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ABSTRACT 
Load scheduling is critical to the performance of parallel 
processing network devices. With the rapid development 
of multi-core technology, efficient load scheduling 
scheme optimized for multi-core network processors 
becomes increasingly important and motivates intensive 
research today. In this paper, we study the relationship 
between two canonical scheduling schemes, packet-level 
scheduler and flow-level scheduler, and find out that 
scheduling at flow-slice level can further exploit 
parallelism while preserving per-flow packet-order. An 
adaptive load scheduling scheme at flow-slice level is 
proposed and evaluated.  The experiment results show 
that this scheme can achieve better balance of workload 
than that of flow-level scheme, while keeping high cache 
utilization rate in typical system configurations. 
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1.  Introduction 
 
With the rapid increase of network bandwidth, packet 
processing systems are facing more and more challenges. 
The biggest challenge is lack of computing resource. One 
solution to this challenge is parallel processing using 
multi-core network processor (NP) which employs 
multiple processing engines (PE) to handle network 
traffic in parallel in order to achieve both high 
performance and good scalability. Load scheduler is the 
key and fundamental module in parallel packet processing 
systems.  
 
Another trend of packet processing system is that most 
applications are built within a common framework, which 
is called flow-based packet processing. Under different 
definitions of flow, applications including stateful 
inspection firewall, intrusion detection/prevention system, 
IPSec VPN, and flow-aware router can be regarded as 
flow-based applications. Basic operations of flow-based 
packet processing include flow classification, flow state 
lookup and updating. Since packets belonging to the same 
flow share the per-flow state maintained by the 
application, concurrently accessing and updating these 
shared flow-states by multiple processing engines can 

incur significant overhead due to mutual exclusion. Thus, 
load scheduler aware of the characteristics of flow-based 
packet processing is very essential to such multi-core 
packet processing systems. Such systems can achieve 
good performance only if the load scheduler distributes 
the traffic evenly among multiple processing engines.   
 
There are two types of load scheduling scheme in the 
context of packet processing systems:  

 Packet-level Scheduler, which dispatches each packet 
to processing engine independently.  
 Flow-level Scheduler, which dispatches packets 
belonging to the same flow to a specific processing 
engine. 

The advantage of packet-level scheduling scheme is that it 
can achieve a finer-grain parallelism. But it requires 
additional techniques to preserve packet order, which has 
great impact on system performance. When consecutive 
packets in a single flow are dispatched to different 
processing engines, packet-level scheduling scheme will 
incur significant overhead, which will greatly decrease 
system performance. One reason is that access to flow-
state must be synchronized by mutual exclusion 
techniques such as locking. Another reason is that packet-
level scheduling could lower the cache hit rate since each 
processing engine has its local cache [1].  
 
Comparing to packet-level scheduling scheme, flow-level 
scheduling scheme can avoid the overhead incurred by 
synchronization and achieve high cache hit rate. 
However, it has coarse-grain parallelism in comparison to 
packet-level scheduling scheme, and cannot fully use all 
PEs’ resource. In addition, it is hard for a flow-level 
scheduling scheme to achieve ideal work-load balance 
among multiple PEs by predicting the flow behavior, 
because flow characteristics, such as the size and the 
arriving pattern, are statistically various. 
 
In this paper, we propose an adaptive scheduling scheme 
that distributes load at a sub-flow level (flow-slice). This 
scheme can achieve good balance of workload and high 
system throughput. Main contributions of this paper are: 

 Scheduling Granularity Comparison: Backbone 
traces are used to compare the difference of scheduling 
at different granularity. Experiment results show that 
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scheduling at flow-slice level can exploit finer 
parallelism than flow-level. 
 Adaptive Scheduling Schemes: We propose an 
adaptive load scheduling scheme which can exploit 
finer parallelism than flow-level scheduling scheme 
while still preserving per-flow packet-order. In shared 
cache multi-core systems, cache hit rate using our flow-
slice level scheduling scheme is almost the same as that 
using flow-level scheduling scheme. Even in distributed 
cache systems, the decrease of cache hit rate is small 
and can be compensated with a little increase of cache 
size. 
 Cycle-driven Performance Simulation: We evaluate 
different load scheduling schemes with a cycle-driven 
simulator using real-life backbone traces. The 
experiment results show that our scheme can reduce the 
packet loss rate to almost zero using relatively small 
buffer size, while keeping high efficiency of cache-
utilization. 

