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Abstract: With the explosion of network bandwidth and the ever-changing requirements for diverse net-

work-based applications, the traditional processing architectures, i.e., general purpose processor (GPP) and 

application specific integrated circuits (ASIC) cannot provide sufficient flexibility and high performance at the 

same time. Thus, the network processor (NP) has emerged as an alternative to meet these dual demands for 

today’s network processing. The NP combines embedded multi-threaded cores with a rich memory hierarchy 

that can adapt to different networking circumstances when customized by the application developers. In to-

day’s NP architectures, multithreading prevails over cache mechanism, which has achieved great success in 

GPP to hide memory access latencies. This paper focuses on the efficiency of the cache mechanism in an NP. 

Theoretical timing models of packet processing are established for evaluating cache efficiency and experi-

ments are performed based on real-life network backbone traces. Testing results show that an improvement 

of nearly 70% can be gained in throughput with assistance from the cache mechanism. Accordingly, the cache 

mechanism is still efficient and irreplaceable in network processing, despite the existing of multithreading. 
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Introduction 

Due to the rapid increase of network bandwidth, gen-
eral purpose processors (GPPs) are becoming incom-
petent to satisfy the requirements of OSI Layer 3 or 
Layer 4 network processing at line speeds of OC-192 
(10 Gbps) and higher. Meanwhile, the ever-changing 
network environments and thousands of newly-    
emerging applications are gradually making applica-
tion specific integrated circuits (ASICs) obsolete due 

to their long cycle and high cost of research and de-
velopment. As a result, network processors (NPs) have 
become a promising alternative for high performance 
networking and security gateway design.  

Since NPs balance flexibility and processing speed, 
they are expected to achieve both ASIC’s high per-
formance and GPP’s time-to-market advantage, bene-
ficial from their distributed, multiprocessor, multi-
threaded architectures and the programming flexibility. 
Generally, a well-designed NP architecture should 
meet three requirements. 

High processing speed The Internet backbone 
has already reached the OC-192 line rate and is ap-
proaching the OC-768 rate (40 Gbps), which greatly 
shortens the processing time for each packet. Then NPs 
must be very fast to operate in real-time.  

Ease of use Industrial competition has caused the 
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product development cycle to be the decisive factor for 
system design companies to achieve fast 
time-to-market. Thus, NPs must enable very fast de-
velopment time.  

Flexibility New protocols and applications are 
constantly emerging in the network community. Thus, 
NP programming and upgrading must be easy and 

flexible to extend the products’ time-in-market.  
Many integrated circuit companies, such as Intel[1], 

AMCC[2], Freescale[3], and Agere[4] have developed 
programmable NP products. Figure 1 shows the hard-
ware architecture of the Intel IXP 2800 NP, one of the 
most popular high-end NP chips. 

 
Fig. 1  Hardware architecture of Intel IXP 2800 

As shown in Fig. 1, the IXP 2800 NP has two clus-
ters of micro-engines (MEs), each of which supports 8 
threads without context switching overhead. In addi-
tion, the IXP 2800 NP has a hierarchy of memory 
banks with various access speeds. The memory banks 
include registers, local memories (LMs) embedded in 
MEs, a scratchpad shared by all the MEs, and 4 chan-
nels of off-chip static random access memory (SRAM) 
banks along with 3 channels of off-chip dynamic ran-
dom access memory (DRAM) banks.  

In high-end NP architectures, the design of memory 
hierarchy is playing a more and more important role 
for the following reasons. 

The memory access speed is far behind the proc-
essing speed of the NP cores and the gap is increasing. 
Some NP cores can reach a working frequency of 1.4 
GHz[1] while the off-chip SRAM needs 150 core cycles 
and DRAM needs 300 core cycles for one memory 
access. Hence, the memory access speed is the proc-
essing bottleneck and the most challenging aspect of 
NP designs.  

The memory hierarchy design greatly impacts the 
application development as well as the overall per-
formance. An efficient flexible memory hierarchy 
greatly facilitates application development, which re-
duces the time-to-market and extends the product time.  

Traditional computer architectures are typically 
comprised of three levels of memories: cache, main 
memory, and hard disk. These three memory levels 
conform to the inclusion principle, which means that 
data stored in the higher memory levels should also 
have copies in the lower levels. The inclusion principle 
facilitates the programming to a great extent. With 
cache mechanism and memory management unit 
(MMU), application developers do not have to explic-
itly control the data transfer between different     
levels, since the memory control is transparent to the 
programs.  

