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Intrusion Detection System Using Voting-Based Neural Network

Mohammad Hashem Haghighat� and Jun Li�

Abstract: Several security solutions have been proposed to detect network abnormal behavior. However, successful

attacks is still a big concern in computer society. Lots of security breaches, like Distributed Denial of Service (DDoS),

botnets, spam, phishing, and so on, are reported every day, while the number of attacks are still increasing. In

this paper, a novel voting-based deep learning framework, called VNN, is proposed to take the advantage of any

kinds of deep learning structures. Considering several models created by different aspects of data and various deep

learning structures, VNN provides the ability to aggregate the best models in order to create more accurate and

robust results. Therefore, VNN helps the security specialists to detect more complicated attacks. Experimental

results over KDDCUP’99 and CTU-13, as two well known and more widely employed datasets in computer network

area, revealed the voting procedure was highly effective to increase the system performance, where the false

alarms were reduced up to 75% in comparison with the original deep learning models, including Deep Neural

Network (DNN), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit

(GRU).
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1 Introduction

Computer network plays an important role nowadays.
Various internet-based services, like voice over IP,
internet banking, Point to Point (P2P) file sharing,
online gaming, and so on, having been used every day.
However, the number of network malicious activities
are increasing dramatically[1]. According to McAfee,
“ransomware attacks”, as a type of malware aiming at
blocking the access of a user to its computer until specific
amount of money is paid, have been increased by 118%
during 2019[2].

Dozens of behavior-based detection techniques have
been proposed to protect networks from such attacks.
The key challenge of these methods is to lower the false
alarms using machine learning algorithms[3–14].
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Nowadays, deep learning provides a suitable
infrastructure to automatically learn features from raw
data. This advantage enables the scientists to employ
deep learning techniques in different areas, like natural
language processing, image and voice recognition, and
computer networks.

Generally, various types of deep learning models have
been developed, including Deep Neural Network (DNN),
Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), Boltzmann Machine (BM), and
Stacked Auto-Encoder (SAE).

RNNs enable previous outputs to be used for the input
of the next step as depicted in Fig. 1. Since RNNs are
suitable for time series data, they are widely utilized
in network anomaly-based detection techniques in the
literature.

J. Kim and H. Kim[16] applied RNN to Intrusion
Dection System (IDS) and achieved magnificent results
on KDDCUP’99. They improved their method by
employing Long Short-Term Memory (LSTM) as the
learning engine which the performance test showed the
system was suitable for IDSes[17]. Yin et al.[18] and
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Fig. 1 RNN architecture[15].

Althubiti et al.[19] compared the performance of RNN
with traditional machine learning methods, including
naive Bayes, random forest, and Support Vector Machine
(SVM), using KDDCUP’99 in both multi-class and
binary classifiers and revealed RNN overwhelmed all
the traditional methods well. A Gated Recurrent Unit
Recurrent Neural Network (GRU-RNN) was proposed
by Tang et al.[20] with the performance of 89% on
KDDCUP’99 using only 6 raw features.

CNN is a special deep learning architecture firstly
developed for image recognition problem. However,
Yao et al.[21] proposed a CNN-based method to detect
time-delayed attacks, and reported that the method was
highly accurate for DARPA’98 dataset. Wu et al.[22]

employed CNN in order to select traffic properties
automatically from raw dataset. They evaluated the
method by KDDCUP’99 and argued that the method
performs better in terms of performance and false alarm
rate compared to the conventional standard algorithms.

SAE is a specific type of neural network with exactly
the same size output of its input. The main goal of
SAE is to reconstitute of the output from the input.
Figure 2 depicts the SAE architecture where the input
is compressed and then decompressed to compute the

Input layer Hidden layers Output layer

Encoder Decoder

Code

Fig. 2 SAE architecture.

output.
Aminanto and Kim[23] applied SAE as a classifier on

KDDcup’99 dataset and presented four different IDSes:
application layer IDS, transport layer IDS, network layer
IDS, and data link layer IDS. Javaid et al.[24] used SAE
to learn features from NSLKDD.

Farahnakian and Heikkonen[25] proposed Deep
Auto Encoder (DAE) to extract features from high
dimensional data. They achieved more than 97%
detection precision in case of using 10% KDDCUP’99
dataset as test case.

