it achieved better results
compared to DFA, as one the fastest finite automata based
methods, while the throughput was a bit smaller than 1.3 Gbps.

C. RHC Overhead

E-HES buffered input string to satisfy RHCs in optimum
way. However, it decreased the system throughput compared
to HES. The main goal of this section is to highlight the

0

500

1000

1500

2000

2500

3000

1KB 5KB 10KB 100KB 1MB 10MB 100MB 1GB

Input Size

T
hr

ou
gh

pu
t M

bp
s

DFA

NFA

HFA

HES

E-HES

(a) Throughput: Snort Rule set.

0

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t M

bp
s

1KB 5KB 10KB 100KB 1MB 10MB 100MB 1GB

Input Size

DFA

NFA

HFA

HES

E-HES

(b) Throughput: Bro Rule set.

Fig. 5: The comparison between E-HES and HES versus DFA,
NFA, and HFA methods in terms of their throughput.

importance of buffering input strings, compared to handling
RHCc as simple as HES did.

To achieve our goal, we fed both HES and E-HES by three
sets of input strings, in which each set contained several strings
ranging from 1KB to 1GB. The first set was generated in a way
that the strings needed to be read once, in order to handle the
RHC of each simple pattern match, using HES. Respectively,
the second and third sets was generated in a way that the
whole input strings had to be read ten and a hundred times.
Figure 6 shows the matching time of the test.

0

500

1000

1500

2000

2500

3000

T
hr

ou
gh

pu
t M

bp
s

1KB 5KB 10KB 100KB 1MB 10MB 100MB 1GB

Input Size

E-HES - All cases

HES - 10 Times

HES - 100 Times

HES - Once

Fig. 6: The matching time of E-HES and HES when the input
strings need to be read several times.

As depicted in Figure 6, in case of reading the read
input string only once, the HES method provided the best

throughput, while it achieved around 2.4 Gbps for 1GB input
data. However, for the inputs that required HES to read the
whole string for several times, the throughput was decreased
significantly. We achieved 801 Mbps and 112 Mbps when
the input was read ten and a hundred times, respectively. On
the other side, E-HES provided steady results, in which its
matching time was not related to the input string. As a result,
it achieved 1.3 Gbps for all cases.

D. Memory Consumption

The main concern of the E-HES method is its storage
requirement, as it buffers the input string. Table IV provides
the required buffer size for different inputs ranging from 1KB
to 1GB.

TABLE IV: E-HES Storage Requirement for Different Input
Size

Input 1KB 5KB 10KB 100KB 1MB 10MB 100MB 1GB
Buffer 1.26KB 6.48KB 13KB 162KB 1.89MB 19MB 243MB 2.43GB

As explained in Table IV, E-HES required around 2.5
times input size to buffer the data. This storage requirement
was reasonable. Because, it was increasing linearly (not ex-
ponentially). Also, by reading new input (new flow data),
the whole buffer is flushed and an empty buffer is chosen.
Besides, we defined “flush“ function to flush the buffer,
when the number of inserted data exceeds a threshold value.
The whole procedure of the “flush” function is expressed by
Algorithm 5.

Algorithm 5 E-HES Flushing Buffer

input: Candidate and Buffer
output: Empty Buffer

1 //Initializing required variables
2 foreach instance ∈ Candidate
3 χ←− Find the next SP of instance
4 Handle the RHC of χ
5 end
6 return null

Figure 7 shows the flushing overhead in case of setting the
threshold value to 100MB, in which the overhead was 281
micro second in the worst case.

0

50

100

150

200

250

300
Flushing Time

1KB 5KB 10KB 100KB 1MB 10MB 100MB 1GB

Input Size (log scale)

T
im

e
(μ

s)

Fig. 7: The overhead of flushing function for different input
sizes.

V. CONCLUSIONS

In this paper we developed an enhanced version of HES
method, called E-HES to support SP-Free regex patterns
as well as, making the RHC procedure faster. While finite
automata based techniques were suitable for limited number
of patterns, and HES method handled specific type of regexes,
E-HES provides a powerful framework to support all kind
of patterns with minimum spatial and temporal requirements.
Although experimental results showed that E-HES was slower
than HES, it still matched patterns faster than DFA. Also, E-
HES resisted against bad input data, compared to HES, which
provided worse throughput.

