
SAWANT: Smart Window based Anomaly Detection using Netflow Traffic

Mohammad Hashem Haghighat

Department of Automation

Tsinghua University

Beijing, China

l-a16@mails.tsinghua.edu.cn

Zohreh Abtahi Foroushani

Department of Automation

Tsinghua University

Beijing, China

zhou-yr18@mails.tsinghua.edu.cn

Jun Li

Research Institute of Information Technology

Tsinghua University

Beijing, China

junl@tsinghua.edu.cn

Abstract— Network security becomes a big concern nowadays.

Although many solutions have been developed to detect

network anomalies, the number of successful attacks like

DDoS, Phishing, and Spam are boosting dramatically.

In this paper, a novel behavior-based method, called

SAWANT, is proposed to detect malicious rate of network

traffic. SAWANT uses deep learning architecture to analyze

netflow data, in which several meaningful attributes are

extracted using a sliding window technique. Extracted

attributes are then taken to a deep learning structure to

identify malicious rate of each window, that represents the rate

of abnormal netflow records per the window size.

Experimental results over the well-known labeled botnet

traffic CTU 13 showed that SAWANT was highly accurate as

more than 99% of predicted malicious rates were correct,

while it required a very small number of records for training.

Keywords- Deep Learning; Neural Network; Netflow;

Network Intrusion Detection System; Pearson Correlation

Coefficient

I. INTRODUCTION

Due to the rapid development of network technology,
more and more systems tent to rely on network. However,
the number of malicious activities such as DDoS, Man in the
Middle, Phishing, and Eavesdropping attacks are increasing
radically [1-3]. Hence, security has become more mission
critical than ever in computer networks.

Network Intrusion Detection Systems (NIDS) protect
networks from malicious attacks. Generally, NIDS is
categorized into either signature-based or behavior-based
detection systems. A signature-based NIDS compares the
monitored traffics with the known patterns (attack
signatures) to detect malicious activities [4-8]. Although
signature-based technique provides the ability to detect
already known attacks with no false negative, it is totally
unable to find zero-day attacks. On the other hand, behavior-
based approach is able to detect new attacks, by modeling
network behavior [9-15]. However, this approach raises false
positives, therefore minimizing false alarms is its main
challenge.

For many years, machine learning algorithms were
employed as conventional techniques to implement
behavior-based detection engines. In order to detect
abnormal behavior, a set of guidelines of how to use machine
learning approaches were provided by Sommer et al. in [16].

Nowadays, deep learning has achieved great success and
has been used widely in computer science for natural
language processing, image and voice recognition. It
provides the ability to find a correlation of analyzed data
automatically. Therefore, this approach is a good option to
be leveraged for NIDSes.

In this paper, we propose a smart window based deep
learning framework, called SAWANT, to detect network
anomalies. The key novelty of our approach is embedding
network characteristics into deep learning procedure, where
SAWANT analyzes the behavior of network traffic by
aggregating flow records inside a window.

Most of the state-of-the-art techniques analyze packet
headers or payloads, netflow records, or application layer
logs to identify malicious activities. However, several
network anomalies can only be revealed when these data are
inspected together, such as Port/Range Scan, DDoS attacks,
or Botnet C&C communications. As a result, considering
batch records provides the ability to efficiently detect
abnormal behavior with a very small set of training data.
According to our experimental results, there is no need to
train SAWANT with high number of netflow data as it
achieved 99.952% detection rate using only one percent
netflow records for training, which is magnificent.

The rest of the paper is organized as follows: In
section II, a review of deep learning-based IDSes are
explained. Section III demonstrates SAWANT method step
by step. The experimental results are presented in section IV.
Finally, the paper is concluded and future research directions
are provided in section V.

II. DEEP LEARNING-BASED NIDSES

In traditional machine learning techniques, feature
extraction is manually applied and the system automatically
learns how to map the achieved features to the outputs.
However, in deep learning, multiple levels of features are
automatically discovered and analyzed together to achieve
the output [17]. There are various types of deep learning
architectures including Deep Artificial Neural Network
(ANN), Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), Deep Belief Network (DBN) and so
on.

ANN emulates human brain and its concepts in
hierarchical architecture. It consists of input, output, and a
set of hidden layers, where each layer comprises a set of
learning units called neurons [18]. CNN is another class of

deep learning mostly used for analyzing images. Compared
to ANN, it requires less variables to train the model, so that
its learning procedure is much easier [19]. RNN is a type of
deep learning originally designed for time series data, as it
uses its internal states to processes sequence of inputs [20].
The key advantage of RNN is its ability of self-learning from
the previous events. Fig. 1 compares different deep learning
models.

