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ABSTRACT 
String matching is the core algorithm and the most time 
consuming operation of almost every modern Network 
Intrusion Management System (NIMS). In this paper we 
aim at integrating string matching with multi-thread 
parallelism to dramatically improve the performance of 
NIMS. The string matching procedure under multi-thread 
parallelism situation is modeled and researched. The 
results are utilized to instruct the design of an improved 
Aho-Corasick (AC) algorithm, named as AC_MT, for 
network processor (NP) based NIMS. A simplified NIMS 
prototype and both the AC and AC_MT algorithms are 
implemented on Intel’s NP platform IXDP2850. The 
evaluation results tested with SmartBits 600 reveals that 
the performance of the NIMS prototype is improved by 
44.7%~148.8% depending on the different lengths of the 
input packets and different number of threads, under both 
algorithms using the same number of threads situation. 
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1.  Introduction 
 
Along with the development of network intrusion 
techniques, Network Intrusion Management System 
(NIMS) has been widely deployed in various network 
environments. 
 
NIMS uses string matching to compare the payload of the 
packet or flow against the known patterns of intrusions. 
The cost of string matching is significant. For instance, in 
the famous open source lightweight NIDS Snort [1, 2], 
the string matching routines account for up to 70% of 
total execution time and 80% of instructions executed on 
real traces [3]. Furthermore, as the number of potential 
threats and their associated patterns do keep growing, the 
cost of NIMS is likely to increase as well. 
 
These challenges motivate the researches of string 
matching algorithm [4, 5, 6, 7], and introducing parallel 
processing in NIMS [8, 9, 10, 11, 12, 13]. But they are not 
combined together well. The researches of parallel NIMS 

are focused on load balance strategies. The researches of 
string matching algorithm are either taking no account of 
parallelism, or studying based on the perfect parallel 
computing model, such as parallel random access 
machine (PRAM) [14, 15, 16, 17]. The fruits cannot fit to 
the chips utilized to construct NIMS: commodity 
processor, embedded system, network processor et al. 
Moreover, they are almost all single pattern matching 
algorithms. Considering the huge number of patterns in 
current NIMS, single pattern matching algorithm is not 
efficient. 
 
Network processor (NP) is a special-purpose, 
programmable chip tailored to construct network devices. 
It combines the low cost and flexibility of commodity 
processor with the speed and scalability of custom silicon 
(ASIC chips). 
 
In this work, we focus on integrating string matching with 
multi-thread parallelism on NP. We first modeled and 
studied the multi-thread string matching procedure. Then 
the results are used to instruct the design of an improved 
Aho-Corasick (AC) [18] algorithm, named as AC_MT, 
for NP-based NIMS. The AC and AC_MT algorithms and 
a simplified NIMS prototype are implemented and tested 
on Intel’s network processor IXP2850 [19]. 
 
The rest of the paper is organized as follows. In section 2 
we give a review of previous works. In section 3, we 
address the model and analysis of the multi-thread string 
matching. In section 4, we present the improved AC 
algorithm, AC_MT. In section 5, we give the evaluations 
on IXP2850. And we summarize our contributions in 
section 6; the open issues for further investigation are 
outlined as well. 
 
 
2.  Previous Works 
 
String matching is finding one, or all the occurrences of a 
search string in an input string. In NIMS application, 
pattern is the search string, while payload is the input 
string. If only one search string is matched against the 
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input string, it is called single pattern matching. 
Otherwise, it is called multiple pattern matching. 
 
AC is one of the most classical and popular multiple 
pattern matching algorithms. All search strings are 
accepted to make up of a finite state automaton (FSA) so 
that the prefix of each search string is represented by only 
one state. AC deals with the input string character by 
character and has proven linear performance to the length 
of input string, regardless of the number and lengths of 
search strings. So AC is a very robust algorithm for 
intrusion management system. 
 
Suppose the pattern set is P = {hers}, the alphabet is Σ . 
Its corresponding deterministic automaton is shown in 
Figure 1. There are totally five states represented as {0, 1, 
2, 3, 4}. The symbol ‘^{}’ means all the characters of Σ  
except the characters in {}. 
 
Generally, the AC automaton is implemented as two 
tables as shown in Figure 2(a). Each table has five items 
corresponding to the five states. The item of 
MatchListTable contains pointers to a list of the matching 
patterns at current state. In this example, the 
MatchListPointer 0 to 3 are equal to zero. And 
MatchListPointer4 is equal to the address of pattern 
“hers”. 

 
Fig. 1. The automaton of pattern set P 

 
The item of NextStateTable contains 255 entries when 
using ASCII code. The implementation of 
NextStateNode0 is shown in Figure 2(b). The value of 
each entry means the state number transiting to when the 
input is the corresponding ASCII code number. For 
example, the ASCII number of character ‘h’ is 104, and 
from Figure 1 we find that from state 0 with the input 
character ‘h’, the next state is state 1. So the value of the 
entry corresponding to ASCII number 104 is equal to 1. 
From state 0, input all the other characters except ‘h’ will 
transit to itself. So the values of all the other entries 
except the one corresponding to 104 are equal to zero. 