In the future we plan to continue improving E-HES to
support modern regex operators like “Back-reference”, which
enable more advanced features for network solutions. Besides,
deploying E-HES on parallel processing platforms like FPGA
will provide us higher throughput, is another area for the future
study.

VI. ACKNOWLEDGMENTS

This work was supported by the National Key Technology
R&D Program of China under Grant No. 2015BAK34B00
and the National Key Research and Development Program of
China under Grant No. 2016YFB1000102.

REFERENCES

[1] SNORT, “Snort: Network intrusion detection and prevention system,”
https://www.snort.org/downloads#rules, 2017.

[2] Bro, “The bro network security monitor,”
https://www.bro.org/download/index.html, 2017.

[3] l7 filter, “Application layer packet classifier for linux,” http://l7-
filter.sourceforge.net/, 2009.

[4] Cisco, “Cisco ios ips deployment guide,” https://www.cisco.com, 2015.
[5] IBM, “Poweren pme public pattern sets,”

https://www.ibm.com/developerworks/community/wikis/home?lang
=en#!/wiki/PowerEN+PME+Public+Pattern+Sets, 2012.

[6] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[7] M. Aldwairi and K. Al-Khamaiseh, “Exhaust: optimizing wu-manber
pattern matching for intrusion detection using bloom filters,” in Web
Applications and Networking (WSWAN), 2015 2nd World Symposium
on. IEEE, 2015, pp. 1–6.

[8] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[9] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han, “Dfc: Accelerating
string pattern matching for network applications.” in NSDI, 2016, pp.
551–565.

[10] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM journal on computing, vol. 6, no. 2, pp. 323–350, 1977.

[11] C.-H. Lin, J.-C. Li, C.-H. Liu, and S.-C. Chang, “Perfect hashing based
parallel algorithms for multiple string matching on graphic processing
units,” IEEE Transactions on Parallel and Distributed Systems, 2017.

[12] C. Allauzen and M. Raffinot, “Factor oracle of a set of words,” Technical
report 99-11, 1999.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata
theory, languages, and computation,” ACM SIGACT News, vol. 32, no. 1,
pp. 60–65, 2001.

[14] F. Yu, Y. Diao, R. H. Katz, and T. Lakshman, “Fast packet pattern-
matching algorithms,” in Algorithms for Next Generation Networks.
Springer, 2010, pp. 219–238.

[15] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspec-
tion,” in Proceedings of the 2006 ACM/IEEE symposium on Architecture
for networking and communications systems. ACM, 2006, pp. 93–102.

[16] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-
gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” in ACM SIGCOMM Computer Communication Re-
view, vol. 36, no. 4. ACM, 2006, pp. 339–350.

[17] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection,” in Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and communications systems.
ACM, 2006, pp. 81–92.

[18] M. Becchi and P. Crowley, “An improved algorithm to accelerate regular
expression evaluation,” in Proceedings of the 3rd ACM/IEEE Symposium
on Architecture for networking and communications systems. ACM,
2007, pp. 145–154.

[19] ——, “A-dfa: A time-and space-efficient dfa compression algorithm for
fast regular expression evaluation,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 10, no. 1, p. 4, 2013.

[20] ——, “A hybrid finite automaton for practical deep packet inspection,”
in Proceedings of the 2007 ACM CoNEXT conference. ACM, 2007,
p. 1.

[21] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: fast and
scalable deep packet inspection with extended finite automata,” in ACM
SIGCOMM Computer Communication Review, vol. 38, no. 4. ACM,
2008, pp. 207–218.

[22] R. Smith, C. Estan, and S. Jha, “Xfa: Faster signature matching with
extended automata,” in Security and Privacy, 2008. SP 2008. IEEE
Symposium on. IEEE, 2008, pp. 187–201.

[23] K. Wang, Z. Fu, X. Hu, and J. Li, “Practical regular expression matching
free of scalability and performance barriers,” Computer Communica-
tions, vol. 54, pp. 97–119, 2014.

