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ABSTRACT 
Multidimensional Packet Classification is one of the most 
critical functions for network security devices such as 
firewalls and intrusion detection systems. Due to the 
worst case bounds found in computational geometry, most 
of the existing algorithms for multidimensional packet 
classification trade memory usage for search speed in 
order to achieve better overall performance. Although 
some of these algorithms are proved to be efficient on 
small number of classification rules, they scale poorly in 
either search time or memory usage when the number of 
rules grows. In this paper, we propose an efficient hybrid 
algorithm named sBits, which combines the advantages of 
two best existing algorithms, RFC and HiCuts. Compared 
to RFC and HiCuts, sBits uses 10 to 400 times less 
memory storage and 30% to 50% less time in worst case 
search. sBits also reduces the heavy computational burden 
in pre-processing. Its full update time is 10 to 100 times 
less than RFC and HiCuts. 
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1.  Introduction 
Keeping network operation and information exchange 
secure and efficient is highly desired in today’s Internet 
communication. A variety of security services such as 
access control in firewalls and protocol analysis in IDS 
require a discrimination of packets based on the multiple 
fields of packet headers, which is called multidimensional 
packet classification. 

Although there has been quite a few papers published 
on multidimensional packet classification [1, 3, 4, 5, 6, 7, 8, 
9, 11, 13, 20] in recent years, researchers in both academic 
and industry continue to seek better solutions due to the 
ever increasing importance and requirements in today’s 
high performance policy enforcing networks. The need 
for novel algorithms comes: 

a. Hardware Limits: Currently, to obtain multi-Gbps 
multidimensional packet classification rate, there are only 
a few ASIC/FPGA products. Although hardware-based 
devices offer a good solution for application with small 
number of rules, such as those using TCAM, they 
consume too much electric power and board area for large 
rule sets [8]. In addition, hardware solutions usually mean 
higher cost for R&D and production, and lower flexibility 
in term of modification or upgrade. Therefore, it is worth 

looking for alternative solutions to overcome the restrains 
in hardware solutions. 

b. Performance Limits: Due to the worst case bounds 
in computational geometry, most multidimensional packet 
classification algorithms trade memory usage for search 
speed in order to achieve better overall performance. 
However, even the best reported algorithms [1, 7] fail to 
provide ideal performance when tested on some real-life 
rule sets with large number of rules [19].  

In this paper, we propose an efficient packet 
classification algorithm that outperforms the best 
published results in recent literatures [1, 3, 4, 7]. Main 
contribution of this paper includes: 

a. New Methodology for Algorithm Analysis: 
Different from the previous descriptional and dissectional 
algorithm comparison and categorization in [16, 17, 19], 
we proposed a refined generic framework to analyze 
existing algorithms. Such an analysis helps to find more 
efficient hybrid algorithms that leverage on the 
advantages of other popular algorithms to reach much 
higher level of performance. 

b. An Efficient Hybrid Algorithm: In this paper, we 
introduce an efficient hybrid algorithm named Shifting 
Bits, sBits in short. The overall data structure constructed 
by sBits is a decision tree similar to those of HiCuts [1] 
and its variations [7, 14]. While at each internal node an 
indexing mechanism is adopted, which can be viewed as 
an extension of the lookup tables used in RFC [3] and its 
variation [4].  

c. Comprehensive Experiments and Evaluations: 
Software implementation of sBits and other popular 
algorithms [1, 3, 4, 7] has been developed with our best 
effort to make sure the fairness of our result comparison 
and analysis in experimental study. Thorough 
comparisons are done with several real-life rule sets, as 
well as synthetic ones. Experimental results include worst 
case search time, overall memory usage, full update time, 
and scalability on large rule sets. 
 The rest of the paper is organized as follows. Section 
2 states the problem of packet classification; Section 3 
analyzes prior work; Section 4 describes the proposed 
algorithm sBits; Section 5 illustrates the experimental 
results; as a summary, Section 6 states our conclusions. 
 
2.  Problem Definition and Complexity 
Multidimensional packet classification classifies a packet 
based on multiple fields of the packet header. 
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Mathematically, a packet P is said to match a particular 
rule R, if the ith field of the header of P satisfies the 
regular expression R[i], for all 0 i F≤ < . If a packet P 
matches multiple rules, the matching rule with the highest 
priority is returned. 