BM is a type of stochastic RNN to make decisions
concerning being either on or off. BM provides the
ability to simply learn systems and interesting features
from datasets having binary labels[26].

A multi-layer Denial of Service (DoS) attack detection
technique based on Deep Boltzmann Machine (DBM)
was provided by Gao et al.[27] The authors argued that
their method gained better precision on KDDCUP’99
compared to SVM and simple Artificial Neural Network
(ANN). Zhang and Chen[28] sped up the training time by
combining SVN, BM, and Deep Belief Network (DBN).
Alrawashdeh and Purdy[29] achieved 97.9% precision on
10% KDDCUP’99 dataset as the test case. Recently
Vinayakumar et al.[30–34] provided a comprehensive
study of various CNN, LSTM, CNN-LSTM, CNN-GRU,
and DNN to select the optimal network architecture
using KDDCUP’99 and NSLKDD datasets.

Haghighat et al.[35] also developed a sliding
window-based deep learning technique (called
SAWANT) which achieved 99.952% accuracy on
CTU-13 dataset. The authors used only 1%–10%
CTU-13 dataset as training to conduct their tests.

The aforementioned methods took the advantage of
deep learning to detect network malicious activities.
Although their performance was considerable,
aggregating different deep learning models provides
the capability to utilize the strength of each model and
detect attacks incredibly more efficient.

In this paper we propose “Voting-based Neural
Network (VNN)” as a general infrastructure voting-based
mechanism to aggregate and take the advantages of
any kinds of deep learning algorithms. In other words,
several deep learning-based models can be created by the
state-of-the-art techniques with different performance.
Giving test data, VNN provides a procedure to perform a
weighted voting function on the most suitable models to
achieve higher accurate results. Due to only selecting and
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aggregating the best models for each test sample, VNN
incredibly boosted the system accuracy. Experimental
results proved our argument, as the false alarms were
reduced up to 75%.

Table 1 summarized all the relevant acronyms
employed throughout the paper.

The paper is structured as follows. In Section 2,
an overview of VNN is explained. Then, VNN is
deeply studied by two well-known KDDCUP’99 and
CTU-13 datasets in Sections 3 and 4, using two different
configurations: high and low accuracies, respectively.
Finally, in Section 5, the paper is concluded and future
research plans are explained.

2 Voting-Based Neural Network

Voting-based neural network is a general infrastructure
to create several models using different aspects of data or
various types of deep learning architectures, and merging
them, aiming at increasing the system performance.

As illustrated in VNN architecture (Fig. 3), several
inputs are extracted from the original data to be modeled
by various kinds of deep learning techniques, like
DNN, CNN, RNN, SAE, and so on. As a result, in the
prediction phase, a heuristic function, called “voting
engine", processes all the models to select the best
candidates in a way to minimize the errors. The chosen
models perform voting procedure in order to predict
test data label. Algorithm 1 describes the whole VNN
procedure in detail.

In the next two sections different case studies on well
known KDDCUP’99 and CTU-13 datasets are presented
to make the voting procedure clearer.

3 Case Study 1: KDDCUP’99

KDDCUP’99[36] is the mostly used dataset to evaluate

Table 1 Acronyms used through the paper.
Acronym Expression

VNN Voting-based Neural Network
DDoS Distributed Denial of Service
ANN Artificial Neural Network
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network

LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
BM Boltzmann Machine
SAE Stacked Auto-Encoder
SVM Support Vector Machine
P2P Point to Point
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Fig. 3 VNN architecture.
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aggregating the best models for each test sample, VNN
incredibly boosted the system accuracy. Experimental
results proved our argument as the false alarms were
reduces up to 75%.

Table ?? summarized all the relevant acronyms
employed throughout the paper.

The paper is structured as follows. In Section 2,
an overview of VNN is explained. Then, VNN is
deeply studied by two well-known KDDCUP’99 and
CTU-13 datasets in Sections 3 and 4, using two different
configurations: high and low accuracy, respectively.
Finally, in Section 5, the paper is concluded and future
research plans are explained.