[24] K. Wang and J. Li, “Freme: A pattern partition based engine for fast and
scalable regular expression matching in practice,” Journal of Network
and Computer Applications, vol. 55, pp. 154–169, 2015.

[25] M. H. Haghighat, Z. fu, and J. Li, “Hes: Highly efficient and scalable
technique for matching regex patterns.” in Information and Network
Technologies (ICINT 2018), 2018 3rd International Conference on,
2018.

[26] M. Becchi, “Regular expression processor,”
http://regex.wustl.edu/index.php/Main Page, 2011.

APPENDIX

A. Operator Free RHC Relations

Definition A1. Let “RHC” be an operator free regex pattern, which
is described by equation 3.

RHC = CS1CS2 · · ·CSn for (n ≥ 1) (3)

where “CSi (1 ≤ i ≤ n)” are different character sets. then:

findPCS(CSi, NULL) = CSi−1 (1 < i ≤ n) (4)
firstCS(RHC) = CS1 (5)
lastCS(RHC) = CSn (6)

B. One-operand Operator RHC Relations

Definition A2. Let “RHC” be a one-operand operator regex pattern,
which is described by equation 7.

RHC = NRP1(RP2)RO NRP3 (7)

then:

findPCS
(
firstCS(NRP3), RO

)
= (8)

{lastCS(NRP1), lastCS(RP2)}, RO ∈ {∗, ?, ˆ}
lastCS(RP2), RO ∈ {+, {n}, {n,m}}
lastCS(NRP1), lastCS(RP2) = ⊥

findPCS
(
firstCS(RP2), RO

)
= (9)

{lastCS(NRP1), lastCS(RP2)},
RO ∈ {∗,+, {{n,m}
∧(n ≤ i < m)}}

lastCS(RP2), RO ∈ {{n}, {n,m}} ∧ (i < n)

lastCS(NRP1),

RO ∈ {?, ˆ, {{n} ∧ (i = n)},
{{n,m} ∧ (i = m)}}

∨ lastCS(RP2) = ⊥
firstCS(RHC) = (10)

firstCS(NRP1), firstCS(NRP1) 6= ⊥

{firstCS(RP2), firstCS(NRP3)},
firstCS(NRP1) = ⊥
∧RO ∈ {∗, ?, ˆ}

firstCS(RP2),

firstCS(NRP1) = ⊥
∧RO ∈ {+, {n}, {n,m}}
∧firstCS(RP2) 6= ⊥

firstCS(NRP3), else

lastCS(RHC) = (11)

lastCS(NRP3), lastCS(NRP3) 6= ⊥

{lastCS(NRP1), lastCS(RP2)},
lastCS(NRP3) = ⊥
∧RO ∈ {∗, ?, ˆ}

lastCS(RP2),

lastCS(NRP3) = ⊥
∧lastCS(RP2) 6= ⊥

∧RO ∈ {+, {n}, {n,m}}

lastCS(NRP1), else

C. Two-operands Operator RHC Relations
Definition A3. Let “RHC” be a two-operand operator regex pattern,
which is described by equation 12.

RP = NRP1(RP2|RP3)NRP4 (12)

then:

findPCS
(
firstCS(NRP4), |

)
= (13){lastCS(RP2), lastCS(RP3)},

lastCS(RP2) 6= ⊥
∨lastCS(RP3) 6= ⊥

lastCS(NRP1), else

findPCS
(
firstCS(RP3), |

)
= lastCS(NRP1) (14)

findPCS
(
firstCS(RP2), |

)
= lastCS(NRP1) (15)

firstCS(RHC) = (16)

firstCS(NRP1), firstCS(NRP1) 6= ⊥

{firstCS(RP2), firstCS(RP3)},
firstCS(NRP1) = ⊥
∧(firstCS(RP2) 6= ⊥
∨firstCS(RP3) 6= ⊥)

firstCS(NRP4), else

lastCS(RHC) = (17)

lastCS(NRP4), lastCS(NRP4) 6= ⊥

{lastCS(RP2), lastCS(RP3)},
lastCS(NRP4) = ⊥
∧(lastCS(RP2) 6= ⊥
∨lastCS(RP3) 6= ⊥)

lastCS(NRP1), else

