
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll05/18llpp575-585
Volume 14, Number 5, October 2009

Efficiency of Cache Mechanism for Network Processors

XU Bo ()1,3, CHANG Jian ()2, HUANG Shimeng ()1,
XUE Yibo ()3,4, LI Jun ()3,4,

1. Department of Automation, Tsinghua University, Beijing 100084, China

2. School of Software, Tsinghua University, Beijing 100084, China
3. Research Institute of Information Technology (RIIT), Tsinghua University, Beijing 100084, China;

4. Tsinghua National Lab for Information Science and Technology, Beijing 100084, China

Abstract: With the explosion of network bandwidth and the ever-changing requirements for diverse net-

work-based applications, the traditional processing architectures, i.e., general purpose processor (GPP) and

application specific integrated circuits (ASIC) cannot provide sufficient flexibility and high performance at the

same time. Thus, the network processor (NP) has emerged as an alternative to meet these dual demands for

today’s network processing. The NP combines embedded multi-threaded cores with a rich memory hierarchy

that can adapt to different networking circumstances when customized by the application developers. In to-

day’s NP architectures, multithreading prevails over cache mechanism, which has achieved great success in

GPP to hide memory access latencies. This paper focuses on the efficiency of the cache mechanism in an NP.

Theoretical timing models of packet processing are established for evaluating cache efficiency and experi-

ments are performed based on real-life network backbone traces. Testing results show that an improvement

of nearly 70% can be gained in throughput with assistance from the cache mechanism. Accordingly, the cache

mechanism is still efficient and irreplaceable in network processing, despite the existing of multithreading.

Key words: cache; network processor; efficiency evaluation

Introduction

Due to the rapid increase of network bandwidth, gen-
eral purpose processors (GPPs) are becoming incom-
petent to satisfy the requirements of OSI Layer 3 or
Layer 4 network processing at line speeds of OC-192
(10 Gbps) and higher. Meanwhile, the ever-changing
network environments and thousands of newly-
emerging applications are gradually making applica-
tion specific integrated circuits (ASICs) obsolete due

to their long cycle and high cost of research and de-
velopment. As a result, network processors (NPs) have
become a promising alternative for high performance
networking and security gateway design.

Since NPs balance flexibility and processing speed,
they are expected to achieve both ASIC’s high per-
formance and GPP’s time-to-market advantage, bene-
ficial from their distributed, multiprocessor, multi-
threaded architectures and the programming flexibility.
Generally, a well-designed NP architecture should
meet three requirements.

High processing speed The Internet backbone
has already reached the OC-192 line rate and is ap-
proaching the OC-768 rate (40 Gbps), which greatly
shortens the processing time for each packet. Then NPs
must be very fast to operate in real-time.

Ease of use Industrial competition has caused the

 Received: 2008-07-08; revised: 2009-05-13

* Supported by the Basic Research Foundation of Tsinghua National
Laboratory for Information Science and Technology (TNList) and
the National High-Tech Research and Development (863) Program
of China (No. 2007AA01Z468)

** To whom correspondence should be addressed.
E-mail: junl@tsinghua.edu.cn; Tel: 86-10-62796400

 Tsinghua Science and Technology, October 2009, 14(5): 575-585

576

product development cycle to be the decisive factor for
system design companies to achieve fast
time-to-market. Thus, NPs must enable very fast de-
velopment time.

Flexibility New protocols and applications are
constantly emerging in the network community. Thus,
NP programming and upgrading must be easy and

flexible to extend the products’ time-in-market.
Many integrated circuit companies, such as Intel[1],

AMCC[2], Freescale[3], and Agere[4] have developed
programmable NP products. Figure 1 shows the hard-
ware architecture of the Intel IXP 2800 NP, one of the
most popular high-end NP chips.

Fig. 1 Hardware architecture of Intel IXP 2800

As shown in Fig. 1, the IXP 2800 NP has two clus-
ters of micro-engines (MEs), each of which supports 8
threads without context switching overhead. In addi-
tion, the IXP 2800 NP has a hierarchy of memory
banks with various access speeds. The memory banks
include registers, local memories (LMs) embedded in
MEs, a scratchpad shared by all the MEs, and 4 chan-
nels of off-chip static random access memory (SRAM)
banks along with 3 channels of off-chip dynamic ran-
dom access memory (DRAM) banks.

