

OPTIMIZING MULTI-THREAD STRING MATCHING FOR NETWORK
PROCESSOR BASED INTRUSION MANAGEMENT SYSTEM

Jianming Yu,1, 2 Quan Huang1, 2 and Yibo Xue2, 3

1 Department of Automation, Tsinghua University, Beijing, China
2 Research Institute of Information Technology, Tsinghua University, Beijing, China

3 Tsinghua National Lab for Information Science and Technology, Beijing, China
yujm03@mails.tsinghua.edu.cn

ABSTRACT
String matching is the core algorithm and the most time
consuming operation of almost every modern Network
Intrusion Management System (NIMS). In this paper we
aim at integrating string matching with multi-thread
parallelism to dramatically improve the performance of
NIMS. The string matching procedure under multi-thread
parallelism situation is modeled and researched. The
results are utilized to instruct the design of an improved
Aho-Corasick (AC) algorithm, named as AC_MT, for
network processor (NP) based NIMS. A simplified NIMS
prototype and both the AC and AC_MT algorithms are
implemented on Intel’s NP platform IXDP2850. The
evaluation results tested with SmartBits 600 reveals that
the performance of the NIMS prototype is improved by
44.7%~148.8% depending on the different lengths of the
input packets and different number of threads, under both
algorithms using the same number of threads situation.

KEY WORDS
String matching, parallel processing, network processor.

1. Introduction

Along with the development of network intrusion
techniques, Network Intrusion Management System
(NIMS) has been widely deployed in various network
environments.

NIMS uses string matching to compare the payload of the
packet or flow against the known patterns of intrusions.
The cost of string matching is significant. For instance, in
the famous open source lightweight NIDS Snort [1, 2],
the string matching routines account for up to 70% of
total execution time and 80% of instructions executed on
real traces [3]. Furthermore, as the number of potential
threats and their associated patterns do keep growing, the
cost of NIMS is likely to increase as well.

These challenges motivate the researches of string
matching algorithm [4, 5, 6, 7], and introducing parallel
processing in NIMS [8, 9, 10, 11, 12, 13]. But they are not
combined together well. The researches of parallel NIMS

are focused on load balance strategies. The researches of
string matching algorithm are either taking no account of
parallelism, or studying based on the perfect parallel
computing model, such as parallel random access
machine (PRAM) [14, 15, 16, 17]. The fruits cannot fit to
the chips utilized to construct NIMS: commodity
processor, embedded system, network processor et al.
Moreover, they are almost all single pattern matching
algorithms. Considering the huge number of patterns in
current NIMS, single pattern matching algorithm is not
efficient.

Network processor (NP) is a special-purpose,
programmable chip tailored to construct network devices.
It combines the low cost and flexibility of commodity
processor with the speed and scalability of custom silicon
(ASIC chips).

In this work, we focus on integrating string matching with
multi-thread parallelism on NP. We first modeled and
studied the multi-thread string matching procedure. Then
the results are used to instruct the design of an improved
Aho-Corasick (AC) [18] algorithm, named as AC_MT,
for NP-based NIMS. The AC and AC_MT algorithms and
a simplified NIMS prototype are implemented and tested
on Intel’s network processor IXP2850 [19].

The rest of the paper is organized as follows. In section 2
we give a review of previous works. In section 3, we
address the model and analysis of the multi-thread string
matching. In section 4, we present the improved AC
algorithm, AC_MT. In section 5, we give the evaluations
on IXP2850. And we summarize our contributions in
section 6; the open issues for further investigation are
outlined as well.

2. Previous Works

String matching is finding one, or all the occurrences of a
search string in an input string. In NIMS application,
pattern is the search string, while payload is the input
string. If only one search string is matched against the

mailto:yujm03@mails.tsinghua.edu.cn

input string, it is called single pattern matching.
Otherwise, it is called multiple pattern matching.

AC is one of the most classical and popular multiple
pattern matching algorithms. All search strings are
accepted to make up of a finite state automaton (FSA) so
that the prefix of each search string is represented by only
one state. AC deals with the input string character by
character and has proven linear performance to the length
of input string, regardless of the number and lengths of
search strings. So AC is a very robust algorithm for
intrusion management system.

Suppose the pattern set is P = {hers}, the alphabet is Σ .
Its corresponding deterministic automaton is shown in
Figure 1. There are totally five states represented as {0, 1,
2, 3, 4}. The symbol ‘^{}’ means all the characters of Σ
except the characters in {}.