Figure 1. The comparison between ANN, CNN, and RNN [21].

Roy et al. [22] used deep ANN model to design an NIDS,
which its accuracy was improved by multilayer feed-forward
Neural Network with 400 hidden layer neurons. Rectifier and
softmax activation functions are used for the output layer,
and the model was evaluated by KDD Cup 99 dataset, with
41 features and around 4,900,000 connection records. The
method achieved better results compared to SVM, using 75%
of the dataset as training, and the rest for testing.

Li et al. [23] applied CNN for feature extraction and
classification tasks. The main challenge of using CNN in
NIDS is the conversion step. Although CNN ideally classify
images, there is still a big challenge for text classification. In
this work, a new conversion algorithm was proposed to map
41 features of NSL-KDD into 464 binary vectors. Then 464
vectors ware converted into 8*8-pixel images. So that the
images were sent to CNN as training the model. Two learned
CNN models, ResNet 50 and GoogLeNet were used for their
experiments. The proposed CNN-IDS achieved accuracy of
77.14% and 79.14% using GoogLeNet and ResNet 50,
respectively. However, the accuracy was not comparable to
other deep learning models.

Yin et al. [24] presented a deep learning model based on
RNN for NIDS purpose. It is argued that traditional machine
learning techniques are unable to detect massive intrusion
efficiently. The proposed approach started with the pre-
processing phase which contains two operations on NSL-
KDD dataset: mapping string features to binary vectors and
also conducted feature normalization. Then, the features
were sent to training phase, and the generated model was
applied for testing phase. The experimental results indicated
that the accuracy of intrusion detection was 83.28% and
81.29% for the binary and multi-class classification,

respectively. Comparison of the RNN method with the
traditional machine learning algorithms like SVM showed
that this approach outperformed those techniques.

Kim et al. in [25] also developed a generative model of
Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN). The experiments revealed that increasing
hidden layer size achieved better system accuracy. The
LSTM model detected attacks when it was trained by a very
small subset of data (around 1%). However, the model ended
up with some benign records as malicious as well more than
10% false positive rate.

Staudemeyer [26] tested different network topologies of
RNN for network traffic modeling as time series with KDD
Cup 99 dataset for extracting training data. With various
parameters and structures of an RNN, such as learning rate,
the number of memory blocks and the cells per memory
block, the RNN model is capable to achieve highly accurate
results in case of modeling the system by a large number of
records.

Javaid et al. [27] proposed a new NIDS approach STL,
that contains two phases: Unsupervised Feature Learning
(UFL) and Supervised Feature Learning (SFL). For the UFL
phase, Sparse Autoencoder is used to extract features, while
the softmax regression function was applied for the
classification task as the SFL phase. Using the NSL-KDD
dataset, the STL method achieved 88.39% and 79.10%
accuracy for 2-class and 5-class classifications, respectively,
which is not comparable to RNN.

All the aforementioned methods took the advantage of
deep learning structure to analyze network behavior.
Although these methods achieved high accurate results over
NSL-KDD dataset, they only analyze the original network
records. We argue that aggregating the network records
provides a complete overview of the network, and thus
enables the NIDS to detect more advanced attacks with less
false alarms.

Maimo et. al. in [28] aggregated netflow records using
sliding window algorithm and generated a new dataset with
144 different attributes. A simple ANN as well as an
advanced LSTM were employed for attack symptom and
network anomaly detection, respectively. However, the
accuracy of the method over CTU 13 dataset was not
impressive as the F1-score was 89.4% in the best case due to
the procedure of assigning the malicious label to each
window.

To embed network characteristics into deep learning
procedure, we proposed SAWANT as a sliding window
based deep learning method. SAWANT aggregates netflow
data in which several network attributes are computed. We
also defined malicious rate as the label of each window,
describing how many malicious records are presented inside
a window.

III. SAWANT TECHNIQUE

To detect network anomalies, we proposed a novel deep
learning technique called SAWANT (SmArt Window based
Anomaly detection using Network Traffic). As depicted in
Fig. 2, a pre-processing procedure is performed over netflow
records to aggregate data and extract meaningful network

attributes. Hereafter, the extracted vectors are sent to a deep
ANN to train the model. The output of SAWANT model is
called malicious rate, in which identifies how much the
aggregated vector is abnormal. In other words, malicious rate
represents the number of anomalies inside an aggregated
record.