2 Voting-Based Neural Network

Voting-based Neural Network is a general infrastructure
to create several models using different aspects of data or
various types of deep learning architectures, and merging
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As illustrated in VNN architecture (Fig. 3), several
inputs are extracted from the original data to be modeled
by various kinds of deep learning techniques like
DNN, CNN, RNN, SAE, and so on. As a result, in the
prediction phase, a heuristic function, called “Voting
Engine", processes all the models to select the best
candidates in a way to minimize the errors. The chosen
models perform voting procedure in order to predict
test data label. Algorithm 1 describes the whole VNN
procedure in detail.

Algorithm 1 VNN whole procedure
input1: traindata = {F1, F2, . . . , Fl} //input train data
input2: testdata = {F′1, F′2, . . . , F

′
l} //input test data

where Fi = {ai1 , ai2 , . . . , aik } //k different attributes
input3: Θ = {θ1, θ2, . . . , θn}  //n different models
output: prediction result

1 //initialization
2 ←   {} //empty set as training data
3 ω ← {} //empty set as testing data
4 ∆ ← {} //empty set as prediction results 
5 Ξ ← {} //empty set as voting candidates 
6 //selecting n different train and test features
7 vectors with randomely chosen attibutes
8 for i ← range(1, n)
9

10
11

A ← randomely select i attributes 
Ψi ← selectattributes(train, A)
Ωi ← selectattributes(test, A)

j

i

12 end
13 for each models θi, train dataj , and test data ωj 
14    modelij ← train(θi, ψ )  //train model
15    ∆ j← predict(modelij , ωj )  //prediction result 
16 end
17 ∆′ ← select best voting candidates 
18 result ← vote(∆′)
19 return result

In the next two sections different case studies on well
known KDDCup’99 and CTU-13 datasets are presented
to make the voting procedure clearer.

3 Case Study 1: KDDCUP’99

KDDCUP’99[36] is the mostly used dataset to evaluate
anomaly-based detection systems in Ref. [37]. The
dataset was built based on DARPA’98 project[38] and
contains about 4.9 million records, including 41 different
features with normal and four attack types (denial of
service, user to root, remote to local, and probing) labels.
Hereafter, Tavallaee et al.[39] removed the duplicated
records of KDDCUP’99 to create NSLKDD dataset.
Figure 4 shows the evolution of NSLKDD dataset[40].

DARPA
RAW TCP/IP 
Dump File

NSLKDD
KDDCUP

99
Extracting Features Removing Duplicates

Reducing size

Fig. 4 Evolution of NSLKDD dataset.

3.1 Voting procedure

The main idea behind VNN is to make a general
infrastructure to create several models using different
deep learning approaches or data aspects. Then, given a

anomaly-based detection systems[37]. The dataset was
built based on DARPA’98 project[38] and contains about
4.9 million records, including 41 different features with
normal and four attack types (denial of service, user to
root, remote to local, and probing) labels. Hereafter,
Tavallaee et al.[39] removed the duplicated records of
KDDCUP’99 to create NSLKDD dataset. Figure 4
shows the evolution of NSLKDD dataset[40].

3.1 Voting procedure

The main idea behind VNN is to make a general
infrastructure to create several models using different
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Fig. 4 Evolution of NSLKDD dataset.

deep learning approaches or data aspects. Then, given a
test sample, select those models who likely more suitable
to find the accurate label.

Definition 1 Let n be the number of models.
Uncertainty factor i of the i-th model is defined
according to the following equation:

i D 1 � �i (1)

where �i is the probability of the output layer achieved
by the i-th model.

The below procedure is defined to select k best
candidate models of the voting procedure.
� Considering �i as the accuracy of i-th model

reported by the system training procedure, normalize
all � values according to “normal distribution equation”
provided by Eq. (2) in the following[41]:

f .x; �; ı/ D
1
p
2 ı

e�
.x��/2

2ı2 (2)

� Assuming � as “Unsatisfied Models Threshold
(UMT)”, remove all the models whose normalized
accuracy are less than �.
� Consider “Total Uncertainty (TU)” threshold as �.
� Sort all the remained models based on their

uncertainty factors in ascending order.
� Select the models until the total sum of uncertainty

factor (i ) is less than �.
� Perform the majority voting mechanism on the

selected models.
Algorithm 2 describes the procedure in detail.

3.2 Experimental result

Several test cases were conducted on KDDCUP’99 using
different deep learning architectures, including CNN,
LSTM, GRU, CNN-LSTM, and DNN models. In order
to highlight the efficiency of voting mechanism, we
configured the hyper parameters of these deep learning
techniques using two different approaches to see the
impact of the voting procedure on different situations:

(1) Achieving highly accurate results (performance>
99%).

