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Abstract— Network security becomes a big concern nowadays. 

Although many solutions have been developed to detect 

network anomalies, the number of successful attacks like 

DDoS, Phishing, and Spam are boosting dramatically.  

In this paper, a novel behavior-based method, called 

SAWANT, is proposed to detect malicious rate of network 

traffic. SAWANT uses deep learning architecture to analyze 

netflow data, in which several meaningful attributes are 

extracted using a sliding window technique. Extracted 

attributes are then taken to a deep learning structure to 

identify malicious rate of each window, that represents the rate 

of abnormal netflow records per the window size. 

Experimental results over the well-known labeled botnet 

traffic CTU 13 showed that SAWANT was highly accurate as 

more than 99% of predicted malicious rates were correct, 

while it required a very small number of records for training. 

Keywords- Deep Learning; Neural Network; Netflow; 

Network Intrusion Detection System; Pearson Correlation 

Coefficient 

I.  INTRODUCTION 

Due to the rapid development of network technology, 
more and more systems tent to rely on network. However, 
the number of malicious activities such as DDoS, Man in the 
Middle, Phishing, and Eavesdropping attacks are increasing 
radically [1-3]. Hence, security has become more mission 
critical than ever in computer networks. 

Network Intrusion Detection Systems (NIDS) protect 
networks from malicious attacks. Generally, NIDS is 
categorized into either signature-based or behavior-based 
detection systems. A signature-based NIDS compares the 
monitored traffics with the known patterns (attack 
signatures) to detect malicious activities [4-8]. Although 
signature-based technique provides the ability to detect 
already known attacks with no false negative, it is totally 
unable to find zero-day attacks. On the other hand, behavior-
based approach is able to detect new attacks, by modeling 
network behavior [9-15]. However, this approach raises false 
positives, therefore minimizing false alarms is its main 
challenge. 

For many years, machine learning algorithms were 
employed as conventional techniques to implement 
behavior-based detection engines. In order to detect 
abnormal behavior, a set of guidelines of how to use machine 
learning approaches were provided by Sommer et al. in [16].  

Nowadays, deep learning has achieved great success and 
has been used widely in computer science for natural 
language processing, image and voice recognition. It 
provides the ability to find a correlation of analyzed data 
automatically. Therefore, this approach is a good option to 
be leveraged for NIDSes. 

In this paper, we propose a smart window based deep 
learning framework, called SAWANT, to detect network 
anomalies. The key novelty of our approach is embedding 
network characteristics into deep learning procedure, where 
SAWANT analyzes the behavior of network traffic by 
aggregating flow records inside a window. 

Most of the state-of-the-art techniques analyze packet 
headers or payloads, netflow records, or application layer 
logs to identify malicious activities. However, several 
network anomalies can only be revealed when these data are 
inspected together, such as Port/Range Scan, DDoS attacks, 
or Botnet C&C communications. As a result, considering 
batch records provides the ability to efficiently detect 
abnormal behavior with a very small set of training data. 
According to our experimental results, there is no need to 
train SAWANT with high number of netflow data as it 
achieved 99.952% detection rate using only one percent 
netflow records for training, which is magnificent. 

The rest of the paper is organized as follows: In  
section II, a review of deep learning-based IDSes are 
explained. Section III demonstrates SAWANT method step 
by step. The experimental results are presented in section IV. 
Finally, the paper is concluded and future research directions 
are provided in section V. 

II. DEEP LEARNING-BASED NIDSES 

In traditional machine learning techniques, feature 
extraction is manually applied and the system automatically 
learns how to map the achieved features to the outputs. 
However, in deep learning, multiple levels of features are 
automatically discovered and analyzed together to achieve 
the output [17]. There are various types of deep learning 
architectures including Deep Artificial Neural Network 
(ANN), Convolutional Neural Network (CNN), Recurrent 
Neural Network (RNN), Deep Belief Network (DBN) and so 
on. 

ANN emulates human brain and its concepts in 
hierarchical architecture. It consists of input, output, and a 
set of hidden layers, where each layer comprises a set of 
learning units called neurons [18]. CNN is another class of 



deep learning mostly used for analyzing images. Compared 
to ANN, it requires less variables to train the model, so that 
its learning procedure is much easier [19]. RNN is a type of 
deep learning originally designed for time series data, as it 
uses its internal states to processes sequence of inputs [20]. 
The key advantage of RNN is its ability of self-learning from 
the previous events. Fig. 1 compares different deep learning 
models. 