Figure 2. SAWANT Architecture.

A. Pre-processing

In order to maximize the accuracy of each deep learning
model, it is necessary to understand the environment, first.
Netflow records contain source/destination IP addresses and
port numbers, protocol, flow duration, timestamp, flow size,
number of packets level 3 protocol, next hop router, input
and output SNMP interface, and TCP flags. These records
are too simple to train a deep learning model, in which a few
features will be extracted. Most of the network attacks have
almost the same netflow attributes like Port/Range Scan,
Botnet C&C Communications, DDoS Attacks and so
on [11]. An aggregated view of the network traffic provides
the ability to learn features and detect anomalies more
accurate. The following procedure is defined to aggregate
netflow records.

1. Slide a window of size w through the netflow records
as illustrated in Fig. 3.

Figure 3. SAWANT Window based Feature Extraction Procedure.

2. For each position of the window compute the
following features:

• Number of unique values of Source IP, Source
Port, Destination IP, Destination port, Duration,
Source Bytes, Number of Packets, and Flow Size
per incoming and outgoing flows.

• Entropy values of Source IP, Source Port,
Destination IP, Destination port, Duration, Source
Bytes, Number of Packets, and Flow Size per
incoming and outgoing flows.

• Minimum, Maximum, Average, Sum, and
Variance of Duration, Source Bytes, Number of
Packets, and Flow Size per incoming, outgoing,
and total flows.

The features are explained in Table I.
3. Calculate malicious rate (named as ρ) of the window

as the label of each feature vector according to the
following equation:

4. Use the achieved feature vector set and their labels

(ρ) as the input data of ANN.

B. Deep Model

An ANN structure is considered as the deep learning
model to analyze the new feature vectors. The output layer
represents the predicted malicious rate, meaning the rate of
abnormal flows inside corresponding window. The results of
test dataset are compared with the actual malicious rate
values using “Pearson Correlation Coefficient” function [29]
to determine how accurate the predicted rates are.

In mathematics, Pearson Correlation Coefficient is
defined as a measure of linear correlation between two
different variables. The result is a value in range of [-1, 1], in
which -1 means considered variables are negatively related,
where increasing each of them results in decreasing the
other. Respectively, 1 means both variables are positively
related, so that, both variables are raised and dropped
together. Finally, 0 means no relation between variables.

Definition 1. Let X and Y be two different variable sets.
Pearson Correlation Coefficient “r” is computed according to
the following equation:

IV. SAWANT EVALUATION

The SAWANT method is evaluated by a rich labeled
dataset called CTU 13. We employed a core i7-6700HQ
computer with 32GB memory to conduct our tests.

A. CTU 13 Dataset

CTU 13 is a labeled dataset captured from CTU
University, Czech Republic, in 2011 [30]. It contains 13 days
of botnet traffic including around 20 million netflow records
and contains IRC, P2P, HTTP, Fast Flux, Spam, Click Fraud,
Port Scan, and DDoS traffic.

B. Testbed Setup

In order to highlight the impact of deep learning hyper
parameters on system's accuracy and speed, we observed
SAWANT in various situations, as noted by Table II.

Three different ANN models having one, two, and four
hidden layers, with the size of 100, 100-500, and 100-500-
500-100 neurons were deployed to evaluate our model. In
addition, a very small subset of pre-processed data was
considered for training, while the rest were taken for testing.
Moreover, the window size of 1000, with step values of 1,

TABLE I. EXTRACTED FEATURES.

 # Unique Values Entropy Min Max Mean Sum Variance Total

Source IP 2a 2 - - - - - 4

Source Port 2 2 - - - - - 4

Destination IP 2 2 - - - - - 4

Destination Port 2 2 - - - - - 4

Duration 2 2 3 3 3 3 3 19

Packets 2 2 3 3 3 3 3 19

Source Bytes 2 2 3 3 3 3 3 19

Flow Size 2 2 3 3 3 3 3 19

Total 16 16 12 12 12 12 12 92

a. Each cell represents the number of features.

TABLE II. SAWANT ANN MODEL.