(2) Having lots of false alarms (55%<performance<
80%).

Table 2 describes the models’ hyper parameters
configuration in detail.
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test sample, select those models who likely more suitable
to find the accurate label.

Definition 1 Let n be the number of models.
Uncertainty factor γi of the i-th model is defined
according to the following equation:

γi = 1− ρi (1)

where ρi is the probability of the output layer achieved
by the i-th model.

The below procedure is defined to select k best
candidate models of the voting procedure.
• Considering ζi as the accuracy of i-th model

reported by the system training procedure, normalize
all ζ values according to “normal distribution equation”
provided by Eq. 2[41],

f(x, µ, δ) =
1√
2δ

e−
(x−µ)2

2δ2 (2)

• Assuming λ as “Unsatisfied Models Threshold
(UMT)”, remove all the models whose normalized
accuracy are less than λ.
• Consider “Total Uncertainty (TU)” threshold as ε.
• Sort all the remained models based on their

uncertainty factors in ascending order.
• Select the models until the total sum of uncertainty

factor (γi) is less than ε.
• Perform the majority voting mechanism on the

selected models.
Algorithm 2 describes the procedure in detail.

Algorithm 2 Multi-class output best model selection

input1: Γ ={γ1, γ2,…, γn} //uncertainety factors of n models 
input2: Z = {ζ1, ζ2,…, ζn} //accuracy of the models
input3: ε //total uncertainty threshold
input4:  λ  //unsatisfied model threshold
output: ∆, as set of k best models

1 //initializing the voting parameters
2 E ← 0 //total sum of uncertainty factors
3 ∆ ← {} //inittializing the output
4 M ← {} //inittializing the set of satisfies models 
5 for each ζi ∈ Z
6 ni ←    normalize(ζi)

if ni > λ7 
8  
9 

10

//adding corresponding uncertainty factor to M
M← add(γi)
end

11 end
12  Msorted ←    sort(M )   //sorting the models 
13  while true
14
15 
16 
17 
18 
19 
20

E← E + pop(Msorted)
if E>ε

break
else

   

     add corresponding model to ∆ 
end

end
21  return ∆

3.2 Experimental result

Several test cases were conducted on KDDCUP’99 using
different deep learning architectures, including CNN,
LSTM, GRU, CNN-LSTM, and DNN models. In order
to highlight the efficiency of voting mechanism, we
configured the hyper parameters of these deep learning
techniques using two different approaches to see the
impact of the voting procedure on different situations.

(1) Achieving highly accurate results (performance>
99%).

(2) Having lots of false alarms (55%<performance<
80%).

Table 1 describes the models hyper parameters
configuration in detail.

Table 1 Hyper parameters used to test KDDCUP’99.
Hyper parameters Values

Train size 90%
Test size 10%
Dropout 0.5

Batch input On
Activation function Relu

Layers number of CNN 4
Layers number of LSTM 2

Layers number of CNN-LSTM 4
Layers number of DNN 2
Layers number of GRU 2

Number of input attributes 37
Number of input subsets 38

Output Binary, five-class
UMT 0.7
TU 0.5

Generally, 90% of KDDCUP’99 datasets were chosen

to
train the models, while the rest of 10% were used

for testing. In addition, 38 different training and testing
datasets were generated from the input data, in which
each dataset includes 37 random KDDCUP’99 attributes.
We conducted binary classification as our highly accurate
test, while the less accurate test was performed based
on five-class classifier. Figures 13 depicts the accuracy
reported by the system during the training phase.

As illustrated in Fig. 13, 0.7 was chosen for UMT
where all the models with less normalized accuracy
values than UMT were removed.

The voting procedure was conducted over the
remained models and the result was depicted by Fig. 16.
The results proved that VNN increased the true responses
magnificently in both higher and less accurate deep
learning structures. VNN resolved 708 errors out of 1804Table 2 Hyper parameters used to test KDDCUP’99.