 

Figure 1.  The comparison between ANN, CNN, and RNN [21]. 

Roy et al. [22] used deep ANN model to design an NIDS, 
which its accuracy was improved by multilayer feed-forward 
Neural Network with 400 hidden layer neurons. Rectifier and 
softmax activation functions are used for the output layer, 
and the model was evaluated by KDD Cup 99 dataset, with 
41 features and around 4,900,000 connection records. The 
method achieved better results compared to SVM, using 75% 
of the dataset as training, and the rest for testing.  

Li et al. [23] applied CNN for feature extraction and 
classification tasks. The main challenge of using CNN in 
NIDS is the conversion step. Although CNN ideally classify 
images, there is still a big challenge for text classification. In 
this work, a new conversion algorithm was proposed to map 
41 features of NSL-KDD into 464 binary vectors. Then 464 
vectors ware converted into 8*8-pixel images. So that the 
images were sent to CNN as training the model. Two learned 
CNN models, ResNet 50 and GoogLeNet were used for their 
experiments. The proposed CNN-IDS achieved accuracy of 
77.14% and 79.14% using GoogLeNet and ResNet 50, 
respectively. However, the accuracy was not comparable to 
other deep learning models. 

Yin et al. [24] presented a deep learning model based on 
RNN for NIDS purpose. It is argued that traditional machine 
learning techniques are unable to detect massive intrusion 
efficiently. The proposed approach started with the pre-
processing phase which contains two operations on NSL-
KDD dataset: mapping string features to binary vectors and 
also conducted feature normalization. Then, the features 
were sent to training phase, and the generated model was 
applied for testing phase. The experimental results indicated 
that the accuracy of intrusion detection was 83.28% and 
81.29% for the binary and multi-class classification, 

respectively. Comparison of the RNN method with the 
traditional machine learning algorithms like SVM showed 
that this approach outperformed those techniques. 

Kim et al. in [25] also developed a generative model of 
Long Short-Term Memory Recurrent Neural Network 
(LSTM-RNN). The experiments revealed that increasing 
hidden layer size achieved better system accuracy. The 
LSTM model detected attacks when it was trained by a very 
small subset of data (around 1%). However, the model ended 
up with some benign records as malicious as well more than 
10% false positive rate.  

Staudemeyer [26] tested different network topologies of 
RNN for network traffic modeling as time series with KDD 
Cup 99 dataset for extracting training data. With various 
parameters and structures of an RNN, such as learning rate, 
the number of memory blocks and the cells per memory 
block, the RNN model is capable to achieve highly accurate 
results in case of modeling the system by a large number of 
records. 

Javaid et al. [27] proposed a new NIDS approach STL, 
that contains two phases: Unsupervised Feature Learning 
(UFL) and Supervised Feature Learning (SFL). For the UFL 
phase, Sparse Autoencoder is used to extract features, while 
the softmax regression function was applied for the 
classification task as the SFL phase. Using the NSL-KDD 
dataset, the STL method achieved 88.39% and 79.10% 
accuracy for 2-class and 5-class classifications, respectively, 
which is not comparable to RNN. 

All the aforementioned methods took the advantage of 
deep learning structure to analyze network behavior. 
Although these methods achieved high accurate results over 
NSL-KDD dataset, they only analyze the original network 
records. We argue that aggregating the network records 
provides a complete overview of the network, and thus 
enables the NIDS to detect more advanced attacks with less 
false alarms.  

Maimo et. al. in [28] aggregated netflow records using 
sliding window algorithm and generated a new dataset with 
144 different attributes. A simple ANN as well as an 
advanced LSTM were employed for attack symptom and 
network anomaly detection, respectively. However, the 
accuracy of the method over CTU 13 dataset was not 
impressive as the F1-score was 89.4% in the best case due to 
the procedure of assigning the malicious label to each 
window.  

To embed network characteristics into deep learning 
procedure, we proposed SAWANT as a sliding window 
based deep learning method. SAWANT aggregates netflow 
data in which several network attributes are computed. We 
also defined malicious rate as the label of each window, 
describing how many malicious records are presented inside 
a window. 