Hyper Parameters Values

Hidden Layers 1, 2, 4
layer Size (100), (100, 500), (100, 500, 500, 100)

Activation Function Rectified Linear Unit (Relu)
Batch Input Off, On

Dropout 0, 0.2
Train Size 10%, 5%, 2%, 1%
Test Size 90%, 95%, 98%, 99%

Window Size 1000
Step 1, 10, 100

10, and 100 were employed as the sliding window
mechanism. In what follows, the evaluation results are
explained.

C. Correlation Coefficient

We performed the test using the hyper parameters
provided by Table II. The result was predicted malicious rate
in which we compared it with the actual value using
Correlation Coefficient function. Fig. 4 shows an example of
predicted malicious rates compared by the actual values
using the configured parameters explained by Table III, with
the Correlation Coefficient value of 0.99382.

TABLE III. AN EXAMPLE OF PREDICTED MALICIOUS RATE.

Hyper Parameters Values

Hidden Layers 4
layer Size (100, 500, 500, 100)

Activation Function Rectified Linear Unit (Relu)
Batch Input On

Dropout 0.2
Train Size 10%
Test Size 90%

Window Size 1000
Step 1

As mentioned earlier, CTU 13 has about 20 million
netflow records. We deployed one, two, five, and ten percent
of pre-processed data to the system in order to train the
model, which the size of the training sets are described by
Table IV.

TABLE IV. SIZE OF TRAINING SET.

T
ra

in
 S

iz
e

 Step
 1 10 100

1% 196288 19628 1962
2% 392577 39257 3925
5% 981443 98144 9814

10% 1962886 196288 19628

Figure 4. Predicted Malicious Rate Vs. Actual Malicious Rate.

The detailed correlation coefficient results are expressed
by Table V.

As highlighted in Table V, leveraging bigger training sets
as well as choosing 4-layers ANNs provided more detection
rate, which is illustrated in Fig. 5.

Figure 5. Correlation Coefficient for different step values, number of

layers, and training size, where batch and Dropout were set to “On” and

“0.2”, respectively.

Besides, batch input and dropout function plays an
important role to avoid over fitting. As highlighted in Fig. 6,
feeding the model in batch mode accompanying with
dropping random neurons, result in more detection rate in
most cases.

D. Training Time

System training time is a key factor of deep learning
environments. Dozens of parameters impact the training
speed of any deep learning models, but batch input
influences one of the most. Fig. 7 highlights the effect of

TABLE V. CORRELATION COEFFICIENT RESULTS.

Dropout On Off

Batch Input On Off On Off

Step 1 10 100 1 10 100 1 10 100 1 10 100

Number

of Layers

4
Train

Size

10% 0.99 0.99 0.95 0.98 0.98 0.96 0.99 0.99 0.96 0.99 0.99 0.98

5% 0.99 0.98 0.90 0.98 0.97 0.95 0.99 0.99 0.92 0.99 0.99 0.96

2% 0.99 0.97 0.75 0.98 0.97 0.92 0.99 0.98 0.84 0.99 0.98 0.94

1% 0.98 0.95 0.36 0.97 0.96 0.89 0.99 0.96 0.50 0.98 0.98 0.89

2
Train

Size

10% 0.99 0.99 0.81 0.99 0.98 0.80 0.99 0.99 0.92 0.99 0.99 0.81

5% 0.99 0.97 0.58 0.98 0.99 0.92 0.99 0.96 0.83 0.98 0.98 0.94

2% 0.98 0.87 0.35 0.99 0.97 0.34 0.99 0.90 0.60 0.96 0.96 0.91

1% 0.97 0.59 0.24 0.98 0.93 0.63 0.94 0.91 0.31 0.29 0.29 0.82

1
Train

Size

10% 0.99 0.99 0.79 0.99 0.99 0.82 0.99 0.99 0.90 0.91 0.91 0.95

5% 0.99 0.95 0.62 0.99 0.86 0.66 0.99 0.98 0.90 0.78 0.78 0.85

2% 0.98 0.78 0.46 0.99 0.36 0.25 0.99 0.61 0.41 0.97 0.97 0.44

1% 0.95 0.79 0.22 0.95 0.60 0.34 0.98 0.83 0.50 0.45 0.45 0.68

Figure 6. The key role of batch input and dropout function in deep

learning.

using batch input in our model, where using batch input
incredibly raised the speed up to five times.

Figure 7. Batch input On Vs. Off.