Generally, the AC automaton is implemented as two
tables as shown in Figure 2(a). Each table has five items
corresponding to the five states. The item of
MatchListTable contains pointers to a list of the matching
patterns at current state. In this example, the
MatchListPointer 0 to 3 are equal to zero. And
MatchListPointer4 is equal to the address of pattern
“hers”.

Fig. 1. The automaton of pattern set P

The item of NextStateTable contains 255 entries when
using ASCII code. The implementation of
NextStateNode0 is shown in Figure 2(b). The value of
each entry means the state number transiting to when the
input is the corresponding ASCII code number. For
example, the ASCII number of character ‘h’ is 104, and
from Figure 1 we find that from state 0 with the input
character ‘h’, the next state is state 1. So the value of the
entry corresponding to ASCII number 104 is equal to 1.
From state 0, input all the other characters except ‘h’ will
transit to itself. So the values of all the other entries
except the one corresponding to 104 are equal to zero.

(a) The Tables to implement an AC automaton

(b) The implementation of NextStateNode 0

Fig. 2. The implementation of the AC automaton

The search procedure of the AC automaton is:

3. Theoretical Analysis of Multi-thread String
Matching

The search procedure of string matching could be
abstracted as two kinds of operations: “memory
operation” (reading or writing SRAM) and “calculation
operation” (execution of the instructions which are not
SRAM operation). When there is only one thread, CPU is
idle during “memory operation”. In this work, we neglect
the cost of thread exchange.

3.1 Variable Definition

T: The input string.

0 1 … 103 104 105 … 255

0 0 … 0 1 0 … 0

ASCII Value

Next State Value

MatchListTable

MatchListPointer0

MatchListPointer1

MatchListPointer2

MatchListPointer3

MatchListPointer4

NextStateTable

NextStateNode0

NextStateNode1

NextStateNode2

NextStateNode3

NextStateNode4

state 0

state 1

state 2

state 3

state 4 hers

ST = 0; //The initial state number
i = 0;
while (i<n) //n is the length of input string
{
//T represents the input text

// Memory Operation 1
NS = NextStateNode ST [T[i]];

// Memory Operation 2
if(MatchListPointer NS != 0)
{
// The matching procssing
}
ST = NS;
}

0 1 2 3 4h e r s

^{h}

^{e} ^{r} ^{s}

^{h}

h

st (second): The average CPU idle time due to “memory
operation” for processing one byte of the input string
when running only one thread.

ct (second): The average CPU running time
corresponding to “calculation operation” for processing
one byte of the input string when running only one thread.

TSn : The maximum number of threads could be used.

TRn : The real number of threads used.

nTP (bytes/second): The total throughput when running n
threads.

nr : The CPU utilization rate when running n threads.

3.2 The Total Throughput of Multi-thread

When running only one thread, the time to process one
byte of the input string is . The CPU utilization

rate is
sc tt +

)(1 scc tttr += . The throughput

is .)/(11 sc ttTP +=

When running multi-thread, for example two threads,
under situation)(2 csc ttt +<)(22 scc tttr += . The

total throughput is . The time sequence is
shown in Figure 3 (a).

12 2TPTP =

(a) The time sequence under situation)(2 csc ttt +<

(b) The time sequence under situation)(2 csc ttt +>

Fig. 3. The time sequence when running two threads

Under situation, . The total

throughput is

)(2 csc ttt +> 12 =r

cc

sc

t
TP

t
ttTP 1

12 =⋅
+

= . Under this

situation, increasing the number of threads will not
increase the throughput anymore. The time sequence is
shown in Figure 3 (b).

The maximum total throughput of multi-thread string
matching is calculated below. Define variable .]/1[1rnT =

(1) Under TST nn < situation:

(a) Under TTR nn < situation:

c
scc

sc
scTRn t

ttt
ttttnTP

TR
11)/(=

+
⋅

+
<+=

(b) Under TSTRT nnn ≤< situation:

cn tTP
TR

1= .

Therefore, ctTP 1max = .

(2) Under situation: TST nn ≥
)(max scTS ttnTP += .

Overall,
⎩
⎨
⎧

≥+
<

=
TSTscTS

TSTc

nnttn
nnt

TP
),(

,1
max .

If knowing and , the corresponding could be

calculated. To any initial and , how to alter the

values of them to improve the is discussed in
Section 3.3.

ct st maxTP

ct st

maxTP

3.3 The Effects to of Altering or maxTP ct st

In this section, we thoroughly discussed the effects to

 of changing and to and maxTP ct st ct ′ st ′ . The results
are shown in Table 1 and Table 2. The detailed computing
course is shown in the appendix.