In high-end NP architectures, the design of memory
hierarchy is playing a more and more important role
for the following reasons.

The memory access speed is far behind the proc-
essing speed of the NP cores and the gap is increasing.
Some NP cores can reach a working frequency of 1.4
GHz[1] while the off-chip SRAM needs 150 core cycles
and DRAM needs 300 core cycles for one memory
access. Hence, the memory access speed is the proc-
essing bottleneck and the most challenging aspect of
NP designs.

The memory hierarchy design greatly impacts the
application development as well as the overall per-
formance. An efficient flexible memory hierarchy
greatly facilitates application development, which re-
duces the time-to-market and extends the product time.

Traditional computer architectures are typically
comprised of three levels of memories: cache, main
memory, and hard disk. These three memory levels
conform to the inclusion principle, which means that
data stored in the higher memory levels should also
have copies in the lower levels. The inclusion principle
facilitates the programming to a great extent. With
cache mechanism and memory management unit
(MMU), application developers do not have to explic-
itly control the data transfer between different
levels, since the memory control is transparent to the
programs.

However, unlike traditional architectures, the major-
ity of today’s NP products do not provide hard-
ware-enhanced data transfer mechanisms such as cache.
Instead, the memory hierarchy is directly revealed

XU Bo () et al. Efficiency of Cache Mechanism for Network Processors

577

to the programmers so the data structures must be
explicitly allocated to the various memory banks. Be-
sides, the data transfer must be controlled by instruc-
tions. Without employment of cache mechanism, many
NP vendors are utilizing multithreading to improve the
performance due to its advantage of hiding memory
access latencies.

This paper analyzes the difference between multi-
threading and the cache mechanism and whether the
cache mechanism can be an efficient addition to NP
designs. This paper presents theoretical timing models
for packet processing to evaluate cache efficiency in
NPs. Experiments with real-life traces strongly support
the viewpoint that the cache mechanism can achieve
high efficiency in NP.

1 Background

This paper focuses on the efficiency of the cache
mechanism in multi-core and multithreaded NPs. A
brief introduction to the cache mechanism is provided
first, followed by a comparison with multithreading.
Then related work on the NP cache mechanism is
discussed.

1.1 Cache mechanism principles

The cache discussed in this paper is assumed to be
high speed memory with hardware assistance for
maintenance and automatic updating. The cache
mechanism is based on the locality principle, which
means that every program will only access a small
range of memory addresses within a short period of
time. The locality includes temporal locality indicating
that an entry is likely to be accessed again if it was just
accessed and spatial locality indicating that nearby
entries are likely to be accessed just after an entry is
accessed.

Generally speaking, there are three types of memory
latency hiding technologies, which are widely used
nowadays: (a) prefetch mechanism which strives to
avoid memory accesses; (b) cache mechanism which
aims to shorten the memory access latencies;
(c) multithreading mechanism which tries to hide the
memory access latencies by simultaneous instruction
executions.

Since the prefetch mechanism is difficult to imple-
ment on NPs, multithreading and the cache mechanism

remain as the candidate schemes. Multithreading im-
proves NP core utilization and delivers stable per-
formance in spite of the data locality. However, each
thread needs its own set of registers, which requires a
large memory access bandwidth. The programming
difficulty is another challenge. On the other side, the
cache mechanism can shorten the waiting times of NP
cores, and simplify the design of applications. How-
ever, the cache mechanism needs high speed memory
and hardware assistance. Besides, it relies on data lo-
cality and suffers performance decline due to cache
misses.

1.2 Previous work on NPs

There are two main concerns that have restricted the
employment of the cache mechanism in NPs.

First, network processing is assumed to lack data
locality, both temporal and spatial. Hence, the cache hit
rate will be quite low[5].

Second, the average memory access time with
cache mechanism is not constant due to cache misses,
which conflicts with the real-time requirements of
network processing. This might introduce jitter into the
entire system performance[6].