However, unlike traditional architectures, the major-
ity of today’s NP products do not provide hard-
ware-enhanced data transfer mechanisms such as cache. 
Instead, the memory hierarchy is directly revealed   
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to the programmers so the data structures must be   
explicitly allocated to the various memory banks. Be-
sides, the data transfer must be controlled by instruc-
tions. Without employment of cache mechanism, many 
NP vendors are utilizing multithreading to improve the 
performance due to its advantage of hiding memory 
access latencies.  

This paper analyzes the difference between multi-
threading and the cache mechanism and whether the 
cache mechanism can be an efficient addition to NP 
designs. This paper presents theoretical timing models 
for packet processing to evaluate cache efficiency in 
NPs. Experiments with real-life traces strongly support 
the viewpoint that the cache mechanism can achieve 
high efficiency in NP.  

1  Background 

This paper focuses on the efficiency of the cache 
mechanism in multi-core and multithreaded NPs. A 
brief introduction to the cache mechanism is provided 
first, followed by a comparison with multithreading. 
Then related work on the NP cache mechanism is   
discussed.  

1.1  Cache mechanism principles 

The cache discussed in this paper is assumed to be 
high speed memory with hardware assistance for 
maintenance and automatic updating. The cache 
mechanism is based on the locality principle, which 
means that every program will only access a small 
range of memory addresses within a short period of 
time. The locality includes temporal locality indicating 
that an entry is likely to be accessed again if it was just 
accessed and spatial locality indicating that nearby 
entries are likely to be accessed just after an entry is 
accessed.  

Generally speaking, there are three types of memory 
latency hiding technologies, which are widely used 
nowadays: (a) prefetch mechanism which strives to 
avoid memory accesses; (b) cache mechanism which 
aims to shorten the memory access latencies;       
(c) multithreading mechanism which tries to hide the 
memory access latencies by simultaneous instruction 
executions.  

Since the prefetch mechanism is difficult to imple-
ment on NPs, multithreading and the cache mechanism 

remain as the candidate schemes. Multithreading im-
proves NP core utilization and delivers stable per-
formance in spite of the data locality. However, each 
thread needs its own set of registers, which requires a 
large memory access bandwidth. The programming 
difficulty is another challenge. On the other side, the 
cache mechanism can shorten the waiting times of NP 
cores, and simplify the design of applications. How-
ever, the cache mechanism needs high speed memory 
and hardware assistance. Besides, it relies on data lo-
cality and suffers performance decline due to cache 
misses.  

1.2  Previous work on NPs 

There are two main concerns that have restricted the 
employment of the cache mechanism in NPs.  

First, network processing is assumed to lack data 
locality, both temporal and spatial. Hence, the cache hit 
rate will be quite low[5]. 

Second, the average memory access time with 
cache mechanism is not constant due to cache misses, 
which conflicts with the real-time requirements of 
network processing. This might introduce jitter into the 
entire system performance[6]. 

In recent years, there have been some papers dis-
cussing cache mechanisms for NPs, mainly using them 
for routing table lookup[7-9] and flow classification[10-13] 
applications. However, these two prime concerns are 
not addressed directly in these papers.  

The original attempt to evaluate cache efficiency in 
network processing was given by Memik et al.[14] They 
set up a benchmark named NetBench and used Sim-
pleScalar[15] as the evaluation simulator. Actually, 
NetBench is designed for testing parameters related to 
instruction level parallelism, branch prediction accu-
racy, instruction distribution, and cache entry distribu-
tion. SimpleScalar is based on the general purpose 
processor Alpha 21264 with only one core, which is 
rather different from NP architectures. The shortcom-
ing greatly weakened the applicability of the simula-
tion results. Wolf and Franklin[16] conducted similar 
simulations on another benchmark named Comm-     
Bench[16] but their analysis has the same problem.  

Afterwards, Mudigonda et al.[17,18] improved the 
SimpleScalar simulator to support multithreading to 
evaluate the cache mechanism in NPs. They tested   
applications including flow classification and traffic 
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auditing with real-life rule sets to show that the cache 
mechanism is more efficient in reducing memory     
access time than wide-word access and scratchpad   
access.  