In contrast to batch input, using dropout slightly
decreased the speed, as the system trained dataset, in about
343 seconds using a four-hidden layers ANN, having no
dropout configuration, while using this function raised the
training time about 30%. Fig. 8 depicts the dropout impact
on the system training time.

Figure 8. Dropout input On Vs. Off.

Table VI summarize the training time of SAWANT using
different configurations.

V. CONCLUSION

This paper proposed SAWANT, a novel deep learning
window-based technique to predict malicious rate of the
windows. Analyzing the whole network traffic is neither
applicable nor practical in deep learning area due to user
privacy issue and huge training and testing time, hence
SAWANT used netflow traffic.

Experimental results revealed that SAWANT provided
high accurate malicious rate detection (99.952%) for a well-
known labeled traffic named CTU 13, while it was trained by
a very small number of records.

Although SAWANT provided high accurate prediction
for malicious rate of each window, it is necessary to predict
netflow labels. In the future we plan to identify the flow
labels by observing the predicted malicious rates. Also using
more advanced deep learning structures like RNN or DBN is
another direction for the future.

ACKNOWLEDGMENT

This work was supported by the National Key
Technology R&D Program of China under Grant No.
2015BAK34B00 and the National Key Research and
Development Program of China under Grant No.
2016YFB1000102.

TABLE VI. SYSTEM LEARNING TIME.

Dropout On Off

Batch Input On Off On Off

Step 1 10 100 1 10 100 1 10 100 1 10 100

Number

of

Layers

4
Train

Size

10% 463.7 42.04 5.25 2515.41 249.19 25.78 343.28 32.94 4.13 2269.25 219 21.97

5% 230.17 21.48 3.25 1263.1 125.41 13.2 172.54 16.73 2.49 1145.07 107.03 11.83

2% 101.54 9.1 1.81 521.39 48.92 6.52 70.33 7.05 1.33 474.67 41.8 5.09

1% 50.05 4.99 1.53 265.43 25.1 3.58 41.36 3.88 1.13 248.01 20.79 3.29

2
Train

Size

10% 152.02 13.85 2.05 728.42 70.39 7.75 84.57 8.8 1.38 618.73 57.3 6.40

5% 75.66 7.17 1.26 395.57 35.96 4.35 43.88 4.5 0.84 314.34 28.92 3.31

2% 33.11 3.34 0.87 166.54 15.12 2.24 19.34 2.31 0.72 139.37 12.26 1.62

1% 19.68 2.03 0.8 87.21 7.96 1.59 12.56 1.39 0.53 75.36 6.41 1.12

1
Train

Size

10% 40.25 4.25 0.8 377.82 37.65 0.66 30.39 3.23 4.13 336.31 32.82 3.68

5% 22.12 2.33 0.57 200.16 20.04 0.46 15.98 1.87 2.32 181.61 17.34 2.13

2% 10.34 1.2 0.45 84.3 8.09 0.45 7.81 0.95 1.65 77.31 7.19 1.05

1% 7.11 0.84 0.43 46.53 4.29 0.37 5.12 0.74 0.82 42.44 3.87 0.80

REFERENCES

[1] Akamai, “2018 state of the internet / security: A year in review,”
2018. [Online]. Available: https://www.akamai.com/us/en/multimedia

/documents/state-of-theinternet/2018-state-of-the-internet-security-a-
year-in-review.pdf

[2] ——, “2019 state of the internet / security: Ddos and application
attacks,” 2019. [Online]. Available: https://www.akamai.com/us/en/m

ultimedia/documents/state-of-theinternet/state-of-the-internet-security

-ddos-and-application-attacks-2019.pdf

[3] AoN, “2019 cyber security risk report, whats now and whats next,”
2019. [Online]. Available: https://www.aon.com/getmedia/51bff3db-
20ea-46dd-a9aa-1773cfe089ce/Cyber-Security-Risk-Report-2019.pdf

.aspx

[4] A. Bakshi and Y. B. Dujodwala, “Securing cloud from ddos attacks
using intrusion detection system in virtual machine,” in
Communication Software and Networks, 2010. ICCSN’10. Second
International Conference on. IEEE, 2010, pp. 260–264.

[5] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense
mechanisms: classification and state-of-the-art,” Computer Networks,
vol. 44, no. 5, pp. 643–666, 2004.

[6] J. Ioannidis and S. M. Bellovin, “Implementing pushback: Router-
based defense against ddos attacks.” in NDSS, 2002.