In recent years, there have been some papers dis-
cussing cache mechanisms for NPs, mainly using them
for routing table lookup[7-9] and flow classification[10-13]
applications. However, these two prime concerns are
not addressed directly in these papers.

The original attempt to evaluate cache efficiency in
network processing was given by Memik et al.[14] They
set up a benchmark named NetBench and used Sim-
pleScalar[15] as the evaluation simulator. Actually,
NetBench is designed for testing parameters related to
instruction level parallelism, branch prediction accu-
racy, instruction distribution, and cache entry distribu-
tion. SimpleScalar is based on the general purpose
processor Alpha 21264 with only one core, which is
rather different from NP architectures. The shortcom-
ing greatly weakened the applicability of the simula-
tion results. Wolf and Franklin[16] conducted similar
simulations on another benchmark named Comm-
Bench[16] but their analysis has the same problem.

Afterwards, Mudigonda et al.[17,18] improved the
SimpleScalar simulator to support multithreading to
evaluate the cache mechanism in NPs. They tested
applications including flow classification and traffic

 Tsinghua Science and Technology, October 2009, 14(5): 575-585

578

auditing with real-life rule sets to show that the cache
mechanism is more efficient in reducing memory
access time than wide-word access and scratchpad
access.

Although the work of Mudigonda et al. provided
more convincing simulation results, the simulator was
still based on general purpose processors and they did
not look into the effect of data locality in real-life net-
work backbone traces. This paper investigates the ef-
fect of data locality in network processing and evalu-
ates cache efficiency in NP architectures. Experiments
with real-life Internet backbone traffic traces are con-
ducted and the throughput speedup is calculated ac-
cording to theoretical timing models.

2 Data Locality in Network
Processing

This section analyzes the data locality in network
processing procedures based on session lookup appli-
cations with the locality statistics from actual traces.

2.1 Data access mode in session lookup

Session lookup is such an important module in modern
network processing that it is widely used in network
devices including firewalls, intrusion detection/ preven-
tion systems, and many other network gateway devices.
The function of session lookup is to search for the
matching entry in a session table related to certain
header fields of a packet. The session table is typically
implemented as a hash table which records the states
and actions of incoming and outgoing flows. Thus,
packets belonging to the same flow can be associated
to their corresponding processing actions directly
without going through the tedious packet classification
procedure used for the first flow packet.

The data locality in session lookup applications is
analyzed based on the data access model. The session
lookup procedure includes: (1) extract related packet
header fields; (2) lookup the session table with the
hash key generated from the packet header fields; (3) if
a matching entry exists, update its states; otherwise,
pass the packet to the packet classification module
which is the first procedure in session creation.

The session lookup process is quite simple and there
are hardware optimized instructions on NP to do the
key operations such as fetching the packet header

fields and computing hash values. The code is nor-
mally compact and can be placed in high speed in-
struction memory such as a control store or LM. For
example, the IXP 2800 NP supports hardware-assisted
cyclical redundancy check (CRC) hash and the session
lookup program takes only 50 lines of microcode in
our implementation. However, the session table data
structure is often very large and can only be allocated
to off-chip memory banks with lower access speeds,
which introduces a potential bottleneck in the overall
application performance.

Figure 2 shows the pseudo code for the primary
memory accesses in session lookup.

Session_Lookup ()
{

 Get_Packet_Header ();
 {
Access on-chip local memory to get load instructions;
Access off-chip DRAM to get packet header;
}
Session_Table_Access ();
{
Access on-chip local memory to get lookup instructions;
Access off-chip DRAM to index session table;
}
Session_Table_Update ();
{
Access on-chip local memory to get update instructions;
Write off-chip DRAM to update session table;
}

}

Fig. 2 Data access mode in session lookup

According to the code, the processing time for a ses-
sion lookup can be calculated as

Process Instr InstrExcute InstrAccess PacketRAMAccess()T N T T T

TableRAMAccess TableRAMWrite(1)T T (1)
Here, InstrN denotes the number of instruction lines.