Although the work of Mudigonda et al. provided 
more convincing simulation results, the simulator was 
still based on general purpose processors and they did 
not look into the effect of data locality in real-life net-
work backbone traces. This paper investigates the ef-
fect of data locality in network processing and evalu-
ates cache efficiency in NP architectures. Experiments 
with real-life Internet backbone traffic traces are con-
ducted and the throughput speedup is calculated ac-
cording to theoretical timing models.  

2  Data Locality in Network  
Processing 

This section analyzes the data locality in network 
processing procedures based on session lookup appli-
cations with the locality statistics from actual traces.  

2.1  Data access mode in session lookup 

Session lookup is such an important module in modern 
network processing that it is widely used in network 
devices including firewalls, intrusion detection/ preven-
tion systems, and many other network gateway devices. 
The function of session lookup is to search for the 
matching entry in a session table related to certain 
header fields of a packet. The session table is typically 
implemented as a hash table which records the states 
and actions of incoming and outgoing flows. Thus, 
packets belonging to the same flow can be associated 
to their corresponding processing actions directly 
without going through the tedious packet classification 
procedure used for the first flow packet.  

The data locality in session lookup applications is 
analyzed based on the data access model. The session 
lookup procedure includes: (1) extract related packet 
header fields; (2) lookup the session table with the 
hash key generated from the packet header fields; (3) if 
a matching entry exists, update its states; otherwise, 
pass the packet to the packet classification module 
which is the first procedure in session creation.  

The session lookup process is quite simple and there 
are hardware optimized instructions on NP to do the 
key operations such as fetching the packet header 

fields and computing hash values. The code is nor-
mally compact and can be placed in high speed in-
struction memory such as a control store or LM. For 
example, the IXP 2800 NP supports hardware-assisted 
cyclical redundancy check (CRC) hash and the session 
lookup program takes only 50 lines of microcode in 
our implementation. However, the session table data 
structure is often very large and can only be allocated 
to off-chip memory banks with lower access speeds, 
which introduces a potential bottleneck in the overall 
application performance.  

Figure 2 shows the pseudo code for the primary 
memory accesses in session lookup.  

 
Session_Lookup ( ) 
{ 

 Get_Packet_Header (); 
 { 
Access on-chip local memory to get load instructions; 
Access off-chip DRAM to get packet header; 
} 
Session_Table_Access (); 
{ 
Access on-chip local memory to get lookup instructions; 
Access off-chip DRAM to index session table; 
} 
Session_Table_Update (); 
{ 
Access on-chip local memory to get update instructions; 
Write off-chip DRAM to update session table; 
} 

} 

Fig. 2  Data access mode in session lookup 

According to the code, the processing time for a ses-
sion lookup can be calculated as  

Process Instr InstrExcute InstrAccess PacketRAMAccess( )T N T T T  

TableRAMAccess TableRAMWrite(1 )T T         (1) 
Here, InstrN  denotes the number of instruction lines. 

InstrExcuteT  represents the execution time for each in-
struction; InstrAccessT  is the total memory access time for 
loading instructions; PacketRAMAccessT  is the memory access 
time for fetching packet header fields; TableRAMAccessT  is 
the time needed for one session lookup; TableRAMWriteT  
is the time needed for one session update; and  de-
notes the additional times of session table lookups 
when hash collisions occur. Session creation and tear-
down are not considered here since they have no rela-
tion with cache efficiency.  
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2.2  Data locality in session lookup 

This analysis is based on the CRC hash as the hash 
function, which is a well-known procedure with hard-
ware support by many NP chips. The session table size 
is set to 64K entries. In addition, this analysis focuses 
on the temporal locality, since the session table is pre-
cisely indexed by the hash value, which is unrelated to 
spatial locality.  

For the processing time given in Eq. (1), InstrN  is 
determined by the complexity of the session lookup 
application, for example 50 lines of microcode on the 
IXP. InstrExcuteT  is determined by the instruction proc-
essing speed of the NP cores while InstrAccessT  is deter-
mined by the control store access speed. Incoming 
packets are stored in the packet buffer in off-chip 
DRAM, which needs PacketRAMAccessT  each time to get a 
packet header. The large session table is normally 
stored in off-chip DRAM memory banks.  