 
 

(a) The Tables to implement an AC automaton 
 

 
(b) The implementation of NextStateNode 0 

Fig. 2. The implementation of the AC automaton 
 

The search procedure of the AC automaton is: 
 

 
 
 
3.  Theoretical Analysis of Multi-thread String 
Matching 
 
The search procedure of string matching could be 
abstracted as two kinds of operations: “memory 
operation” (reading or writing SRAM) and “calculation 
operation” (execution of the instructions which are not 
SRAM operation). When there is only one thread, CPU is 
idle during “memory operation”. In this work, we neglect 
the cost of thread exchange. 
 
3.1 Variable Definition 
 
T: The input string. 
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ST = 0;  //The initial state number 
i = 0; 
while (i<n) //n is the length of input string
{ 
//T represents the input text 

// Memory Operation 1 
NS = NextStateNode ST [T[i]]; 

// Memory Operation 2 
if(MatchListPointer NS != 0) 
{ 
// The matching procssing 
} 
ST = NS; 
} 
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st (second): The average CPU idle time due to “memory 
operation” for processing one byte of the input string 
when running only one thread. 

ct (second): The average CPU running time 
corresponding to “calculation operation” for processing 
one byte of the input string when running only one thread. 

TSn : The maximum number of threads could be used. 

TRn : The real number of threads used. 

nTP (bytes/second): The total throughput when running n 
threads. 

nr : The CPU utilization rate when running n threads. 
 
3.2 The Total Throughput of Multi-thread 
 
When running only one thread, the time to process one 
byte of the input string is . The CPU utilization 

rate is
sc tt +

)(1 scc tttr += . The throughput 

is .  )/(11 sc ttTP +=
 
When running multi-thread, for example two threads, 
under  situation )(2 csc ttt +< )(22 scc tttr += . The 

total throughput is . The time sequence is 
shown in Figure 3 (a). 

12 2TPTP =

 
(a) The time sequence under  situation )(2 csc ttt +<

 
(b) The time sequence under  situation )(2 csc ttt +>

Fig. 3. The time sequence when running two threads 
 

Under situation, . The total 

throughput is 
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situation, increasing the number of threads will not 
increase the throughput anymore. The time sequence is 
shown in Figure 3 (b).  
 

The maximum total throughput of multi-thread string 
matching is calculated below. Define variable . ]/1[ 1rnT =
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If knowing and , the corresponding  could be 

calculated. To any initial and , how to alter the 

values of them to improve the  is discussed in 
Section 3.3. 

ct st maxTP

ct st

maxTP

 
3.3 The Effects to  of Altering or  maxTP ct st
 
In this section, we thoroughly discussed the effects to 

 of changing and  to and maxTP ct st ct ′ st ′ . The results 
are shown in Table 1 and Table 2. The detailed computing 
course is shown in the appendix. 
 
In Table 1 and 2, the symbol ‘-’ means invariable, the 
symbol ‘ ↑ ’ means increased, and the symbol ‘ ’ means 
decreased.  

↓

 
Table 1. The results under  situation TST nn <
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Table 2. The results under initial  situation TST nn ≥
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4.  The AC_MT Algorithm 
 
The theoretical results of section 3 are utilized to instruct 
the design of an improved AC algorithm for NP-based 
NIMS. The NP utilized in this work is Intel’s IXP2850. It 
has sixteen multi-thread process units, called 
MicroEngine (ME). The ME sustains hardware multi-
thread, and the thread swap cost is almost zero. The 
maximum number of threads running in each ME is eight, 
i.e. nTS = 8. 
 
The AC algorithm is implemented and tested on IXP2850 
to get the value of initial CPU utilization rate. The input 
string is a 32 Mbytes uniformly random text. In this paper, 
the pattern set used which contains 464 patterns is a sub-
pattern set randomly selected from Snort (rule distributed 
in July 27, 2005). Table 3 shows the results. 

 
Table 3. The CPU utilization rate of the AC 

Thread number CPU utilization rate 
1 11.07% 
8 88.35% 
 

So nT=1/0.1107=9.03>nTS=8. According to Table 2, there 
are five methods to improve the maximum throughput. 
Among these methods, three could improve the 
performance without conditions: , , 

and . Other two are conditional: , 

. 

↓↓ cs tt −↓ cs tt
↓− cs tt ↑↓ cs tt

↓↑ cs tt
 
The procedure of the AC algorithm is analyzed 
thoroughly. It is very hard to decrease , the most 

feasible methods  is  and  . Both need 

to decrease . 

ct

−↓ cs tt ↑↓ cs tt

st
 
In the search procedure of AC, there are two memory 
operations (read NextStateNode ST[T[i]] and 
MatchListPointer NS) for each byte of input string. If we 
can decrease the number of memory operations, will be 
decreased as well. 

st

 
In this work, we utilize the highest bit of each entry in the 
NextStateNode to indicate whether there is a matching at 
this state. ‘1’ indicates that a matching occurs. Otherwise, 
the bit is set to ‘0’. The other bits of each entry represent 
the original value. The number of total states could be 
represented decreases, but it is still enough. In the 
searching, after reading the NextStateNode ST [T[i]], we 
can determine whether there are matching patterns at 
current state. If there are no matching patterns, we need 
not to read the pointer MatchListPointer NS. Suppose the 
length of each entry is 16 bits, the modification of the 
entry corresponding to ‘h’ in Figure 2(b) is shown in 
Figure 4. Considering the fact that a majority of the states 
do not have matching patterns, so the number of memory 
reading operation is effectively decreased. 