InstrExcuteT represents the execution time for each in-
struction; InstrAccessT is the total memory access time for
loading instructions; PacketRAMAccessT is the memory access
time for fetching packet header fields; TableRAMAccessT is
the time needed for one session lookup; TableRAMWriteT
is the time needed for one session update; and de-
notes the additional times of session table lookups
when hash collisions occur. Session creation and tear-
down are not considered here since they have no rela-
tion with cache efficiency.

XU Bo () et al. Efficiency of Cache Mechanism for Network Processors

579

2.2 Data locality in session lookup

This analysis is based on the CRC hash as the hash
function, which is a well-known procedure with hard-
ware support by many NP chips. The session table size
is set to 64K entries. In addition, this analysis focuses
on the temporal locality, since the session table is pre-
cisely indexed by the hash value, which is unrelated to
spatial locality.

For the processing time given in Eq. (1), InstrN is
determined by the complexity of the session lookup
application, for example 50 lines of microcode on the
IXP. InstrExcuteT is determined by the instruction proc-
essing speed of the NP cores while InstrAccessT is deter-
mined by the control store access speed. Incoming
packets are stored in the packet buffer in off-chip
DRAM, which needs PacketRAMAccessT each time to get a
packet header. The large session table is normally
stored in off-chip DRAM memory banks.

Therefore, the target of the cache mechanism in ses-
sion lookup applications is to reduce the data access
time for each session table read and write, i.e.,

TableRAMAccessT and TableRAMWriteT . The data locality of the
session lookup application was then analyzed using a
network backbone trace with this objective in mind.

The trace is of real-life traffic acquired from the
OC-192 backbone of the Internet2’s Indianapolis
(IPLS) Abilene router node toward Kansas City
(KSCY)[19-21], which is considered to be representative
of Internet backbone traces. The trace contains a large
number of flows with a stable packet arrival mode that
is not heavily influenced by individual factors or burst
accesses. The dataset has a total of 50M packets, which
is equal to 10 min of traffic volume at IPLS.

To evaluate the dynamic data locality, traffic was
analyzed in time intervals by treating each consecutive
50K packets as a segment. Hence, the entire traffic was
split into 1000 time intervals of around 0.6 s. Analysis
of the statistical characteristics of the time intervals is
as follows:

The number of matching session entries in each
time interval is relatively stable, with an average value
of 7658 for each 50K packets. Figure 3 shows the
matching entry numbers for all the 1000 time intervals,
which shows that the number of flows within each time
interval is relatively stable. The data also implies that
the CRC hash performance in the various intervals of

the trace was quite steady.
To illustrate the packet scattering in different

flows, one time interval is picked as an example. Fig-
ure 4 depicts the hit times for the session entries in
decreasing order while Fig. 5 shows the cumulative hit
rate for the session entries. Figure 5 indicates that
nearly 70% of the packets are from the most offen hit
1000 flows, which is around 1/7 of the total number of
flows. This result confirms that the majority of the
network traffic belongs to a small set of flows[22].

Fig. 3 Matching entry number

Fig. 4 Entry hit distribution

Fig. 5 Accumulative hit rate

The data locality in session lookup was analyzed
by counting the rate of session entries that are hit more
than 10 times in each time interval as shown in Fig. 6.
The most hit session entries show that around 12% are
hit more than 10 times in each time interval. The curve
shows that the rate does not vary much in different
time intervals, indicating that the data locality is rela-
tively stable.

The number of packets belonging to the session

 Tsinghua Science and Technology, October 2009, 14(5): 575-585

580

entries that were hit more than 10 times in each time
interval was then counted to determine the fraction of
the most frequent packets in the 50K packets for each
time interval. Figure 7 shows that around 70% of the
packets belong to the session entries which were hit
more than 10 times. Figure 8 provides a more intuitive
chart of the data locality in the session lookup applica-
tion, with about 70% of the packets contained in about
12% of the flows.

Fig. 6 Most hit session rate

Fig. 7 Most hit packet rate

Fig. 8 Data locality

The observations based on the real-life trace show
that the processing time can be greatly reduced if the
most frequently hit entries are cached, which includes
around 70% of the packets. These observations provide
evidence of the data locality in network processing
which motivates this work.