In Table 1 and 2, the symbol ‘-’ means invariable, the
symbol ‘ ↑ ’ means increased, and the symbol ‘ ’ means
decreased.

↓

Table 1. The results under situation TST nn <

 ↑↑ cs tt

−↑ cs tt

↓↑ cs tt

↑− cs tt

TST nn <′

↓
_ ↑ ↓

TST nn ≥′

↓ ↓ ① cannot
appear

 ↓− cs tt ↑↓ cs tt

−↓ cs tt

↓↓ cs tt

TST nn <′

↑ ↓
_ ↑

TST nn ≥′

↑
cannot
appear

cannot
appear

↑

①T ′ , ↑ . Otherwise ↓ . TSnTPP max1 >

tc ts
Thread 1

Thread 2

tc ts
Thread 1

Thread 2

Table 2. The results under initial situation TST nn ≥
 ↑↑ cs tt

−↑ cs tt

↓↑ cs tt

↑− cs tt

TST nn <′

↓

cannot
appear

cannot
appear

↓

TST nn ≥′

↓ ↓ ① ↓

 ↓− cs tt ↑↓ cs tt

−↓ cs tt

↓↓ cs tt

TST nn <′

cannot
appear

② ↑ ↑

TST nn ≥′

↑ ① ↑ ↑

 while ① T , Otherwise, 11 TPP >′ ↑ ↓
 while ② max1 TPtc <′ , Otherwise, ↑ ↓

4. The AC_MT Algorithm

The theoretical results of section 3 are utilized to instruct
the design of an improved AC algorithm for NP-based
NIMS. The NP utilized in this work is Intel’s IXP2850. It
has sixteen multi-thread process units, called
MicroEngine (ME). The ME sustains hardware multi-
thread, and the thread swap cost is almost zero. The
maximum number of threads running in each ME is eight,
i.e. nTS = 8.

The AC algorithm is implemented and tested on IXP2850
to get the value of initial CPU utilization rate. The input
string is a 32 Mbytes uniformly random text. In this paper,
the pattern set used which contains 464 patterns is a sub-
pattern set randomly selected from Snort (rule distributed
in July 27, 2005). Table 3 shows the results.

Table 3. The CPU utilization rate of the AC

Thread number CPU utilization rate
1 11.07%
8 88.35%

So nT=1/0.1107=9.03>nTS=8. According to Table 2, there
are five methods to improve the maximum throughput.
Among these methods, three could improve the
performance without conditions: , ,

and . Other two are conditional: ,

.

↓↓ cs tt −↓ cs tt
↓− cs tt ↑↓ cs tt

↓↑ cs tt

The procedure of the AC algorithm is analyzed
thoroughly. It is very hard to decrease , the most

feasible methods is and . Both need

to decrease .

ct

−↓ cs tt ↑↓ cs tt

st

In the search procedure of AC, there are two memory
operations (read NextStateNode ST[T[i]] and
MatchListPointer NS) for each byte of input string. If we
can decrease the number of memory operations, will be
decreased as well.

st

In this work, we utilize the highest bit of each entry in the
NextStateNode to indicate whether there is a matching at
this state. ‘1’ indicates that a matching occurs. Otherwise,
the bit is set to ‘0’. The other bits of each entry represent
the original value. The number of total states could be
represented decreases, but it is still enough. In the
searching, after reading the NextStateNode ST [T[i]], we
can determine whether there are matching patterns at
current state. If there are no matching patterns, we need
not to read the pointer MatchListPointer NS. Suppose the
length of each entry is 16 bits, the modification of the
entry corresponding to ‘h’ in Figure 2(b) is shown in
Figure 4. Considering the fact that a majority of the states
do not have matching patterns, so the number of memory
reading operation is effectively decreased.

Fig. 4. The NextStateNode entry of AC_MT

This method incurs additional cost of bit computing, so

will increase. In order to validate the effectiveness, the
method in Figure 4, named as the AC_MT algorithm, is
implemented on IXP2850. The performance comparison
of the AC and AC_MT algorithms is shown in Figure 5.

ct

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

Thread Number

T
o
t
a
l

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

AC AC_MT
Fig. 5. The performance comparison of AC and AC_MT

104

00000000 00000001

ASCII Value

Next State Value of
AC (In Binary)

Next State Value of
AC_MT (In Binary) 10000000 00000001

In Figure 5, the horizontal axes represent the number of
threads, and the vertical axes represent the total
throughput of multi-thread. The input string is a 32
Mbytes uniformly random text. The performance of AC is
improved by 81% when running one thread and by 44.3%
when running eight threads, under both algorithms
running same number of threads situation.