Therefore, the target of the cache mechanism in ses-
sion lookup applications is to reduce the data access 
time for each session table read and write, i.e., 

TableRAMAccessT  and TableRAMWriteT . The data locality of the 
session lookup application was then analyzed using a 
network backbone trace with this objective in mind.  

The trace is of real-life traffic acquired from the 
OC-192 backbone of the Internet2’s Indianapolis 
(IPLS) Abilene router node toward Kansas City 
(KSCY)[19-21], which is considered to be representative 
of Internet backbone traces. The trace contains a large 
number of flows with a stable packet arrival mode that 
is not heavily influenced by individual factors or burst 
accesses. The dataset has a total of 50M packets, which 
is equal to 10 min of traffic volume at IPLS.  

To evaluate the dynamic data locality, traffic was 
analyzed in time intervals by treating each consecutive 
50K packets as a segment. Hence, the entire traffic was 
split into 1000 time intervals of around 0.6 s. Analysis 
of the statistical characteristics of the time intervals is 
as follows:  

The number of matching session entries in each 
time interval is relatively stable, with an average value 
of 7658 for each 50K packets. Figure 3 shows the 
matching entry numbers for all the 1000 time intervals, 
which shows that the number of flows within each time 
interval is relatively stable. The data also implies that 
the CRC hash performance in the various intervals of 

the trace was quite steady.  
To illustrate the packet scattering in different 

flows, one time interval is picked as an example. Fig-
ure 4 depicts the hit times for the session entries in 
decreasing order while Fig. 5 shows the cumulative hit 
rate for the session entries. Figure 5 indicates that 
nearly 70% of the packets are from the most offen hit 
1000 flows, which is around 1/7 of the total number of 
flows. This result confirms that the majority of the 
network traffic belongs to a small set of flows[22].  

 
Fig. 3  Matching entry number 

 
Fig. 4  Entry hit distribution 

 
Fig. 5  Accumulative hit rate 

The data locality in session lookup was analyzed 
by counting the rate of session entries that are hit more 
than 10 times in each time interval as shown in Fig. 6. 
The most hit session entries show that around 12% are 
hit more than 10 times in each time interval. The curve 
shows that the rate does not vary much in different 
time intervals, indicating that the data locality is rela-
tively stable.  

The number of packets belonging to the session 
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entries that were hit more than 10 times in each time 
interval was then counted to determine the fraction of   
the most frequent packets in the 50K packets for each 
time interval. Figure 7 shows that around 70% of the 
packets belong to the session entries which were hit 
more than 10 times. Figure 8 provides a more intuitive 
chart of the data locality in the session lookup applica-
tion, with about 70% of the packets contained in about 
12% of the flows. 

 
Fig. 6  Most hit session rate 

 
Fig. 7  Most hit packet rate 

 
Fig. 8  Data locality 

The observations based on the real-life trace show 
that the processing time can be greatly reduced if the 
most frequently hit entries are cached, which includes 
around 70% of the packets. These observations provide 
evidence of the data locality in network processing 
which motivates this work.  

3  Timing Model of Cache Efficiency 
in NP 

This section describes the timing model of session 
lookup application for the various cache mechanisms 

in NP and presents a criterion for cache efficiency. A 
multi-core NP timing model that supports multithread-
ing is also presented. Fully set-associative cache is 
assumed here.  

3.1  Criterion for cache efficiency 

Three performance metrics are widely used in network 
processing: (1) the throughput which reflects the aver-
age processing power; (2) the packet loss ratio which 
reflects the peak value and the buffer bound of applica-
tions; (3) the queuing latency which reflects the burst 
processing ability. For all the three targets, the proc-
essing time for each packet is still the most crucial is-
sue. Thus, the packet processing procedure can be 
simplified as in Fig. 9 to give the criterion for cache 
efficiency.  

 
Fig. 9  Simple packet processing model in NP 

The total time of single packet processing is given 
by 

Total PackRv Process PackTxT T T T         (2) 
where ProcessT  consists of the instruction access time 

InstrAccessT , the instruction execution time InstrExcuteT , and 
the data access time DataAccessT ; TPackRv is the time 
needed for receiving a packet; and TPackTx is the time 
needed for transmitting a packet. Since the cache 
mechanism only affects the data access time, the other 
times can be seen as constant values as shown in Eq. 
(3).  