Multidimensional packet classification can be viewed 
as a point location problem in computational geometry, 
which is inherently hard to solve [16]. It has been proved 
that the best bounds for point location in N non-
overlapping F-dimensional hyper-rectangles are ( )O N  
storage space with 1(log )FO N− search time, or (log )O N  
search time with ( )FO N storage space [2]. However, in 
multidimensional packet classification problems, rules 
(hyper-rectangles in the multidimensional search space) 
may overlap, making classification at least as hard as 
point location. Moreover, the large constant hidden in the 

( )O ⋅  notation also impacts actual performance severely in 
practical implementation [19]. 

Although the theoretical bounds make it impossible 
to design a single algorithm that performs well for all 
cases, fortunately, real-life rule sets have some inherent 
characteristics that can be exploited to reduce the 
complexity in both search time and storage space [19]. 
There have been various statistics and characteristics of 
real-life rule sets presented and also exploited in the 
proposed algorithms [3, 8, 9, 17, 18]. Some algorithms like 
RFC and HiCuts achieve promising results in comparison 
to prior schemes. Other research, such as [11, 14], make 
efforts to take more factors (e.g. word width, adjustable 
constants) into consideration so as to give more precise 
theoretical bounds. Research has also been carried out in 
introducing traffic flow statistics in addition to rule 
statistics for using more heuristics that help in 
classification [13, 15]. All these studies provide us with 
thorough understanding of the existing multi-dimensional 
packet classification algorithms and hence motivate our 
research in this paper. 
 
3.  Analysis of Prior Work 
3.1 The Framework for Algorithm Analysis 
Surveys and taxonomies of prior work on packet 
classification [16, 17] break the design space of existing 
algorithms based on the high-level approach, such as 
exhaustive search, geometric tries and heuristic 
algorithms. This kind of categorization is helpful for 
algorithm description, because algorithms fall in the same 
category have similar data structures. Different from such 
a descriptional taxonomy, a dissectional one is also 
suggested that categorised packet classification 
algorithms according to their differences in space 
decomposition schemes and classifier data structures [19]. 
Such a dissectional taxonomy unveils the cohering 
relation lying in different algorithms. To balance the 
advantages of both methodologies, in this paper, we adopt 
a Divide-and-Conquer strategy in the study of existing 
algorithms. Divide means the partition of the search space 
and its corresponding rule set, while Conquer refers to the 

packet searching strategies. Two generic procedures can 
be deduced from most existing algorithms: 

a. Partition the Search Space: In this procedure, the 
search space is partitioned into certain number of sub-
spaces. Each sub-space is allocated with a subset of rules 
to create a new but scaled down search problem. By 
recursively partition the search spaces, as well as the 
corresponding rule sets, the complexity of the original 
classification problem is reduced, so the search result can 
be obtained by solving a series of sub-problems instead of 
doing exhaustive search in the entire search space with all 
rules. 

b. Search the Packet: This procedure traverses the 
data-structure constructed by a particular algorithm to 
obtain the classification result. More specifically, packet 
search answers the questions of how to locate a point into 
its corresponding sub-space at each stage and how to go 
from current search stage to the next. Data structures of 
different classifiers, such as decision trees and lookup 
tables, represent different techniques adopted by each 
algorithm in the search procedure. 
 The following part of this section analyzes how the 
different implementation of these two procedures in 
existing packet classification algorithms. 
 
3.2 Space Partition 
There are two types of partition techniques adopted by 
existing algorithms: One uses geometric tries or trees 
(trie-based) while the other bases on rule projections 
(projection-based).  

Trie-based algorithms partition the search space into 
2w equal-sized sub-spaces at each stage, where w refers to 
the stride, determining the number of sub-spaces. More 
specifically, binary tries, adopted in [5, 6, 8], partition the 
search space into 2 sub-spaces (w=1) at each stage, while 
multi-bit tries partition the search space into 2w (w>1) 
sub-spaces. Decision trees in [1, 7, 11, 14] can be viewed 
as multi-bit tries with various stride in different level (w 
variable). Binary trie has at least 2(log | |)O U  in query 
time, where U denotes the entire search space (the 
Universe) and |U| is the full range covered by U, e.g. for 
the common 5-field search,  binary trie needs about 100 
memory accesses. Multi-bit tries improve the search time 
to 2(log | | / )O U w  but tends to require larger storage. 