 
The rest of this paper is organized as follows. Section 2 
introduces related work. Section 3 explains the load 
scheduling problem and describes the system model. 
Section 4 describes the proposed adaptive scheduling 
scheme at flow-slice level. Section 5 provides the 
simulation results and performance evaluation. Finally, 
we come to our conclusions and discussion on the future 
work in section 6. 
 
2.  Related Works 
 
Hash-based load scheduling scheme is a canonical flow-
level scheduling scheme which incurs low overhead. Z. 
Cao et al. [2] evaluate the performance of different hash 
functions used in Internet traffic splitting, and find out 
that hashing using a 16-bit CRC over flow identifier gives 
good load balancing performance. D.G. Thaler et al. [3] 
propose another hash mapping scheme, Highest Random 
Weight (HRW), in the context of multi-server Web server 
systems. The main advantage of HRW over other hash 
schemes is that it can achieve fault tolerance with 
minimum disruption, which means that a minimum 
number of requests are remapped during server failures.  
 
Since these two hash-based schemes only provide load 
balancing over the hash key space, they are vulnerable to 
traffic locality in Internet traffic [4]. Under the 
assumption of Zipf-like flow popularity distribution, W. 
Shi et al. [5] prove that hash-based schemes using the 
flow space as input space are not able to achieve load 
balancing. Accordingly, L. Kencl et al. [4] proposed an 
adaptive scheduling scheme for parallel packet 
forwarding system based on HRW. The scheme is an 
adaptive extension to the HRW scheme in order to cope 
with biased traffic patterns. The adaptor evaluates 
processor utilization periodically and compares it to a pair 
of thresholds to determine whether the system is 

unbalanced. If necessary, the adaptation is invoked to 
adjust the weights of every processing engine used in 
HRW. Another adaptive scheduling scheme [5] classifies 
flows into two categories: the aggressive flows and the 
normal flows, and applies different scheduling policies to 
the two classes of flows. This scheme exploits flow-level 
traffic characteristic to detect aggressiveness using a 
small number of packets in a flow. The problem of this 
scheme is that it still schedules packets at flow-level. It 
shifts only aggressive flows when the system is not 
balance to a certain extent, in order to minimize the 
adaptation disruption to the cache of the processing 
engines. But when some aggressive flows require 
processing capacity that exceeds what one PE can provide, 
shifting flows from one PE to another will not solve the 
problem of imbalance,. 
 
These adaptive schemes [4][5] may cause packet 
reordering when the adaptation is invoked. When flows 
are shifted from an overloaded processing engine to a 
low-loaded one as the result of the adaptation, the original 
packet order may not be preserved. The occurrence of 
packet reordering, which can severely affect end-to-end 
TCP performance, should be avoided in packet 
forwarding systems. S. Kandula et al. [6] focuses on the 
traffic splitting problem in multipath routing. It exploits a 
simple observation that if the time between two 
successive packets is larger than the maximum delay 
difference between the parallel paths, the second packets 
can be routed to any paths without causing packet 
reordering.  
 
The type of application running on processing engines is 
considered to have great impact on choosing or designing 
proper load scheduling schemes. In this paper, we take 
application characteristics, i.e. flow-based packet 
processing, into consideration when designing load 
scheduling scheme. Based on the similar observation of S. 
Kandula et al., we propose an adaptive scheduling scheme 
at flow-slice level that outperforms existing flow-level 
scheduling schemes while avoiding packet reordering 
caused by packet-level schedulers. 
 
3.  Problem Statement 
 
3.1. System Model 
 
There are N PEs to process packets dispatched from the 
traffic scheduler in typical multi-core network processor 
system. A packet destined to PEi is appended to the input 
queue of PEi, where 1 ≤i ≤ N. All these input queues share 
a fixed size of memory, which means that the length of an 
input queue is between zero and the buffer size B, and the 
limitation of a queue's length depends on the length of 
other queues.  
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We use Pi to denote the processing capacity of every PE, 
μi to denote the utilization rate of PEi. By λi we denote the 
packet arrival rate at PEi, which is the actual workload 
dispatched to PEi. The total processing capacity 

is . The aggregate arrival rate is 
1
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Figure 1. System model 
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this paper, we only consider the case that each PE is 
homogeneous, i.e. Pi =P/N, for 1 ≤i ≤ N. Also, we use hi 
to denote the cache hit rate of every PE. 
 