Hyper parameter Value
Train size 90%
Test size 10%
Dropout 0.5

Batch input On
Activation function Relu

Layers number of CNN 4
Layers number of LSTM 2

Layers number of CNN-LSTM 4
Layers number of DNN 2
Layers number of GRU 2

Number of input attributes 37
Number of input subsets 38

Output Binary and five-class
UMT 0.7
TU 0.5

Generally, 90% of KDDCUP’99 datasets were chosen
to train the models, while the rest of 10% were used
for testing. In addition, 38 different training and testing
datasets were generated from the input data, in which
each dataset includes 37 random KDDCUP’99 attributes.
We conducted binary classification as our highly accurate
test, while the less accurate tests were performed based
on five-class classifier. Figure 5 depicts the accuracy
reported by the system during the training phase.

As illustrated in Fig. 5, 0.7 was chosen for UMT where
all the models with less normalized accuracy values than
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Fig. 5 Normalized form of model accuracy (The blue dashed lines show UMT).

UMT were removed.
The voting procedure was conducted over the

remained models and the result was depicted by Fig. 6.
The results proved that VNN increased the true responses

magnificently in both higher and less accurate deep
learning structures. VNN resolved 708 errors out of 1804
(more than 39%) for binary classification-based GRU
architecture, and 63 675 false alarms out of about 85 000
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Fig. 6 System accuracy: voting-based vs. normal-based
using KDDCUP’99 dataset.

(around 75%) for five-class classification-based CNN-
LSMT models. The detailed number of false alarms and
their correction rates were explained in Table 3.

We also performed the voting procedure over all the
models created by any deep architectures, in which the
performance result is summarized in Tables 4 and 5.

Different measurements of the experiment, including
False Positive Rate (FPR), False Negative Rate (FNR),
Accuracy, Precision, Recall, and F_Score are computed

Table 3 KDDCUP’99 error correction.

Method Number of
errors

Number of
corrections

Correction
rate (%)

Binary

DNN 777 29 3.73
CNN 872 97 11.12

LSTM 1551 551 35.53
CNN-LSTM 993 148 14.90

GRU 1804 708 39.25

Five-class

DNN 205 439 25 497 12.41
CNN 205 306 7463 3.64

LSTM 208 849 81 263 38.90
CNN-LSTM 85 068 63 675 74.85

GRU 208 513 28 374 13.61

Table 4 KDDCUP’99 binary classification confusion
matrix.

Predicted
Normal Malicious Total

Actual
Normal 301 031 203 301 234

Malicious 488 188 121 188 609
Total 301 519 188 324 489 843

Table 5 KDDCUP’99 five-class classification confusion
matrix.

Predicted
Normal DoS R2L U2R Probing Total

Actual

Normal 277 269 219 20 608 0 0 298 096
DoS 490 188 107 5 7 0 188 609
R2L 0 62 3060 0 0 3122
U2R 0 1 0 0 0 1

Probing 0 14 1 0 0 15
Total 277 759 188 403 23 674 7 0 489 843

in Table 6. These values were achieved by Eqs. (3) – (8)
in the following:

FPR D
FP

FPC TN
(3)

FNR D
FN

FNC TP
(4)

Precision D
TP

TPC FP
(5)

Recall D
TP

TPC FN
(6)

Accuracy D
TPC TN
All Data

(7)

F_Score D 2 �
Precision � Recall
PrecisionC Recall

(8)

where FP, FN, TP, and TN denote False Positive, False
Negative, True Positive, and True Negative, respectively.

The result proved that VNN achieved higher accuracy
compared to any deep learning structures for both binary
and five-class classifiers efficiently. Figure 7 compares
VNN with DNN, CNN, LSTM, CNN-LSTM, and GRU
methods.

4 Case Study 2: CTU-13

CTU-13 contains thirteen days labeled traffic, captured
by CTU University, Czech Republic in 2011[42]. It has
about twenty million netflow records, including Internet

Table 6 Measurement result of KDDCUP’99 study.
FPR FNR Accuracy Precision Recall F_Score

Binary
classification 0.0011 0.0016 0.9986 0.9993 0.9984 0.9989

Five-class
classification 0.0982 0.0021 0.9563 0.9302 0.9979 0.9628
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Fig. 7 VNN vs. other deep learning architectures.

Relay Chat (IRC), P2P, HTTP, fast flux, spam, click
fraud, port scan, and DDoS traffic. The goal of CTU-13
is to collect a large real botnet traffic mixed with the
normal user activities in the network. Table 7 describes
the distribution of labels in the netflow traffic per day.