Because trie-based algorithms implement uniform 
partitions, a single rule (specified by ranges) might be cut 
into fragments in multiple dimensions. There are two 
ways to allocate rules for sub-spaces: Range-to-prefix 
mapping for longest prefix matching and rule-duplication 
for range matching. For binary tries like Hierarchical Trie 
[16] and Grid-of-Trie [5], the sub-space at each node can 
be described by a prefix; hence the sub-space itself 
represents the longest matching prefix (rule). For multi-bit 
tries like decision trees in HiCuts and HyperCuts, each 
sub-space is allocated with a colliding rule set, i.e. all 
rules collide with the sub-space. To reduce the rule 
redundancy, G-filters allocate each sub-space with 
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different type of ruleset: cross set, fallback set and cover 
set [14]. 

Projection-based algorithms partition the search 
space according to the rule projection on each dimension. 
This technique is adopted by the algorithms proposed in 
[3, 4]. Projection-based methods have less redundancy in 
space partition because each segment is well cut to fit the 
rules. There is no need for further partition of each 
segment.  

It is relatively simple to allocate rules for algorithms 
using projection-based partition, because each segment 
(representing a sub-space) is fully covered by the 
projection of particular rules. Hence this set of rules is 
allocated to the sub-space. 
 
3.3 Packet Search 
Most algorithms partition the search space along a single 
dimension at each stage. Algorithms that simultaneously 
partition the search space in multiple dimensions [7, 14] 
can be viewed as a multi-step single-dimensional partition 
(because all the separating hyper-planes are parallel to the 
coordinate axes). Therefore, each algorithm should 
answer how to locate a point into its corresponding sub-
space along each dimension and how to link the 
sequential search stages going through multiple 
dimensions. 

Trie-based algorithms works well for packet search 
due to equal-sized partition. At each node, the 2w sub-
spaces are associated with a pointer index of 2w entries. 
These pointers connect the sequential nodes and lead the 
way for search. To locate the packet into its 
corresponding sub-space, trie-based algorithms need O(1) 
time at each node. 
It is relatively more complicated to locate a packet in 
projection-based partition. Because each segment may 
have different size, the search space is partitioned non-
uniformly. It requires 2(log )O N  query time to do a 
binary search along each dimension to locate the packet in 
the corresponding segment [4]. P. Gupta in [3] suggested 
an indexing table to store the rule segments IDs and 
achieved O(1) query time, but this scheme is hard to 
implement when index tables contain a very large number 
of entries, such as the IP address in IPv6.  

As a summary, Figure 1 shows the generic 
framework for categorization of existing packet 
classification algorithms. 
 
4.  The Proposed Algorithm 
We follow the generic procedures in designing the new 
algorithm. In this paper, we propose a novel algorithm 
which partitions the search space using a fixed stride 
decision tree and performs packet search with extended 
ID indexes. Due to the fixed-stride, the algorithm checks 
each w bits in the packet header at each node, so we call 
the proposed algorithm Shifting Bits, or sBits in short. 
 

 
Figure 1. Categorization of existing multi-dimensional packet 

classification algorithms. 
 
4.1 Space Partition with Decision Tree 
At each internal tree node, space partition can be applied 
on both single and multiple dimensions. Multi-
dimensional space partition is proved to be more effective 
both in worst case search speed and memory usage. sBits 
partitions the search space on the most discriminative 
dimensions, and the dimension selection mechanism is 
similar to HiCuts and HyperCuts [1, 7]. 

Trie-based partition uniformly divides the search 
space into 2w sub-spaces. A larger stride w, i.e. larger 
number of sub-spaces, can cut down the depth of the tree 
while need more increase the storage requirements. To 
ensure the worst case search time, we use a big stride w. 
In the implementation of sBits, we set w=4~8.  