The application considered in this model is called flow-
based packet processing. Most of packet processing 
applications can be regarded as flow-based packet 
processing under different definition of flow. Flow-based 
packet processing applications access two types of data 
structures: packet data structures and flow state structures. 
Backbone traffic studies [7] show that packet data 
structures (including packet header, payload, etc.) exhibit 
little temporal locality. On the other hand, flow state 
structures (e.g. a hash table used for flow classification, 
etc.) exhibit considerable temporal locality [8].  The 
temporal locality of flow state in flow-based processing 
application is the most important characteristic that must 
be taken into consideration when designing the 
scheduling scheme, since the efficient of cache utilization 
for flow state structures has a great impact on the 
throughput of the application.  
 
Therefore, two performance metrics are mainly concerned 
in our model: system’s utilization rate and cache hit rate. 
These two metrics determine the throughput of the packet 
processing system. 
 
3.2. Scheduling Objectives 
 
The goals of load scheduling scheme for network systems 
are similar [2]. Firstly, the latency introduced in splitting 
the traffic must be strictly limited. With respect to flow-
based packet process systems, packet-level traffic 
scheduling schemes may incur significant overhead 
induced by synchronized access to flow-state information. 
Therefore, flow-level traffic scheduling schemes are more 
suitable for flow-based packet processing systems 
comparing to packet-level scheduling schemes.   
 
Secondly, because balance of workload is crucial for the 
system to achieve its full processing potential, the 
proposed scheduling scheme should minimize the 
imbalance of traffic. The responsiveness to load 
imbalance determines the system’s utilization rate. 
 
In addition to performance guarantee, a load scheduler for 
packet processing among multi-core NPs should possess 

the following properties:  
 Per-flow Packet Order Preservation: The original 
packet order should be preserved, when packets 
belonging to one flow are dispatched to several PEs 
 High Cache Hit Rate: The cache hit rate on a PE is 
mainly determined by the temporal locality in traffic 
dispatched to it. The cache hit rate can greatly affect the 
throughput of the system.  

 
3.3. Source of Imbalance 
 
The disadvantage of flow-level scheme is that under most 
circumstances it may not distribute traffic evenly. The 
most commonly used flow-level scheme is hash-based 
traffic scheduling scheme. The hash-based load scheduler 
maps the incoming flows onto each PE. Flow identifier vi 
consists of a set of unvarying fields in packet header of a 
particular flow. The hash-based scheme uses a function H 
that maps vi into the set of PE number. That is  

H (vi) → {1, 2, 3, ..., N}                 (1) 
A typical example of a flow identifier would be the 
traditional 5-tuple, which is the combination of source 
address (SA), destination address (DA), source port (SP), 
destination port (DP), and protocol type (PT). In this 
paper, we use the 5-tuple to define a flow, and we use 
flow bundle to refer to flows that have the same hash 
value.        
There are two sources of load imbalance in flow-level 
schemes: 

 Coarse-granularity: Flow-level scheduler restricts the 
available parallelism to the number of active flows. 
Thus, the size and randomness of input set to hash 
function is limited, which makes it difficult for a hash 
function to generate random outputs. 
 Heterogeneous Unit of Scheduling: A hash-based 
flow-level scheduler dispatches flows as the unit of 
workload. Flow size affects the processing time. 
Because of the long-tailed distribution of flow size [10, 
11], hash-based flow-level scheduler may not distribute 
workload evenly, even if hash function generates 

Table 1. Experiment Dataset 

Trace Packet/second Bandwidth (Mb/s) Active Connection (conn/s) New Connections (conn/s) 
Abilene-III 225k 2150 617k 9960 
CENIC-I 72k 498 115k 1076 
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random outputs. 

 
Figure 2. Scheduling at flow-slice level 

 
4. Scheduling Scheme at Flow-Slice    
      Level
 
The flow-level scheduling scheme increases temporal 
locality of flow state accessed by each PE, which 
consequently increases the cache hit rate. Its main 
disadvantage is that it may not distribute workload 
evenly. Scheduling schemes should be designed to 
achieve better balance of workload than the flow-level 
scheduling scheme while keeping high cache rate high. 
The scheme proposed in this paper can achieve this. 
 