III. SAWANT TECHNIQUE 

To detect network anomalies, we proposed a novel deep 
learning technique called SAWANT (SmArt Window based 
Anomaly detection using Network Traffic). As depicted in 
Fig. 2, a pre-processing procedure is performed over netflow 
records to aggregate data and extract meaningful network 



attributes. Hereafter, the extracted vectors are sent to a deep 
ANN to train the model. The output of SAWANT model is 
called malicious rate, in which identifies how much the 
aggregated vector is abnormal. In other words, malicious rate 
represents the number of anomalies inside an aggregated 
record.  

 

Figure 2.  SAWANT Architecture. 

A. Pre-processing 

In order to maximize the accuracy of each deep learning 
model, it is necessary to understand the environment, first. 
Netflow records contain source/destination IP addresses and 
port numbers, protocol, flow duration, timestamp, flow size, 
number of packets level 3 protocol, next hop router, input 
and output SNMP interface, and TCP flags. These records 
are too simple to train a deep learning model, in which a few 
features will be extracted. Most of the network attacks have 
almost the same netflow attributes like Port/Range Scan, 
Botnet C&C Communications, DDoS Attacks and so 
on [11]. An aggregated view of the network traffic provides 
the ability to learn features and detect anomalies more 
accurate. The following procedure is defined to aggregate 
netflow records. 

1. Slide a window of size w through the netflow records 
as illustrated in Fig. 3. 

 

Figure 3.  SAWANT Window based Feature Extraction Procedure. 

2. For each position of the window compute the 
following features: 

• Number of unique values of Source IP, Source 
Port, Destination IP, Destination port, Duration, 
Source Bytes, Number of Packets, and Flow Size 
per incoming and outgoing flows.  

• Entropy values of Source IP, Source Port, 
Destination IP, Destination port, Duration, Source 
Bytes, Number of Packets, and Flow Size per 
incoming and outgoing flows.  

• Minimum, Maximum, Average, Sum, and 
Variance of Duration, Source Bytes, Number of 
Packets, and Flow Size per incoming, outgoing, 
and total flows. 

The features are explained in Table I. 
3. Calculate malicious rate (named as ρ) of the window 

as the label of each feature vector according to the 
following equation: 

 
4. Use the achieved feature vector set and their labels 

(ρ) as the input data of ANN. 

B. Deep Model 

An ANN structure is considered as the deep learning 
model to analyze the new feature vectors. The output layer 
represents the predicted malicious rate, meaning the rate of 
abnormal flows inside corresponding window. The results of 
test dataset are compared with the actual malicious rate 
values using “Pearson Correlation Coefficient” function [29] 
to determine how accurate the predicted rates are. 

In mathematics, Pearson Correlation Coefficient is 
defined as a measure of linear correlation between two 
different variables. The result is a value in range of [-1, 1], in 
which -1 means considered variables are negatively related, 
where increasing each of them results in decreasing the 
other. Respectively, 1 means both variables are positively 
related, so that, both variables are raised and dropped 
together. Finally, 0 means no relation between variables. 

Definition 1. Let X and Y be two different variable sets. 
Pearson Correlation Coefficient “r” is computed according to 
the following equation: 

 

IV. SAWANT EVALUATION 

The SAWANT method is evaluated by a rich labeled 
dataset called CTU 13. We employed a core i7-6700HQ 
computer with 32GB memory to conduct our tests. 

A. CTU 13 Dataset 

CTU 13 is a labeled dataset captured from CTU 
University, Czech Republic, in 2011 [30]. It contains 13 days 
of botnet traffic including around 20 million netflow records 
and contains IRC, P2P, HTTP, Fast Flux, Spam, Click Fraud, 
Port Scan, and DDoS traffic. 

B. Testbed Setup 

In order to highlight the impact of deep learning hyper 
parameters on system's accuracy and speed, we observed 
SAWANT in various situations, as noted by Table II. 

Three different ANN models having one, two, and four 
hidden layers, with the size of 100, 100-500, and 100-500-
500-100 neurons were deployed to evaluate our model. In 
addition, a very small subset of pre-processed data was 
considered for training, while the rest were taken for testing. 
Moreover, the window size of 1000, with step values of 1, 



TABLE I.  EXTRACTED FEATURES. 