In this section, we describe the space partition 
scheme by a 2-D sample rule set, which is shown in 
Figure 2. 

First, the search space is partitioned into 2w equal-
sized sub-spaces on each dimension. Each intersection of 
these sub-spaces is called a unit-space because it is the 
minimum unit can be discriminated in current stage. 
Figure 3 describes the equal-sized partition and the 
consequent unit-spaces respectively. 

Then, adjacent unit-spaces are aggregated if they 
contain the same colliding rule set along each partitioned 
dimension. Figure 4 and Figure 5 illustrate the space 
aggregation result for the 2-D example. 

Actually, after the aggregation step, the current 
search space is partitioned into sub-spaces with colliding 
rules and hence initiates new search problems. 

 
4.2 Packet Search with ID Index 
sBits recursively partitions the search space into sub-
spaces and constructs a decision tree to link each search 
space with its sub-spaces. The search of a packet P is to 
trace down the tree from root node to one of the leaf 
nodes. Thus, the construction of an appropriate data 
structure for fast packet location in its corresponding sub-
space becomes the next key issue in packet search. 
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Figure 2. A Sample Rule Set 
with six 2-D rules in the X-Y 
plane. Each rule appears to be 
a rectangle in the search space. 
R4 is overlapped by R1 and 
R3. 

 
Figure 3. Unit-Spaces. The 
search space (X-Y plane) is 
partitioned into 4x4=16 unit-
spaces; each has the same size 
of 2x2 squares in the X-Y 
plane. 
 

 
Figure 4. Aggregation of 
Unit-spaces. Along both X 
and Y dimensions, unit-space 
with the same rule projection 
are aggregated. 

Figure 5. Child Nodes. For 
example, child node C3 
corresponds to sub-space of 
{[100,111], [000,001]} 
associated with R3 and R4. 
 

 
Figure 6. Pointer Matrix. The 
4x4 pointers map each of the 
16 unit-spaces into one of the 
9 child nodes (C1~C9). For 
example, if a packet drops in 
the unit-space [U2, U4], then 
P24 will lead the way to C6 
for further search. 

Figure 7. ID Indexes. The 
2x4 space IDs map the 16 
unit-spaces into 9 child nodes. 
If one packet drops in the 
unit-space [U2, U4], then by 
computing (2-1)*3+3=6, we 
know that this packet belongs 
to child node C6. 

 
A direct way to link current search space with their 

sub-spaces is to build a pointer matrix; each pointer refers 
to a child node (see Figure 6). Assume that the search 
space is partitioned along d dimensions simultaneously. 
The pointer matrix at each internal node then requires 
O(2wd) storage, which precludes  the choice of larger 
stride w. Existing algorithms, such as [1, 7], cut down the 
size of index pointer by choosing modest w for each node. 
Instead, we solve this problem by using ID indexes (see 
Figure 7) rather than the pointer matrix.   

First we assigned each (aggregated) sub-space with a 
space ID. Then we create a 2w-entry ID index for each 
dimension to map unit-spaces into the sub-spaces of each 

child nodes. By carefully designing the data structure, we 
can fix the size of each node in order to save the child 
nodes in continuous memory with a constant increment 
(node size) in memory address. Hence the memory 
address of corresponding child node can be directly 
obtained using the space ID and the address offset of the 
first child node. Because the space complexity of each 
internal node is reduced from O(2wd) to O( *2wd ), a 
greedy choice of w then makes sense. 
 
4.3 Discussion 
As a summary, we discuss the ideas and methods in sBits 
on the following aspects: 

a. Stride: Fixed or Non-fixed? Because searching 
speed is the most important performance metric in high-
end products, large and fixed stride ensures the worst case 
search time. Algorithms like HiCuts and HyperCuts can 
not use a large w, because the pointer matrix they use for 
packet search requires very large memory space 
accordingly. In addition, searching for an optimized w in 
HiCuts and HyperCuts is time-consuming. A fixed stride 
will also significantly reduce the pre-processing time. 