4.1 Deep learning models

Netflow traffic contains high level network activities
information, including source IP/port numbers,

Table 7 CTU13 label distribution.

Day
Number
of flows
(million)

Botnet
(%)

Normal
(%)

Command
and

control (%)

Background
(%)

1 2.82 1.41 1.07 0.030 97.47
2 1.81 1.04 0.50 0.110 98.33
3 4.71 0.56 2.48 0.001 96.94
4 1.21 0.15 2.25 0.004 97.58
5 0.13 0.53 3.6 1.150 95.70
6 0.56 0.79 1.34 0.030 97.83
7 0.11 0.03 1.47 0.020 98.47
8 2.95 0.17 2.46 2.400 97.32
9 2.75 6.50 1.57 0.180 91.70
10 1.31 8.11 1.20 0.002 90.67
11 0.11 7.60 2.53 0.002 89.85
12 0.33 0.65 2.34 0.007 96.99
13 1.93 2.01 1.65 0.060 96.26

destination IP/port numbers, protocol, Transmission
Control Protocol (TCP) flags, flow duration, flow size,
number of packets, input and output Simple Network
Management Protocol (SNMP) interface, and next
hop router. These attributes are too simple to be used
in a deep learning method to detect network attacks.
As a result, Haghighat et al.[35] developed a sliding
window-based technique, called SmArt Window-based
Anomaly detection using Netflow Traffic (SAWANT),
which aggregates netflow records and extracts several
meaningful attributes using sliding window algorithm.

Using training small subset of netflow records (one
to ten percent), SAWANT was able to achieve high
accurate models, which is its main contribution. As
illustrated in Fig. 8, new feature vectors were extracted
from netflow traffic according to the following procedure.
In addition, the label of each vector was called malicious
rate, describing how many the aggregated vectors were
abnormal.

(1) Slide a window of size w through the netflow
records.

(2) For each position of the window, calculate these
attributes:
� Number of unique values of source IP/port,

destination IP/port, duration, source bytes, number of
packets, and flow size per incoming and outgoing flows.
� Entropy values of source IP/port, destination

IP/port, duration, source bytes, number of packets, and
flow size per incoming and outgoing flows.
� Minimum, maximum, average, sum, and variance

of duration, source bytes, number of packets, and flow
size per incoming, outgoing, and total flows.
� Calculate malicious rate (�) as the label of each

vector based on Eq. (9) in the following:

� D
Number of malicious netflow records

Window size
(9)

The new feature vectors were used to train ANN
model as depicted in Fig. 9, where the output layer
expressed the malicious rate.

The results of the test dataset were compared with the
actual malicious rate values using “Pearson correlation

N
et
flo
w
1

N
et
flo
w
2

N
et
flo
w
3

…

N
et
flo
w
n

f11 f12 … f1m 𝜌1 f21 f22 … f2m 𝜌2 fn1 fn2 … fnm 𝜌𝑛

…Window1 Window2 Windown

Fig. 8 SAWANT window-based feature extraction procedure.
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Fig. 9 SAWANT architecture.

coefficient” function, described by Eq. (10) in the following:

rX;Y D
EŒXY � �EŒX�EŒY �p

EŒX2� �EŒX�2
p
EŒY 2� �EŒY �2

D

nP
iD1

xiyi � n Nx Nys
nP

iD1

x2
i � n Nx

2

s
nP

iD1

y2
i � n Ny

2

(10)

where X and Y were two different variable sets.
Definition 2 Let X and Y be two different data

series. X and Y are positively correlated (r D 1), and
8xi 2 X; yi 2 Y jyi D ˛xi C ˇ;

where ˛ and ˇ are two arbitrary numbers.

4.2 Voting procedure

As described in the previous section, a ranking
mechanism is defined in order to select a subset of
more probable models to achieve more accurate results
in the voting procedure. The more decisive models
were selected in the classification environment (like
Case Study 1 with “malicious” and “benign” classes),
the more likely it has more accuracy. However, the
main challenge of SAWANT is its predicted malicious
rate which is numerical (not categorical). In fact, the
SAWANT predicted results were not equal to the
actual values, meaning finding more decisive models
impossible. Therefore, the aforementioned majority
voting procedure explained in Section 3.1 is not practical
here. As a result, we developed a new heuristic procedure
to rank and select better models for any arbitrary test
case as t .
� Normalize the accuracy of all the models according

to Eq. (2) and remove less accurate models based on
UMT.
� Compute the sum of Pearson correlation coefficient

(r) of each predicted model with all the others.