3 Timing Model of Cache Efficiency
in NP

This section describes the timing model of session
lookup application for the various cache mechanisms

in NP and presents a criterion for cache efficiency. A
multi-core NP timing model that supports multithread-
ing is also presented. Fully set-associative cache is
assumed here.

3.1 Criterion for cache efficiency

Three performance metrics are widely used in network
processing: (1) the throughput which reflects the aver-
age processing power; (2) the packet loss ratio which
reflects the peak value and the buffer bound of applica-
tions; (3) the queuing latency which reflects the burst
processing ability. For all the three targets, the proc-
essing time for each packet is still the most crucial is-
sue. Thus, the packet processing procedure can be
simplified as in Fig. 9 to give the criterion for cache
efficiency.

Fig. 9 Simple packet processing model in NP

The total time of single packet processing is given
by

Total PackRv Process PackTxT T T T (2)
where ProcessT consists of the instruction access time

InstrAccessT , the instruction execution time InstrExcuteT , and
the data access time DataAccessT ; TPackRv is the time
needed for receiving a packet; and TPackTx is the time
needed for transmitting a packet. Since the cache
mechanism only affects the data access time, the other
times can be seen as constant values as shown in Eq.
(3).

Total DataAccess

PackRv InstrAccess InstrExcute PackTx

,T C T
C T T T T

 (3)

The cache data access time is determined as Eq. (4).
CacheAccess

DataAccess
CacheAccess RAMAccess

, when cache hit;
, when cache miss

T
T

T T

 (4)
The average data access time is then given by Eq.

(5), where CacheMissP is the probability of cache miss.

AVGDataAccess CacheAccess CacheMiss RAMAccessT T P T (5)
Since CacheMissP is a statistical probability, which is

closely related to the hardware implementation and the
cache replacement algorithm, the effect of the precise
cache miss rate for real-life circumstances cannot be

XU Bo () et al. Efficiency of Cache Mechanism for Network Processors

581

analyzed. Thereby, a cache jitter rate is used to repre-
sent the cache miss characteristics. If CacheC is used
to denote the swap entries in the cache during a time
slice t , the cache jitter rate CacheJitterR can be calcu-
lated by

Cache
CacheJitter

Cache

CR
C

 (6)

where CacheC is the total capacity of the cache table,
typically represented by the number of entries. If t
is small enough, a good mathematical approximation
can be denoted as Eq. (7). Therefore, the cache mecha-
nism can be evaluated by comparing the data access
times with and without a cache.

CacheJitter CacheMissR P (7)
Equation (8) presents the theoretical criterion for

cache efficiency. The cache mechanism is useful when
the average memory access time is less than the access
time without a cache. The efficiency will have different
ranges for the various processing architectures as well
as the various hash functions.

RAMAccess CacheAccess CacheJitter RAMAccessT T R T (8)

3.2 Timing models with a cache on an NP

This section describes the timing models for three
kinds of cache mechanisms in NPs. The shared cache
model is the most commonly used. The distributed
cache model designates a stand-alone cache for each
core, while the extended shared cache model supports
multithreading.
3.2.1 Shared cache model
The classic cache modes include fully associated cache
(FAC), set associated cache (SAC), and direct mapped
cache (DMC). Cache updating algorithms include least
recently used (LRU), most recently used (MRU), least
frequently used (LFU), and adaptive replacement
cache (ARC). This simulation uses the FAC mode for
the cache model and the LFU algorithm for ease of
interpretation.

As mentioned in Section 2.2, the cache jitter rate is
used to approximate the cache miss rate. Figure 10
shows the number of cache entry swaps in each time
interval for different cache table sizes while Fig. 11
depicts the cache jitter rate in one time interval for
different cache table sizes. As shown, the cache jitter
rate gradually decreases as the cache table size in-
creases, with the jitter rate reduced to around 30% for a

cache size of 1000 entries.