Total DataAccess

PackRv InstrAccess InstrExcute PackTx

,T C T
C T T T T

     (3) 

The cache data access time is determined as Eq. (4).  
CacheAccess

DataAccess
CacheAccess RAMAccess

, when cache hit;
, when cache miss

T
T

T T
 

                 (4) 
The average data access time is then given by Eq. 

(5), where CacheMissP  is the probability of cache miss.  

AVGDataAccess CacheAccess CacheMiss RAMAccessT T P T    (5) 
Since CacheMissP  is a statistical probability, which is 

closely related to the hardware implementation and the 
cache replacement algorithm, the effect of the precise 
cache miss rate for real-life circumstances cannot be 
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analyzed. Thereby, a cache jitter rate is used to repre-
sent the cache miss characteristics. If CacheC  is used 
to denote the swap entries in the cache during a time 
slice t , the cache jitter rate CacheJitterR  can be calcu-
lated by 

Cache
CacheJitter

Cache

CR
C

             (6) 

where CacheC  is the total capacity of the cache table, 
typically represented by the number of entries. If t  
is small enough, a good mathematical approximation 
can be denoted as Eq. (7). Therefore, the cache mecha-
nism can be evaluated by comparing the data access 
times with and without a cache.  

CacheJitter CacheMissR P              (7) 
Equation (8) presents the theoretical criterion for 

cache efficiency. The cache mechanism is useful when 
the average memory access time is less than the access 
time without a cache. The efficiency will have different 
ranges for the various processing architectures as well 
as the various hash functions.  

RAMAccess CacheAccess CacheJitter RAMAccessT T R T     (8) 

3.2  Timing models with a cache on an NP 

This section describes the timing models for three 
kinds of cache mechanisms in NPs. The shared cache 
model is the most commonly used. The distributed 
cache model designates a stand-alone cache for each 
core, while the extended shared cache model supports 
multithreading.  
3.2.1  Shared cache model 
The classic cache modes include fully associated cache 
(FAC), set associated cache (SAC), and direct mapped 
cache (DMC). Cache updating algorithms include least 
recently used (LRU), most recently used (MRU), least 
frequently used (LFU), and adaptive replacement 
cache (ARC). This simulation uses the FAC mode for 
the cache model and the LFU algorithm for ease of 
interpretation.  

As mentioned in Section 2.2, the cache jitter rate is 
used to approximate the cache miss rate. Figure 10 
shows the number of cache entry swaps in each time 
interval for different cache table sizes while Fig. 11 
depicts the cache jitter rate in one time interval for   
different cache table sizes. As shown, the cache jitter 
rate gradually decreases as the cache table size in-
creases, with the jitter rate reduced to around 30% for a 

cache size of 1000 entries.  

 
Fig. 10  Entry swap in cache table 

 
Fig. 11  Cache table jitter rate 

For this cache mechanism, the packet processing 
time in Eq. (1) can be written as  

ProcessCache Instr InstrExcute InstrAccess PacketRAMAccess( )T N T T T  

CacheWrite CacheJitter CacheAccess(1 )[(1 )T R T  

CacheJitter CacheAccess TableRAMAccess( )]R T T      (9) 
3.2.2  Distributed cache model 
Figure 12 shows the distributed cache architecture in 
an NP, which assumes that the packets are distributed 
into the cores at the granularity of flows to facilitate 
the session lookup. The packet processing time can 
still be expressed as Eq. (9). 

 
Fig. 12  Distributed cache model in NP 

The trace was split into 16 sub-traces with Fig. 13 
giving the average jitter rate for the 16 sub-traces with 
different cache sizes. The result is rather similar to that 
of the shared cache model shown in Fig. 11, because 
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the flows are scattered evenly into the 16 sub-traces as 
shown in Fig. 14. Here, the cumulative hit rates of the 
session entries within the 16 sub-traces have similar 
distributions as the original shared cache model illus-
trated in Fig. 5.  
3.2.3  Shared cache model with multithreading 
Multithreading is used by most NP vendors to com-
pensate for the lack of cache. The cache mechanism 
reduces the memory access time while multithreading 
seeks to hide the memory access latencies when they 
cannot be effectively reduced. Although multithreading 
can reduce the access latencies when the cache is not 
efficient[18], the cache should not be completely re-
placed by multithreading due to the locality described 
earlier. In addition, multithreading will bring additional 
waiting time because of the mutual exclusion lock be-
tween threads. Consequently, the processing time using 
both cache and multithreading can be denoted as  