� Sort the models based on the computed value and
remove the last 50% models.
� For each two remaining predicted sets i and j :
– Compute ˛ as the Pearson correlation coefficient of

Si and Sj , r.Si ; Sj /.
– Remove t from both Si and Sj , and compute ˇ

as the Pearson correlation coefficient of the two sets,
r.Si � ftg; Sj � ftg/.

– Compare the Pearson correlation coefficient
calculated from the above steps.

– Mark Si and Sj as being similar for test case t if ˛
is greater than ˇ.
� Put similar models into a single set.
� Return the largest set as the voting candidate.
� Compute the result based on the majority voting

schema over the parties inside the selected set.
Algorithm 3 describes the model selection procedure

in detail.

4.3 Experimental results
We chose DNN, CNN, LSTM, and GRU as the deep
learning structure of SAWANT and performed the
voting procedure to evaluate VNN. The SAWANT
pre-processed data contains 92 different attributes. We
extracted 73 unique subsets, each containing 72 features.
Table 8 explains the hyper parameters to test CTU-13
dataset.

We configured the deep learning structure in a way
to result both higher and lower accuracies, in which
the performance of DNN, CNN, GRU, and LSTM was
99%, 94%, 76%, and 70%, respectively. UMT was also
configured as 0.8 to select better models in the voting
procedure. Figure 10 illustrates the accuracy of each
model created by various extracted subsets and deep
learning architectures.

Figure 11 compares the accuracy of VNN with the
utilized deep learning structures (DNN, CNN, LSTM,
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Fig. 21 SAWANT architecture.

The results of the test dataset were compared with the
actual malicious rate values using “Pearson correlation
coefficient” function, described by Eq. (10),

rX,Y =
E[XY ]− E[X]E[Y ]√

E[X2]− E[X]2
√
E[Y 2]− E[Y ]2

=

n∑
i=1

xiyi − nx̄ȳ
√

n∑
i=1

x2
i − nx̄2

√
n∑
i=1

y2
i − nȳ2

(10)

where X and Y were two different variable sets.
Definition 2 Let X and Y be two different data

series. X and Y are positively correlated (r = 1), and
∀xi ∈ X, yi ∈ Y yi = αxi + β,

where α and β are two arbitrary numbers.

4.2 Voting procedure

As described in the previous section, a ranking
mechanism is defined in order to select a subset of
more probable models to achieve more accurate results
in the voting procedure. The more decisive models
were selected in the classification environment (like
Case Study 1 with “malicious” and “benign” classes),
the more likely to have more accuracy. However,

the

main challenge of SAWANT is its predicted malicious
rate which is numerical (not categorical). In fact,
the SAWANT predicted results were not equal to

the

actual values, meaning finding more decisive models
impossible. Therefore, the aforementioned majority
voting procedure explained in Section 3.1 is not practical

here. As a result, we developed a new heuristic
procedure to rank and select better models for any
arbitrary test case as t.
• Normalize the accuracy of all the models according

to Eq. 2 and remove less accurate models based on UMT.
• Compute the sum of Pearson correlation coefficient

(r) of each predicted model with all the others.
• Sort the models based on the computed value and

remove the last 50% models.
• For each two remaining predicted sets i and j:
– Compute α as the Pearson correlation coefficient

of Si and Sj (r(Si, Sj)).
– Remove t from both Si, and Sj and compute β

as the Pearson correlation coefficient of the two sets
(r(Si − {t}, Sj − {t})).

– Compare the Pearson correlation coefficient
calculated from the above steps.

– mark Si and Sj are similar for test case t if α is
greater than β.
• Put similar models into a single set.
• Return the largest set as the voting candidate.
• Compute the result based on the majority voting

schema over the parties inside the selected set.
Algorithm 3 describes the model selection procedure

in detail.