To the AC_MT algorithm, CPU utilization rate

measured is 15.84%. So . When

the thread number is bigger than seven, will not
increase along with the thread number increasing
anymore.

1r
6]1574.0/1[==Tn

maxTP

5. NIMS Prototype and Evaluation

In order to evaluate the performance of AC and AC_MT
in NIMS application, a simplified NIMS prototype,
named as NIMS_V1, is implemented on IXDP2850 [20].
IXDP2850 is a dual-2850 NP platform released by Intel®.
There are totally 32 MEs in the two NPs, and 15 of them
are used in NIMS_V1. The flow chart of NIMS_V1 is
shown in Figure 6. String matching algorithms, AC and
AC_MT, are implemented in Detection Engine module on
only one ME now. The processing after finding matching
patterns is not included in NIMS_V1.

Fig. 6. The flow chart of the simplified NIMS prototype on

IXDP2850

In the evaluation, SmartBits 600 (Spirent®) with two
LAN-3201A (SmartMetrics 1000Base-x) cards is utilized.
The software used to measure the throughput is
SmartAapplication version 3.00 (Spirent®). Six different
lengths of packet are tested: 64B, 128B, 256B, 512B,
1024B, and 1518B. The results are shown in Figure 7 (a)
and (b). Because the SmartBits 600 we used can only
provide maximum 2000 Mbps flow, we mark the value as
“2000 Mbps” and do not give the accurate values when
the performance is higher than it. All the values are the
speed of input flow.

In NIMS_V1 the bottleneck lies in the Detection Engine
module, so the throughput is determined by the Detection
Engine. Define the throughput as Thu, the number of

packets is Num, the length of packets is Len, and the
length of packet headers is Len_h. LenNumThu ⋅= .

Suppose the Detection Engine can process C bytes input
string per second. So the throughput can be calculated as

hLenLen
Lenc

_−
⋅ . This reveals that the throughput will

decrease as the length of input packets increase. Because

1
_

→
− hLenLen
Len

 along with the increase of Len. The

throughputs of input lengths 1024B and 1518B are close.

The performance of NIMS_V1 is improved by
60.3%~148.8% with one thread, and by 44.7~50.8% with
eight threads depending on the different length of input
packets.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8

Thread Number

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

64B 128B 256B 512B 1024B 1518B
(a) The throughput of NIMS_V1 with AC

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8

Thread Number

Th
r
ou
g
hp
u
t
(M

bp
s
)

64B 128B 256B 512B 1024B 1518B
(b) The throughput of NIMS_V1 with AC_MT

Fig. 7. The performance of NIMS_V1 with AC_MT and AC

6. Conclusions and Future Work

Designing string matching algorithms specific to NIMS
application and introducing parallel processing are
effective methods to improve the performance of NIMS.
But they are not combined together well.

In this work we first model the procedure of multi-thread
string matching. Then we utilize the results to instruct the
design of an improved AC algorithm, AC_MT, for NP-
based NIMS. Both AC and AC_MT are implemented and
evaluated on Intel’s network processor IXP2850. The
experiments indicate that the performance of the

Packet

Receiving

Packet

Decoding

Detection

Engine

Packet

Transmitting

algorithm is improved by 81% when running one thread
and by 44.3% when running eight threads, under both
running the same number of threads situation.

We also implemented one simplified NIMS prototype,
NIMS_V1, on IXDP2850, and insert the AC_MT and AC
in its detection engine. SmartBits 600 with two 1Gbps
LAN-3201A cards is used to test the throughput of
NIMS_V1. The performance of NIMS_V1 is improved by
60.3%~148.8% when using one thread and by
44.7~50.8% when using eight threads depending on the
different length of input packets, under both running the
same number of threads situation.

Future work could include: Apply the parallelization
method to other string matching algorithms and compared
with AC_MT. Do more evaluations with other testing
traces such as real flow. Construct more integrated NIMS
prototype on NP, so the algorithm performance could be
evaluated more precisely.