b. Partition: Single-dimensional or 
Multidimensional? At each internal node, sBits suggest to 
partition the search space in multiple dimensions. 
Although a multi-step single dimensional partition seems 
to be able to perform more delicate optimization for 
partitions along each dimension, heuristics required for 
such optimization in all cases are hard to achieve. 
Moreover, even if such heuristics were obtained, they 
might be too complicated to be used due to the heavy 
computing burden. Thus sBits selects the most f 
discriminative dimensions to partition. 

c. Aggregation: Adjacent or Non-adjacent? Non-
adjacent unit-spaces may have same rules colliding with 
them, and hence according to projection-based partition, 
all these unit-spaces are assigned with same space ID. 
However, different from the exhaustive partition based on 
rule projection, the aggregated sub-spaces will be further 
partitioned. So the child nodes cannot handle non-
adjacent sub-spaces. Even if the non-adjacent spaces can 
be converted to adjacent space by filling up the empty 
space with the same colliding rules, aggregating non-
adjacent unit-spaces requires 2( *2 )wO N  time for each 
dimension, while adjacent aggregation needs only 

( *2 )wO N  time.  
The original intention of our research is to combine 

the advantages of existing best algorithms. sBits can be 
viewed as a hybrid algorithm in terms of space partition 
and packet search. Globally, sBits partitions the search 
space with a decision tree structure [1, 7, 14]. Locally, at 
each internal node, the search step is implemented by 
table lookup [3, 4] using ID indexes.  
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5.  Experimental Results 
5.1 Rule Sets 
We evaluate sBits both on real-life firewall and core 
router rule sets as well as on synthetic rule sets. The real-
life rule sets are obtained from enterprise networks and 
major ISPs. Firewall rule sets are named FW1, FW2, 
FW3; Core router rule sets are named CR1, CR2, CR3, 
CR4; Synthetic rule set is SYN1, SYN2… SYN20. The 
largest real-life rule set (CR4) contains 1945 rules, and 
the largest synthetic rule set contains 2000 rules. All rules 
are 5-dimensional with 32-bit source and destination IP 
addresses represented as prefixes, 16-bit source and 
destination port numbers represented as ranges, and an 8-
bit protocol.  
 
5.2 Metrics 
All the algorithms in our experiment are written in C 
codes and running in a PC with Pentium4 CPU. To test 
the performance of all the algorithms on both real-life and 
synthetic rule sets, we examine, for each rule set, the 
number of memory accesses as the search time (Time) 
and the amount of memory usage (Space) for the whole 
data structure built by the algorithms. Different from [7, 8] 
(where one memory access is a single 32-bit word access) 
one memory access here refers to reading a certain 
number (1~8) of continuous memory words. This is 
because today’s most DRAM support burst mode reading, 
i.e. the time spent in reading continuous memory is very 
close to that of reading a single word.  
 
5.3 Performance on Real-life Rule Sets 
We first compare sBits with the algorithms of the best 
reported performance, including HiCuts, HyperCuts, RFC 
and HSM, on real-life rule sets. Due to patent issues, we 
were not able to obtain source codes from the authors and 
thus the codes of these algorithms are all written by 
ourselves. We make our best effort to make sure the 
fairness of our result analysis. Experimental results show 
that our codes achieved nearly the same performance 
compared to the experimental results reported in [7]. 

In comparison with algorithms using Trie-based 
partition, Table 1 and Table 2 compare sBits with HiCuts 
& HyperCuts respectively on spatial and temporal 
performance. We can see from these tables that, for all 
real-life rule sets, sBits achieves at least an order of 
improvement in memory usage, as well as a superior 
worst case query time. 

To compare with the algorithms using Projection-
based partition, Table 3 shows the memory usage of RFC, 
HSM and sBits. For the largest real-life rule set CR4, 
sBits uses 23 times less memory than HSM and 37 times 
less than RFC. Although the search speed of RFC and 
HSM are 50%~100% faster that of sBits, they require 
parallel searches in different fields, while sBits can be 
fully pipelined to implement for fast search. 

Table 4 shows the full update time of typical heuristic 
algorithms in comparison with that of sBits. We see that 
even with the largest rule sets, sBits uses less than 1 

second to construct the decision tree. In comparison, both 
RFC and HiCuts need tens of seconds in generating the 
whole data structure for search. 
 