 # Unique Values Entropy Min Max Mean Sum Variance Total 

Source IP 2a 2 - - - - - 4 

Source Port 2 2 - - - - - 4 

Destination IP 2 2 - - - - - 4 

Destination Port 2 2 - - - - - 4 

Duration 2 2 3 3 3 3 3 19 

# Packets 2 2 3 3 3 3 3 19 

Source Bytes 2 2 3 3 3 3 3 19 

Flow Size 2 2 3 3 3 3 3 19 

Total 16 16 12 12 12 12 12 92 

a. Each cell represents the number of features. 

 

TABLE II.  SAWANT ANN MODEL. 

Hyper Parameters Values 

Hidden Layers 1, 2, 4 
layer Size (100), (100, 500), (100, 500, 500, 100) 

Activation Function Rectified Linear Unit (Relu) 
Batch Input Off, On 

Dropout 0, 0.2 
Train Size 10%, 5%, 2%, 1% 
Test Size 90%, 95%, 98%, 99% 

Window Size 1000 
Step 1, 10, 100 

 
10, and 100 were employed as the sliding window 
mechanism. In what follows, the evaluation results are 
explained. 

C. Correlation Coefficient 

We performed the test using the hyper parameters 
provided by Table II. The result was predicted malicious rate 
in which we compared it with the actual value using 
Correlation Coefficient function. Fig. 4 shows an example of 
predicted malicious rates compared by the actual values 
using the configured parameters explained by Table III, with 
the Correlation Coefficient value of 0.99382. 

TABLE III.  AN EXAMPLE OF PREDICTED MALICIOUS RATE. 

Hyper Parameters Values 

Hidden Layers 4 
layer Size (100, 500, 500, 100) 

Activation Function Rectified Linear Unit (Relu) 
Batch Input On 

Dropout 0.2 
Train Size 10% 
Test Size 90% 

Window Size 1000 
Step 1 

As mentioned earlier, CTU 13 has about 20 million 
netflow records. We deployed one, two, five, and ten percent 
of pre-processed data to the system in order to train the 
model, which the size of the training sets are described by 
Table IV. 

TABLE IV.  SIZE OF TRAINING SET. 

T
ra

in
 S

iz
e 

 Step 
 1 10 100 

1% 196288 19628 1962 
2% 392577 39257 3925 
5% 981443 98144 9814 

10% 1962886 196288 19628 

 

Figure 4.  Predicted Malicious Rate Vs. Actual Malicious Rate. 

The detailed correlation coefficient results are expressed 
by Table V. 

As highlighted in Table V, leveraging bigger training sets 
as well as choosing 4-layers ANNs provided more detection 
rate, which is illustrated in Fig. 5. 

 

 

Figure 5.  Correlation Coefficient for different step values, number of 

layers, and training size, where batch and Dropout were set to “On” and 

“0.2”, respectively. 

Besides, batch input and dropout function plays an 
important role to avoid over fitting. As highlighted in Fig. 6, 
feeding the model in batch mode accompanying with 
dropping random neurons, result in more detection rate in 
most cases. 

D. Training Time 

System training time is a key factor of deep learning 
environments. Dozens of parameters impact the training 
speed of any deep learning models, but batch input 
influences one of the most. Fig. 7 highlights the effect of  
 



TABLE V.  CORRELATION COEFFICIENT RESULTS. 