Algorithm 3 SAWANT best model selection procedure
input1: Γ = {γ1, γ2, … , γn} //predicted malicous rates set

where γi = {pmri1, pmri2, … , pmrim }
          //predicted malicous rates of m test cases 
input2: Z = {ζ1, ζ2, … , ζn} //accuracy of the models 
input3: λ //unsatisfied model threshold
input4: pivot
output: A set of k best γ of the testcase pivot

1 //initializing the voting parameters
2 E ← 0 //total sum of uncertainty factors
3 ∆ ← {} //inittializing the output
4 M ← {} //inittializing the set of satisfied models 
5 for each ζi∈Z

ni ← normalize(ζi)
if ni > λ

//adding corresponding uncertainty factor to M、  

6 
7 
8 
9 

10 
M ← add(γi) 

end
11 end
12  for each γi, γj ∈ M
13    δγi ← δγi + r(γi, γj) //r is correlation coefficient
14 end
15 ∆

 sorted ← sort(∆)
16 Γ ′ ← remain the top 50% Γ based on ∆   sorted 
17 for each γi, γj ∈ Γ ′

18
19
20 
21 
22 
23 
24

r← r(γi, γj)
r′← r(γi − {pmripivot }, γj − {pmrjpivot})
if r is greater than r′ 

θi, j ← 1
else

θi, j ← 0
end

25 end
26  partition Γ ′ based on Θ
27 return the largest partition as the voting candidate■  

Table 8 Hyper parameters used to test CTU-13.
Hyper parameter Value

Train size 10%
Test size 90%
Dropout 0.2

Batch input On
Activation function Relu

Number of CNN layers 4
Number of LSTM layers 2
Number of DNN layers 2
Number of GRU layers 2

Number of input attributes 72
Number of input subsets 73

Output Malicious rate
UMT 0.8
TU 0.5

and GRU). VNN decreased false alarms significantly,
especially for LSTM and DNN methods, where 272 507
out of 668 597 errors (around 40%) and 12 418 out of
17 112 errors (about 72%) were corrected, respectively.
Table 9 expresses the detail of error correction over CTU-
13 dataset.
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Fig. 10 Model accuracy reported by the system during the
training phase.

Tables 10 and 11 also summarized VNN performance
over DNN as the best suited model in our case study.



Mohammad Hashem Haghighat et al.: Intrusion Detection System Using Voting-Based Neural Network 493

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Voting

All features

CNNDNN GRULSTM

Ac
cu
ra
cy

Fig. 11 System accuracy: voting-based vs. normal-based
using CTU-13 dataset.

Table 9 CTU-13 error correction.

Method Number of
errors

Number of
corrections

Correction
rate (%)

DNN 17 112 12 418 72.57
CNN 76 523 8251 10.78

LSTM 668 597 272 507 40.74
GRU 630 541 90 902 14.42

Table 10 CTU-13 confusion matrix.
Predicted

Normal Malicious Total

Actual
Normal 2 103 058 254 2 103 312

Malicious 767 145 921 146 688
Total 2 103 825 146 175 2 250 000

Table 11 Measurement result of CTU-13 study.
FPR FNR Accuracy Precision Recall F_Score

0.0017 0.0004 0.9995 0.9999 0.9996 0.9998

5 Conclusion

This paper presents a novel voting-based deep learning
framework, called VNN, to correct false alarms reported
by other deep learning structures and increase the system
performance. The key novelty of VNN was the ability
to create several models using various kinds of deep
learning structures and different aspects of data, then
choosing the best models to achieve higher accuracy.

Experimental results revealed that VNN was highly
effective for any kinds of deep learning structures with
various hyper parameters where it corrected false labels
interestingly up to 75%.

Although VNN provides high accurate prediction,
creating several models is a really time-consuming
procedure. In fact, 190 different models were created
for each binary and 5-class classification problems over
KDDCUP’99 dataset. 292 models were also generated

on CTU-13. In the future, we plan to overcome this issue
by developing a heuristic function, in order to ignore
generating less effective models in advance. In addition,
giving feedback from the candidates and utilizing the
results to create more robust deep learning architecture
are another direction to work in the future. Deeper
analysis on different attack types (e.g., those provided
in KDDCUP’99—DoS, R2L, U2R, and probing) will
give us a suitable feedback to create more robust models.
The proposed method missed U2R and probing attacks,
however the number of samples were too small. But we
plan to address this issue in the future.
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