ProcessCacheMultithread Mutex Instr InstrExcute InstrAccess

PacketRAMAccess CacheJitter CacheAccess CacheJitter

Max{ ( ),
(1 )[(1 )

T T N T T
T R T R

CacheWriteCacheAccess TableRAMAccess( )] }TT T      (10) 

 
Fig. 13  Average cache table jitter 

 
Fig. 14  Accumulative hit rate 

4  Performance Evaluation 

To evaluate the cache efficiency in an NP, the IXP 
2800 is selected as the testing architecture and the  

simulation results are obtained based on the real-life 
OC-192 backbone trace provided by IPLS[19-21]. The 
CRC hash is adopted here with experiments conducted 
to evaluate the cache miss rate and the throughput 
speedups with the various cache mechanisms in NP. 
The worst-case performance is evaluated to analyze the 
influence on throughput and packet processing jitter 
rate.  

Since there is no actual cache hardware on an NP, 
the simulation used the cache jitter rate to approximate 
the cache miss rate. As mentioned in Section 3.1, if the 
time slice t  is small enough, the cache miss rate can 
be estimated as Eq. (7). 

4.1  Cache miss rate 

Since multithreading has no influence on the cache 
miss rate with flow granularity splitting, only the 
shared cache model was compared with the distributed 
cache model. The simulations calculated the cache    
jitter rates for short time period intervals with their 
average value used as the cache miss rate as an    
approximation.  

Figure 15 illustrates the cache miss rates for various 
cache table sizes, which shows that the cache miss rate 
of session lookup application with real-life network 
trace can decrease to 25%-30% with a cache size of 
1000 entries. The cache miss rate decreases gradually 
as the cache size increases, but the reducing speed is 
slowing down when the cache size grows. The reason 
is that the backbone network trace has an uneven dis-
tribution with 70% of the packets belonging to only 
12% of the flows, as shown in Fig. 8. This means that 
only 12% of the session entries should be cached. If 
the cache table size is larger than this amount, the 
cache table has to store more entries that are not fre-
quently accessed. Thus, the cache miss rate can hardly 
be reduced via the increasing of cache size.  

 
Fig. 15  Cache miss rate 
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To verify this reasoning, additional tests with larger 
cache table sizes were performed and the trend of the 
cache miss rate with increasing cache table sizes is 
described in Fig. 16. It shows that the cache miss rate 
decreases with the cache table size growing. But the 
increasing speed slows down when the cache table size 
exceeds 1000 entries.  

 
Fig. 16  Trend of cache miss rate 

Another observation from Fig. 15 is that the cache 
miss rate of the distributed cache model is very close 
to that of the shared cache model. This is because the 
trace is evenly spit into 16 sub-traces by the CRC hash 
at the flow level granularity. Thus, the data locality 
characteristics of the 16 sub-traces are similar to the 
original backbone trace.  

4.2  Throughput speedup 

The throughput speedup of the three cache models was 
also analyzed based on the IXP 2800 NP. Table 1[1] 
lists the read and write times needed for each memory 
bank on the IXP 2800 architecture.  

Table 1  Access time of memory banks on IXP 2800 

Memory banks Volume Read (cycles) Write (cycles)
Local memory 640*4   5  5 

Scratchpad 16 K 100 40 
SRAM 64 M 130 53 
DRAM 2 G 295 53 

The instructions are normally stored in LM and the 
analysis assumes that the session lookup table is stored 
in DRAM because of the enormous size. The through-
put speedup with a cache mechanism was computed as 
Eq. (11) and the processing time with a cache can be 
estimated from Eqs. (9) and (10). Both the shared 
cache model and the distributed cache model comply 
with Eq. (9) but they have different cache miss rates, 
while the shared cache model and the extended shared 
cache model with multithreading have the same cache 

miss rate but have different timing models.  
Process ProcessCacheSpeedup /T T         (11) 

If the cache has the same read and write speeds as 
the in-chip LM, the cache access times CacheAccessT  and 