 
Fig. 4. The NextStateNode entry of AC_MT 

 
This method incurs additional cost of bit computing, so 

will increase. In order to validate the effectiveness, the 
method in Figure 4, named as the AC_MT algorithm, is 
implemented on IXP2850. The performance comparison 
of the AC and AC_MT algorithms is shown in Figure 5.  
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Fig. 5. The performance comparison of AC and AC_MT 
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In Figure 5, the horizontal axes represent the number of 
threads, and the vertical axes represent the total 
throughput of multi-thread. The input string is a 32 
Mbytes uniformly random text. The performance of AC is 
improved by 81% when running one thread and by 44.3% 
when running eight threads, under both algorithms 
running same number of threads situation. 
 
To the AC_MT algorithm, CPU utilization rate  

measured is 15.84%. So . When 

the thread number is bigger than seven,  will not 
increase along with the thread number increasing 
anymore. 

1r
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5.  NIMS Prototype and Evaluation 
 
In order to evaluate the performance of AC and AC_MT 
in NIMS application, a simplified NIMS prototype, 
named as NIMS_V1, is implemented on IXDP2850 [20]. 
IXDP2850 is a dual-2850 NP platform released by Intel®. 
There are totally 32 MEs in the two NPs, and 15 of them 
are used in NIMS_V1. The flow chart of NIMS_V1 is 
shown in Figure 6. String matching algorithms, AC and 
AC_MT, are implemented in Detection Engine module on 
only one ME now. The processing after finding matching 
patterns is not included in NIMS_V1. 
 

 
Fig. 6. The flow chart of the simplified NIMS prototype on 

IXDP2850 
 
In the evaluation, SmartBits 600 (Spirent®) with two 
LAN-3201A (SmartMetrics 1000Base-x) cards is utilized. 
The software used to measure the throughput is 
SmartAapplication version 3.00 (Spirent®). Six different 
lengths of packet are tested: 64B, 128B, 256B, 512B, 
1024B, and 1518B. The results are shown in Figure 7 (a) 
and (b). Because the SmartBits 600 we used can only 
provide maximum 2000 Mbps flow, we mark the value as 
“2000 Mbps” and do not give the accurate values when 
the performance is higher than it. All the values are the 
speed of input flow. 
 
In NIMS_V1 the bottleneck lies in the Detection Engine 
module, so the throughput is determined by the Detection 
Engine. Define the throughput as Thu, the number of 

packets is Num, the length of packets is Len, and the 
length of packet headers is Len_h. LenNumThu ⋅= . 
 
Suppose the Detection Engine can process C bytes input 
string per second. So the throughput can be calculated as 

hLenLen
Lenc

_−
⋅ . This reveals that the throughput will 

decrease as the length of input packets increase. Because 

1
_

→
− hLenLen
Len

 along with the increase of Len. The 

throughputs of input lengths 1024B and 1518B are close. 
 
The performance of NIMS_V1 is improved by 
60.3%~148.8% with one thread, and by 44.7~50.8% with 
eight threads depending on the different length of input 
packets. 
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Fig. 7. The performance of NIMS_V1 with AC_MT and AC 
 
 
6.  Conclusions and Future Work 
 
Designing string matching algorithms specific to NIMS 
application and introducing parallel processing are 
effective methods to improve the performance of NIMS. 
But they are not combined together well.  
 
In this work we first model the procedure of multi-thread 
string matching. Then we utilize the results to instruct the 
design of an improved AC algorithm, AC_MT, for NP-
based NIMS. Both AC and AC_MT are implemented and 
evaluated on Intel’s network processor IXP2850. The 
experiments indicate that the performance of the 
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algorithm is improved by 81% when running one thread 
and by 44.3% when running eight threads, under both 
running the same number of threads situation. 
 
We also implemented one simplified NIMS prototype, 
NIMS_V1, on IXDP2850, and insert the AC_MT and AC 
in its detection engine. SmartBits 600 with two 1Gbps 
LAN-3201A cards is used to test the throughput of 
NIMS_V1. The performance of NIMS_V1 is improved by 
60.3%~148.8% when using one thread and by 
44.7~50.8% when using eight threads depending on the 
different length of input packets, under both running the 
same number of threads situation. 
 
Future work could include: Apply the parallelization 
method to other string matching algorithms and compared 
with AC_MT. Do more evaluations with other testing 
traces such as real flow. Construct more integrated NIMS 
prototype on NP, so the algorithm performance could be 
evaluated more precisely. 
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