Dropout On Off 

Batch Input On Off On Off 

Step 1 10 100 1 10 100 1 10 100 1 10 100 

Number 

of Layers 

4 
Train 

Size 

10% 0.99 0.99 0.95 0.98 0.98 0.96 0.99 0.99 0.96 0.99 0.99 0.98 

5% 0.99 0.98 0.90 0.98 0.97 0.95 0.99 0.99 0.92 0.99 0.99 0.96 

2% 0.99 0.97 0.75 0.98 0.97 0.92 0.99 0.98 0.84 0.99 0.98 0.94 

1% 0.98 0.95 0.36 0.97 0.96 0.89 0.99 0.96 0.50 0.98 0.98 0.89 

2 
Train 

Size 

10% 0.99 0.99 0.81 0.99 0.98 0.80 0.99 0.99 0.92 0.99 0.99 0.81 

5% 0.99 0.97 0.58 0.98 0.99 0.92 0.99 0.96 0.83 0.98 0.98 0.94 

2% 0.98 0.87 0.35 0.99 0.97 0.34 0.99 0.90 0.60 0.96 0.96 0.91 

1% 0.97 0.59 0.24 0.98 0.93 0.63 0.94 0.91 0.31 0.29 0.29 0.82 

1 
Train 

Size 

10% 0.99 0.99 0.79 0.99 0.99 0.82 0.99 0.99 0.90 0.91 0.91 0.95 

5% 0.99 0.95 0.62 0.99 0.86 0.66 0.99 0.98 0.90 0.78 0.78 0.85 

2% 0.98 0.78 0.46 0.99 0.36 0.25 0.99 0.61 0.41 0.97 0.97 0.44 

1% 0.95 0.79 0.22 0.95 0.60 0.34 0.98 0.83 0.50 0.45 0.45 0.68 

 

 

Figure 6.  The key role of batch input and dropout function in deep 

learning. 

using batch input in our model, where using batch input 
incredibly raised the speed up to five times. 

 

Figure 7.  Batch input On Vs. Off. 

In contrast to batch input, using dropout slightly 
decreased the speed, as the system trained dataset, in about 
343 seconds using a four-hidden layers ANN, having no 
dropout configuration, while using this function raised the 
training time about 30%. Fig. 8 depicts the dropout impact 
on the system training time. 

 

Figure 8.  Dropout input On Vs. Off. 

Table VI summarize the training time of SAWANT using 
different configurations. 

V. CONCLUSION 

This paper proposed SAWANT, a novel deep learning 
window-based technique to predict malicious rate of the 
windows. Analyzing the whole network traffic is neither 
applicable nor practical in deep learning area due to user 
privacy issue and huge training and testing time, hence 
SAWANT used netflow traffic. 

Experimental results revealed that SAWANT provided 
high accurate malicious rate detection (99.952%) for a well-
known labeled traffic named CTU 13, while it was trained by 
a very small number of records.  

Although SAWANT provided high accurate prediction 
for malicious rate of each window, it is necessary to predict 
netflow labels. In the future we plan to identify the flow 
labels by observing the predicted malicious rates. Also using 
more advanced deep learning structures like RNN or DBN is 
another direction for the future.  
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TABLE VI.  SYSTEM LEARNING TIME. 

Dropout On Off 

Batch Input On Off On Off 

Step 1 10 100 1 10 100 1 10 100 1 10 100 

Number 

of 

Layers 

4 
Train 

Size 

10% 463.7 42.04 5.25 2515.41 249.19 25.78 343.28 32.94 4.13 2269.25 219 21.97 

5% 230.17 21.48 3.25 1263.1 125.41 13.2 172.54 16.73 2.49 1145.07 107.03 11.83 

2% 101.54 9.1 1.81 521.39 48.92 6.52 70.33 7.05 1.33 474.67 41.8 5.09 

1% 50.05 4.99 1.53 265.43 25.1 3.58 41.36 3.88 1.13 248.01 20.79 3.29 

2 
Train 

Size 

10% 152.02 13.85 2.05 728.42 70.39 7.75 84.57 8.8 1.38 618.73 57.3 6.40 

5% 75.66 7.17 1.26 395.57 35.96 4.35 43.88 4.5 0.84 314.34 28.92 3.31 

2% 33.11 3.34 0.87 166.54 15.12 2.24 19.34 2.31 0.72 139.37 12.26 1.62 

1% 19.68 2.03 0.8 87.21 7.96 1.59 12.56 1.39 0.53 75.36 6.41 1.12 

1 
Train 

Size 

10% 40.25 4.25 0.8 377.82 37.65 0.66 30.39 3.23 4.13 336.31 32.82 3.68 

5% 22.12 2.33 0.57 200.16 20.04 0.46 15.98 1.87 2.32 181.61 17.34 2.13 

2% 10.34 1.2 0.45 84.3 8.09 0.45 7.81 0.95 1.65 77.31 7.19 1.05 

1% 7.11 0.84 0.43 46.53 4.29 0.37 5.12 0.74 0.82 42.44 3.87 0.80 
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