CacheWriteT  will be 5 cycles. InstrExcute InstrAccessT T  are most 
likely to be 1 cycle if the NP uses instruction pipelin-
ing. The session lookup program for the IXP 2800 is 
about 50 lines of microcode.  is calculated as 

( 1) / 2L , where  is the hash collision rate 
and L  is the depth of the session hash link list. When 
the hash load factor is set to 1/2, the hash collision rate 

 is 10.68% and the longest hash link list is 6 based 
on tests with the CRC hash. PacketRAMAccessT  is 295 cy-
cles if the packet buffer is in DRAM. TableRAMAccessT  is 
295 cycles and TableRAMWriteT  is 53 cycles if the session 
table is stored in DRAM. MutexT  is estimated to be 50 
cycles. The throughput speedup for the various cache 
models was then estimated for different cache sizes. 

Figure 17 shows the throughput speedup for the 
three cache models. Up to 65%-70% of performance 
gains in throughput can be obtained by introducing a 
cache mechanism into the IXP 2800 NP platform. The 
speedup with the shared cache model can reach 65% 
while the speedup with the distributed cache model can 
reach 70%. The speedup disparity is due to the differ-
ent cache miss rates of the two models.  

 
Fig. 17  Throughput speedup 

Another result is that the throughput speedup of the 
extended shared cache model with multithreading has a 
higher performance gain of up to 70% compared with 
the shared cache model. Thus, the multithreading in-
troduces a performance gain of 5%-8%. It provides 
convincing evidence that the cache mechanism has a 
remarkable effect on NPs even with multithreading. 
This effect is attributed to the different functions of the 
two mechanisms. The cache mechanism reduces the 
memory access time while multithreading hides some 
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of the instruction execution time by the memory ac-
cesses. Therefore, the two mechanisms can collaborate 
with each other to achieve higher improvement in the 
overall network processing speed.  

In addition, the speedup of all three models in-
creases sub-linearly with the increasing of cache size, 
because the cache miss rate declines gradually as the 
cache size grows, resulting in lower average memory 
access time.  

4.3  Worst-case evaluation 

The memory access time with the cache mechanism is 
not constant due to cache misses, which introduce jitter 
into the packet processing speed. The worst-case con-
dition assumes that the cache miss rate is 100%. Thus, 
the processing time will be CacheAccess RAMAccessT T  for 
each packet. Compared with the RAMAccessT  time for 
each packet without a cache, the worst case only in-
troduces a slight overhead of CacheAccessT , which is nor-
mally much smaller than RAMAccessT . For the access 
times in Table 1, the worst-case throughput is illus-
trated in Fig. 18, which shows that the worst-case per-
formance is still nearly 99% of the processing speed 
without the cache mechanism.  

 
Fig. 18  Worst-case performance 

Figure 18 also indicates that compared with the av-
erage throughput for the shared cache model, the 
worst-case situation causes throughput reduction of 
22%-40%, which will bring about jitter in the packet 
processing speed, which conflicts with the real-time 
requirement of network processing. However, the jitter 
can be reduced by larger packet buffers, since the 
cache misses will not last long in real traffic according 
to the previous observations.  

5  Conclusions and Future Work 

This paper analyzes the efficiency of the cache   

mechanism in NPs with a criterion for evaluating the 
cache efficiency. Theoretical timing models for three 
typical cache mechanisms were described based on the 
Intel IXP 2800 NP with a real-life network backbone 
trace. The cache miss rates were estimated using the 
cache jitter rates with the throughput speedups evalu-
ated according to the packet processing models.  

Tests show that the cache miss rate of session 
lookup application can be reduced to 25%-30% with 
appropriate cache table sizes with throughput speedups 
of 65%-70%. It is proved that the cache mechanism is 
still quite effective in NP. Furthermore, the cache 
mechanism can collaborate with multithreading to 
achieve even higher performance speedups. The results 
demonstrate that cache is an efficient, irreplaceable 
part of NP cores, even with multithreading. 

Future work includes detailed analyses of the mutual 
influences of cache and multithreading mechanisms. 
The hardware design of NP chips to embed consider-
able sized caches is another challenge, since cache 
chips are usually relatively large and the space on ac-
tual chips is quite limited.  
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