5.4 Performance on Synthetic Rule Sets 
In order to compare their stability with large number of 
rules, we test sBits and HyperCuts on a series of synthetic 
rule sets. Although results on real-life rule sets are more 
persuasive, this task is made harder because the rule sets 
available to us is quite limited. Synthetic rule sets have 
size from 100 to 2000 and are named SYN# according to 
the number of rules (SYN1 has 100 rules and SYN20 has 
2000 rules). We create these rule sets in the same way as 
[7], and all of these rules have identical distribution at 
each field.  

Memory usage of HyperCuts and sBits on each 
synthetic rule set is depicted sequentially in Figure 8. We 
see that both HyperCuts and sBits perform stable with the 
number of rules less than 1700. But when the number of 
rules becomes larger (than 1700), the memory usage of 
HyperCuts has a sharp increase in comparison with that of 
sBits. 

Similar results are obtained when we test other 
algorithms on these synthetic rule sets. sBits is proved to 
be more stable than all other algorithms we have tested. 
Such a conclusion is also supported by the results in Table 
1 and Table 2 with real-life rule sets. 
 

Table 1. Memory usage comparison: 
sBits and HiCuts & HyperCuts (Unit: 32-bit word) 

 No. Rules HiCuts HyperCuts sBits 
FW1 68 5,443 35,401 420 
FW2 136 10,779 69,782 924 
FW3 340 24,645 172,932 2,331 
CR1 500 29,409 89,005 3,612 
CR2 1000 979,736 871,541 28,287 
CR3 1530 13,606,858 480,225 29,204 
CR4 1945 5,928,724 672,442 43,183 

 
Table 2. Worst case search time comparison: 

sBits vs. HiCuts/HyperCuts. (Unit: Memory Access) 
 No. Rules HiCuts HyperCuts sBits 

FW1 68 19 16 15 
FW2 136 20 16 15 
FW3 340 20 16 15 
CR1 500 24 17 16 
CR2 1000 30 17 16 
CR3 1530 36 18 16 
CR4 1945 34 18 17 

 
Table 3. Memory usage comparison: 

sBits vs. RFC & HSM (Unit: 32-bit word) 
 No. Rules RFC HSM sBits 

FW1 68 200,652 10,223 420 
FW2 136 209,602 27,657 924 
FW3 340 296,382 65,581 2,331 
CR1 500 264,987 29,814 3,612 
CR2 1000 530,539 230,716 28,287 
CR3 1530 863,476 486,857 29,204 
CR4 1945 1,580,005 989,161 43,183 
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Table 4. Update time comparison: 
sBits vs. RFC & HiCuts (Unit: milliseconds) 

 No. Rules RFC HiCuts sBits 
FW1 68 1,492 73 1 
FW2 136 1,762 211 22 
FW3 340 3,185 465 40 
CR1 500 4,597 409 56 
CR2 1000 12,929 7661 261 
CR3 1530 37,754 22,522 281 
CR4 1945 67,087 21,248 350 

 

Figure 8. Stability: sBits vs. HyperCuts. (on synthetic rule sets 
SYN1, SYN2, …, SYN20) 

 
6.  Conclusion 
Recall the incisive conclusion made by Pankaj Gupta in [1] 
that: “The theoretical bounds tell us that it is not possible 
to arrive at a practical worst case solution. Fortunately, 
we don't have to; No single algorithm will perform well 
for all cases. Hence a hybrid scheme might be able to 
combine the advantages of several different approaches.”  
In this paper, we first suggest two generic procedures for 
packet classification problem, and then according to these 
two procedures we make a dissectional analysis of the 
existing algorithms to find their cohering relations. The 
algorithm sBits proposed in this paper is a hybrid scheme 
which uses a fixed-stride decision tree to partition the 
search space, along with an ID indexing data structure for 
packet search. Experimental results shows that sBits 
outperforms the best results of existing algorithms.  

Future work can be conducted to introduce network 
traffic statistics into packet classification to dynamically 
optimize the decision tree structure and hence improve the 
average search speed. Future work also includes the 
implementation of sBits on new generation network 
processors. The codes we wrote for sBits, HiCuts, 
HyperCuts, RFC and HSM will be publicly available to 
encourage experimentation with classification algorithms. 
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