Fig. 10 Entry swap in cache table

Fig. 11 Cache table jitter rate

For this cache mechanism, the packet processing
time in Eq. (1) can be written as

ProcessCache Instr InstrExcute InstrAccess PacketRAMAccess()T N T T T

CacheWrite CacheJitter CacheAccess(1)[(1)T R T

CacheJitter CacheAccess TableRAMAccess()]R T T (9)
3.2.2 Distributed cache model
Figure 12 shows the distributed cache architecture in
an NP, which assumes that the packets are distributed
into the cores at the granularity of flows to facilitate
the session lookup. The packet processing time can
still be expressed as Eq. (9).

Fig. 12 Distributed cache model in NP

The trace was split into 16 sub-traces with Fig. 13
giving the average jitter rate for the 16 sub-traces with
different cache sizes. The result is rather similar to that
of the shared cache model shown in Fig. 11, because

 Tsinghua Science and Technology, October 2009, 14(5): 575-585

582

the flows are scattered evenly into the 16 sub-traces as
shown in Fig. 14. Here, the cumulative hit rates of the
session entries within the 16 sub-traces have similar
distributions as the original shared cache model illus-
trated in Fig. 5.
3.2.3 Shared cache model with multithreading
Multithreading is used by most NP vendors to com-
pensate for the lack of cache. The cache mechanism
reduces the memory access time while multithreading
seeks to hide the memory access latencies when they
cannot be effectively reduced. Although multithreading
can reduce the access latencies when the cache is not
efficient[18], the cache should not be completely re-
placed by multithreading due to the locality described
earlier. In addition, multithreading will bring additional
waiting time because of the mutual exclusion lock be-
tween threads. Consequently, the processing time using
both cache and multithreading can be denoted as

ProcessCacheMultithread Mutex Instr InstrExcute InstrAccess

PacketRAMAccess CacheJitter CacheAccess CacheJitter

Max{ (),
(1)[(1)

T T N T T
T R T R

CacheWriteCacheAccess TableRAMAccess()] }TT T (10)

Fig. 13 Average cache table jitter

Fig. 14 Accumulative hit rate

4 Performance Evaluation

To evaluate the cache efficiency in an NP, the IXP
2800 is selected as the testing architecture and the

simulation results are obtained based on the real-life
OC-192 backbone trace provided by IPLS[19-21]. The
CRC hash is adopted here with experiments conducted
to evaluate the cache miss rate and the throughput
speedups with the various cache mechanisms in NP.
The worst-case performance is evaluated to analyze the
influence on throughput and packet processing jitter
rate.

Since there is no actual cache hardware on an NP,
the simulation used the cache jitter rate to approximate
the cache miss rate. As mentioned in Section 3.1, if the
time slice t is small enough, the cache miss rate can
be estimated as Eq. (7).

4.1 Cache miss rate

Since multithreading has no influence on the cache
miss rate with flow granularity splitting, only the
shared cache model was compared with the distributed
cache model. The simulations calculated the cache
jitter rates for short time period intervals with their
average value used as the cache miss rate as an
approximation.

Figure 15 illustrates the cache miss rates for various
cache table sizes, which shows that the cache miss rate
of session lookup application with real-life network
trace can decrease to 25%-30% with a cache size of
1000 entries. The cache miss rate decreases gradually
as the cache size increases, but the reducing speed is
slowing down when the cache size grows. The reason
is that the backbone network trace has an uneven dis-
tribution with 70% of the packets belonging to only
12% of the flows, as shown in Fig. 8. This means that
only 12% of the session entries should be cached. If
the cache table size is larger than this amount, the
cache table has to store more entries that are not fre-
quently accessed. Thus, the cache miss rate can hardly
be reduced via the increasing of cache size.

Fig. 15 Cache miss rate

XU Bo () et al. Efficiency of Cache Mechanism for Network Processors

583

To verify this reasoning, additional tests with larger
cache table sizes were performed and the trend of the
cache miss rate with increasing cache table sizes is
described in Fig. 16. It shows that the cache miss rate
decreases with the cache table size growing. But the
increasing speed slows down when the cache table size
exceeds 1000 entries.

Fig. 16 Trend of cache miss rate

Another observation from Fig. 15 is that the cache
miss rate of the distributed cache model is very close
to that of the shared cache model. This is because the
trace is evenly spit into 16 sub-traces by the CRC hash
at the flow level granularity. Thus, the data locality
characteristics of the 16 sub-traces are similar to the
original backbone trace.