4.1 Scheduling at Flow-slice Level 
 
Consider the scenario in Figure 2, where a series of 
packets arriving at the scheduler. Given two consecutive 
packets in a flow, P1 and P2, if P2 reaches the scheduler 
after P1 leaves the PE, the scheduler can distribute P2 and 
the packets after P2 to any PE without any possibility of 
reordering. In our model, we define flow-slice as 
consecutive packets in a flow the inter-arrival time 
between which is not larger than maximum processing 
latency (MPL) of PE.  
 
Use Ti to denote the arrival time of packet i in a flow. 
Formula (2) is sufficient to determine the end of a flow 
slice. 

1 (1 ) (1 )i i
i i i

B BNT T
P Pμ μ+ − > =

− −
                      (2) 

Recall that B is the buffer size in packets, μi is the 
utilization rate of PEi, and Pi is processing capacity of PEi.  
 
4.2. Observation  
 
Backbone traffic traces are used to observe the property 
of flow-slice in this section. The dataset used in this paper 
consists of backbone packet traces from NLANR PMA 
[9], collected at the OC192c Packet-over-SONET link 
from Internet2's Indianapolis Abilene router node (the 
Abilene-III trace) and the 10 Gb CENIC HPR backbone 
link (the CENIC-I trace) respectively. Table 1 
summarizes our dataset. 

 
S. Kandula et al. [6] point out that the main origin of 
flow-slice is the burstiness of TCP at RTT and sub-RTT 
scales, which is caused by ACK compression, slow-start, 
and other factors [10][11]. But in our application, the 
maximum processing latency is typically several 
microseconds, much smaller than a RTT. And we also 
find out that flow-slices exist not only in TCP traffic, but 
also in non-TCP traffic. Figure 3 shows that the 
proportion of flow-slice number to flow number in TCP 
traffic differs little from that in non-TCP traffic, when 
MPL varies from 1ms to 10ms. 
 
In backbone network node, the number of active 
connection is the same order of magnitude as the number 
of packet per second (Table 1). We think another origin of 
flow-slice is the mixing of different flows. 
 
The average flow length in IPLS-trace is 27.56, i.e. the 
proportion of number of packets to number of flows is 
27.56. Figure 3 shows that the proportion of the number 
of flow-slices to the number of flows is larger than 10, 
which means there are more than 10 slices per flow in 
average, so scheduling at flow-slice level greatly finer the 
granularity of load splitting in comparison to scheduling 
at flow level. 
 
Figure 4 and 5 shows the popularity of both flows and 
flow-slices in different size. It is showed that scheduling 
at flow-slice level also makes the size distribution of the 
splitting unit less skewed than scheduling at flow level. 
 
4.3. An Adaptive Scheduling Scheme at Flow-slice 
         Level 
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We propose an adaptive scheduling scheme that 
distributes traffic at flow-slice level. The scheduling 
scheme proposed can be described using pseudo code in 
Figure 6. The scheduler uses a hash table to map flow-
slices to PEs. Each table entry contains last arrival time 
and last PE ID.  
 
In our model, there are N parallel PEs, and the aggregate 
packet arrival rate is λ. On the assumption of ideally 
balanced workload, the arrival rate at each PE is λ/N. The 
maximum processing latency (MPL) is (B⋅N)/λ. For IPLS-
trace, λ = 225kpps. A typical network process system, N 
is around 8 to 32 (we choose N = 16), and B ranges from 
50 to 200 packets. Thus, MPL ranges from 3.55ms to 
14.2ms. 
 
5. Performance Evaluation 
 
5.1. Simulation Parameters 
 
We conduct cycle-driven simulations of adaptive load 
scheduling scheme based on a generalized network 
processing system, which has 16 parallel processing 
engines (PEs) with cache implemented. Flow table lookup 
and update (implemented using a hash table) is executed 
as the main process of a flow-based packet processing 
application in the simulator. The simulator is executed 
with two types of inputs: packet traces (described in 
Section 3.3), and a flow state table constructed using the 
packet traces. 
 