[7] A. M. Lonea, D. E. Popescu, and H. Tianfield, “Detecting ddos
attacks in cloud computing environment,” International Journal of
Computers Communications & Control, vol. 8, no. 1, pp. 70–78,
2013.

[8] V. Vaidya, “Dynamic signature inspection-based network intrusion
detection,” Aug. 21 2001, uS Patent 6,279,113.

[9] S. Behal, K. Kumar, and M. Sachdeva, “D-face: An anomaly based
distributed approach for early detection of ddos attacks and flash
events,” Journal of Network and Computer Applications, vol. 111, pp.
49–63, 2018.

[10] O. E. Elejla, B. Belaton, M. Anbar, and A. Alnajjar, “Intrusion
detection systems of icmpv6-based ddos attacks,” Neural Computing
and Applications, vol. 30, no. 1, pp. 45–56, 2018.

[11] M. H. Haghighat and J. Li, “Edmund: Entropy based attack detection
and mitigation engine using netflow data,” in Proceedings of the 8th
International Conference on Communication and Network Security.
ACM, 2018, pp. 1–6.

[12] M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised machine
learning approach for ddos detection,” Applied Intelligence, vol. 48,
no. 10, pp. 3193–3208, 2018.

[13] D. S. Terzi, R. Terzi, and S. Sagiroglu, “Big data analytics for
network anomaly detection from netflow data,” in Computer Science

and Engineering (UBMK), 2017 International Conference on. IEEE,
2017, pp. 592–597.

[14] J. M. Vidal, A. L. S. Orozco, and L. J. G. Villalba, “Adaptive
artificial immune networks for mitigating dos flooding attacks,”
Swarm and Evolutionary Computation, vol. 38, pp. 94–108, 2018.

[15] R. Wang, Z. Jia, and L. Ju, “An entropy-based distributed ddos
detection mechanism in software-defined networking,” in
Trustcom/Big-DataSE/ISPA, 2015 IEEE, vol. 1. IEEE, 2015, pp.
310–317.

[16] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in 2010 IEEE
symposium on security and privacy. IEEE, 2010, pp. 305–316.

[17] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M.
Ghogho, “Deep learning approach for network intrusion detection in
software defined networking,” in 2016 International Conference on
Wireless Networks and Mobile Communications (WINCOM). IEEE,
2016, pp. 258–263.

[18] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A.
Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural
networks for acoustic modeling in speech recognition,” IEEE Signal
processing magazine, vol. 29, 2012.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances
in neural information processing systems, 2012, pp. 1097–1105.

[20] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 2013,
pp. 6645–6649.

[21] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine
intelligence toward tomorrows intelligent network traffic control
systems,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
pp. 2432–2455, 2017.

[22] S. S. Roy, A. Mallik, R. Gulati, M. S. Obaidat, and P. Krishna, “A
deep learning based artificial neural network approach for intrusion
detection,” in International Conference on Mathematics and
Computing. Springer, 2017, pp. 44–53.

[23] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, “Intrusion detection
using convolutional neural networks for representation learning,” in
International Conference on Neural Information Processing. Springer,
2017, pp. 858–866.

[24] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for
intrusion detection using recurrent neural networks,” Ieee Access,
vol. 5, pp. 21 954–21 961, 2017.

[25] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory
recurrent neural network classifier for intrusion detection,” in 2016

International Conference on Platform Technology and Service
(PlatCon). IEEE, 2016, pp. 1–5.

[26] R. C. Staudemeyer, “Applying long short-term memory recurrent
neural networks to intrusion detection,” South African Computer
Journal, vol. 56, no. 1, pp. 136–154, 2015.

[27] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning
approach for network intrusion detection system,” in Proceedings of
the 9th EAI International Conference on Bio-inspired Information and
Communications Technologies (formerly BIONETICS). ICST
(Institute for Computer Sciences, Social-Informatics and , 2016, pp.
21–26.

[28] L. F. Maimo´, A´ . L. P. Go´mez, F. J. G. Clemente, M. G. Pe´rez,
and G. M. P´erez, “A self-adaptive deep learning-based system for
anomaly detection in 5g networks,” IEEE Access, vol. 6, pp. 7700–
7712, 2018.

[29] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[30] CTU, “Ctu-13 botnet traffic dataset,” 2011. [Online]. Available:
https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-
botnet-normal-and-background-traffic.html