Acknowledgements

We would like to thank the anonymous reviewers for
providing useful comments on this paper. We would
thank all the colleagues of our laboratory for their
comments and enlightening discussions on draft of the
paper. This work was funded by Juniper Research Grant
and Intel IXA University Program.

References

[1] M. Roesch, Snort: lightweight intrusion detection for
networks. Proc. 13th System Administration Conference
and Exhibition, Seattle, Washington, USA, 1999, 229-238.
[2] M. Norton, & D. Roelker, The new Snort, Computer
Security Journal, 19(3), 2003, 37-47.
[3] S. Antonatos, K.G. Anagnostakis, & E.P. Markatos,
Generating realistic workloads for network intrusion
detection systems, Software Engineering Notes, 29(1),
2004, 207-215.
[4] M. Fisk, & G. Varghese, An analysis of fast string
matching applied to content-based forwarding and
intrusion detection (Technical Report CS2001-0670, San
Diego: University of California, 2002).
[5] C.J. Coit, S. Staniford, & J. McAlerney, Towards
faster string matching for intrusion detection or exceeding
the speed of Snort. Proc. the DARPA Information
Survivability Conference and Exposition II, Anaheim, CA,
USA, 2001, vol. 1, 367-373.
[6] K.G. Anagnostakis, E.P. Markatos, S. Antonatos, &
M. Polychronakis, E2xB: a domain-specific string
matching algorithm for intrusion detection. Proc. 18th
IFIP International Information Security Conference,
Athens, Greece, 2003, 217-228.

[7] N. Tuck, T. Sherwood, B. Calder, & G. Varghese,
Deterministic memory efficient string matching
algorithms for intrusion detection. Proc. IEEE Infocom
2004, Hong Kong, China, 2004, vol. 4. 2628-2639.
[8] X. Zhao, & J. Sun, A parallel scheme for IDS. Proc.
the International Conference on Machine Learning and
Cybernetics, Xi’an, China, 2003, vol. 4, 2379-2383.
[9] I. Charitakis, K. Anagnostakis, & E. Markatos, An
active traffic splitter architecture for intrusion detection.
Proc. 11th IEEE/ACM International Symposium on
Modeling Analysis and Simulation of Computer
Telecommunications Systems, Orlando, Florida, USA,
2003, 238-241.
[10] H. Lai, S. Cai, H. Huang, J. Xie, & H. Li, A parallel
intrusion detection system for high-speed networks. Proc.
the 2nd International Conference of Applied Cryptography
and Network Security, Yellow Mountain, China, 2004,
439-451.
[11] W. Jiang, H. Song, & Y. Dai, Real-time intrusion
detection for high-speed networks. Computers and
Security, 24(4), 2005, 287-294.
[12] H. Cho, D. Kim, J. Kim, Y. Doh, & J. Jang, Network
processor based network intrusion detection system. Proc.
the 2004 International Conference on Information
Networking, Busan, Korea, 2004, 973-982.
[13] F. Li, H. Zhang, K. Yang, Researches on parallel
intrusion detection methods based-on network processor.
Proc. the 2004 International Symposium on Distributed
Computing and Applications to Business, Engineering
and Sciences, Wu’han, China, 2004, 1040-1044.
[14] U. Vishkin, Optimal parallel matching in strings,
Information and Control, 67(1-3), 1985, 91-113.
[15] Z. Galil, A constant-time optimal parallel string-
matching algorithm, Journal of the Association for
Computing Machinery, 42(4), 1995, 908-918.
[16] M. Crochemore, Z. Galil, L. Gasieniec, K. Park, &
W. Rytter, Constant-time randomized parallel string
matching, SIAM Journal on Computing, 26(4), 1997, 950-
960.
[17] A. Czumail, Z. Galil, L. Gasieniec, P. Kunsoo, & W.
Plandowski, Work-time-optimal parallel algorithms for
string problems. Proc. 27th Annual ACM Symposium on
Theory of Computing, Las Vegas, Nevada, USA, 1995,
713-722.
[18] A. Aho, & M. Corasick, Fast pattern matching: an
aid to bibliographic search, Communications of the ACM,
18(6), 1975, 333-340.
[19] Intel Corporation, Intel IXP2850 network processor
hardware reference manual,
http://www.intel.com/design/network/products/npfamily/i
xp2850.htm, 2004.
[20] Intel Corporation, Intel IXDP2800 advanced
development platform system user’s manual,
http://www.intel.com/design/network/products/npfamily/i
xp2850.htm, 2004.

	ABSTRACT
	KEY WORDS