Two types of cache model are implemented in the 
simulator: shared cache model and distributed cache 
model. All the PEs share one cache in shared cache model, 
while each PE has a separate cache in distributed cache 
model. LRU algorithm is used as the replacement 

algorithm in the simulator, and the line width of the cache 
is one word. 

pkt = Receive_packet(); 
flowID = Hash(pkt); 
if (pkt.timestamp < flow_table[flowID].last_arrival + MPL) 
{ 

Dispatch(pkt, flow_table[flowID]. PE_ID); 
} 
else { // new flow-slice  

old_PE_ID = flow_table[flowID].PE_ID; 
if (queue[old_PE_ID] < THRESHOLD) 
{ 

Dispatch(pkt, old_PE_ID); 
} 
else { 

new_PE_ID = Adaptation(pkt, old_PE_ID); 
flow_table[flowID].PE_ID = new_PE_ID; 
Dispatch(pkt, new_PE_ID); 

} 
} 
flow_table[flowID].last_arrival = pkt.timestamp; 

Figure 6. Pseudo codes of the proposed 
 scheduling scheme 

 
Given a trace and the number of PEs (N=16), the 
processing rate of each PE (μi) is estimated using μi =λ/N. 
The average packet arrival rate (λ) is measured for each 
trace. 
 
Parameters that have major impacts on system 
performance include: the processing buffer size B, the 
size of flow-slice table F, and the triggering threshold H. 
Performance metrics we are mainly concerned about are 
the packet loss rate, PE utilization rate, and cache hit rate. 
 
5.2. Packet Loss Rate  
 
In our simulations, packet loss happens only in the 
following situation. The workload is not properly 
balanced among the PEs, some PEs are idling while other 
PEs are overloaded. When the number of packets in a 
PE’s queue increases to the limit of its buffer size, newly 
arriving packets are dropped. 
 
Figure 7 shows packet loss rate of hash-based flow-level 
scheme and the flow-slice scheme proposed in this paper. 
The hash-based flow-level scheme has high packet loss 
rate, and increasing buffer size does help after buffer size 
is larger than 200 packets. When the buffer size is small, 
the flow-slice scheme has some packet losses. After the 
buffer size increases to over 200 packets, there is no 
packet loss any more. 
 
5.3. Processing Engine Utilization Rate 
 
Figure 8 shows the average PE utilization rate. The 
adaptive scheme scheduling at flow-slice level makes the 
system utilized close to its full potential. This means the 
workload is properly balanced among the PEs. 
 
5.4. Cache Hit Rate  
 
The cache hits in flow-based packet processing system are 
mainly resulted by the temporal reuse of flow state 
structures. Since the temporal reuse of these data 
structures occurs primarily when multiple packets 
belonging to the same flow are processed. Hence, in 
shared cache model, cache misses happen when two 
packets belonging to the same flow are separated by a 
large number of packets of other flows (the cache entry is 
replaced). In distributed cache model, cache misses can 
also be caused by shifting of flow-slice between PEs.  
 
Figure 9 shows that there is not much difference between 
the cache hit rates of both schedulers when using shared 
cache model. Since the cache is shared by all PEs, the 
shifting of a flow-slice from one PE to another does not 
have much impact on the locality properties of the traffic. 
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Figure 8. PE utilization rate versus 
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Figure 9. Cache hit rate of the schedulers 

Using distributed cache model, the cache hit rate of flow-
slice level scheduler is lower than flow-level scheduler 
when the cache size is small. However, when the cache 
size is relatively larger, the cache hit rates of both 
schedulers become almost the same. Despite the fact that 
flow-slice shifting affects the temporal locality of traffic 
reaching each PE, this result shows that a little increase in 
cache size can compensate for the reduction in cache hit 
rate caused by that.  
 
6. Conclusion and Future Work 
 
We analyze the difference between the different 
scheduling schemes at various granularities and show that 
scheduling at flow-slice level can exploit finer parallelism 
than flow-level and it can also make the size distribution 
of splitting unit less. We propose an adaptive load 
scheduling scheme that distributes traffic at flow-slice 
level based on our analysis. The proposed scheduling 
scheme exploits further parallelism than flow-level 
scheduling scheme while preserving per-flow packet-
order.  
 
In our experiment and performance evaluation, we use a 
cycle-based simulator with real-life backbone traces. The 
experiment results show that the proposed scheduling 
scheme can achieve much better balance of workload than 
flow-level scheme, and the packet loss rate is reduced to 
almost zero using a small buffer. In shared cache NP 
system, our scheme does not reduce the efficiency of 
cache utilization, and even in distributed cache NP system, 
a little increase in cache size can compensate for the 
reduction in cache hit rate caused by the shifting of flow-
slices. 
 
Our primary plans of future works involve implementing 
these scheduling schemes on different multi-core 
platforms, such as Cavium Octeon Processors [12] and 
Intel IXP Network Processors [13], to further evaluate the 
performance of the proposed scheduling scheme.  
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