4.2 Throughput speedup

The throughput speedup of the three cache models was
also analyzed based on the IXP 2800 NP. Table 1[1]
lists the read and write times needed for each memory
bank on the IXP 2800 architecture.

Table 1 Access time of memory banks on IXP 2800

Memory banks Volume Read (cycles) Write (cycles)
Local memory 640*4 5 5

Scratchpad 16 K 100 40
SRAM 64 M 130 53
DRAM 2 G 295 53

The instructions are normally stored in LM and the
analysis assumes that the session lookup table is stored
in DRAM because of the enormous size. The through-
put speedup with a cache mechanism was computed as
Eq. (11) and the processing time with a cache can be
estimated from Eqs. (9) and (10). Both the shared
cache model and the distributed cache model comply
with Eq. (9) but they have different cache miss rates,
while the shared cache model and the extended shared
cache model with multithreading have the same cache

miss rate but have different timing models.
Process ProcessCacheSpeedup /T T (11)

If the cache has the same read and write speeds as
the in-chip LM, the cache access times CacheAccessT and

CacheWriteT will be 5 cycles. InstrExcute InstrAccessT T are most
likely to be 1 cycle if the NP uses instruction pipelin-
ing. The session lookup program for the IXP 2800 is
about 50 lines of microcode. is calculated as

(1) / 2L , where is the hash collision rate
and L is the depth of the session hash link list. When
the hash load factor is set to 1/2, the hash collision rate

 is 10.68% and the longest hash link list is 6 based
on tests with the CRC hash. PacketRAMAccessT is 295 cy-
cles if the packet buffer is in DRAM. TableRAMAccessT is
295 cycles and TableRAMWriteT is 53 cycles if the session
table is stored in DRAM. MutexT is estimated to be 50
cycles. The throughput speedup for the various cache
models was then estimated for different cache sizes.

Figure 17 shows the throughput speedup for the
three cache models. Up to 65%-70% of performance
gains in throughput can be obtained by introducing a
cache mechanism into the IXP 2800 NP platform. The
speedup with the shared cache model can reach 65%
while the speedup with the distributed cache model can
reach 70%. The speedup disparity is due to the differ-
ent cache miss rates of the two models.

Fig. 17 Throughput speedup

Another result is that the throughput speedup of the
extended shared cache model with multithreading has a
higher performance gain of up to 70% compared with
the shared cache model. Thus, the multithreading in-
troduces a performance gain of 5%-8%. It provides
convincing evidence that the cache mechanism has a
remarkable effect on NPs even with multithreading.
This effect is attributed to the different functions of the
two mechanisms. The cache mechanism reduces the
memory access time while multithreading hides some

 Tsinghua Science and Technology, October 2009, 14(5): 575-585

584

of the instruction execution time by the memory ac-
cesses. Therefore, the two mechanisms can collaborate
with each other to achieve higher improvement in the
overall network processing speed.

In addition, the speedup of all three models in-
creases sub-linearly with the increasing of cache size,
because the cache miss rate declines gradually as the
cache size grows, resulting in lower average memory
access time.

4.3 Worst-case evaluation

The memory access time with the cache mechanism is
not constant due to cache misses, which introduce jitter
into the packet processing speed. The worst-case con-
dition assumes that the cache miss rate is 100%. Thus,
the processing time will be CacheAccess RAMAccessT T for
each packet. Compared with the RAMAccessT time for
each packet without a cache, the worst case only in-
troduces a slight overhead of CacheAccessT , which is nor-
mally much smaller than RAMAccessT . For the access
times in Table 1, the worst-case throughput is illus-
trated in Fig. 18, which shows that the worst-case per-
formance is still nearly 99% of the processing speed
without the cache mechanism.

Fig. 18 Worst-case performance

Figure 18 also indicates that compared with the av-
erage throughput for the shared cache model, the
worst-case situation causes throughput reduction of
22%-40%, which will bring about jitter in the packet
processing speed, which conflicts with the real-time
requirement of network processing. However, the jitter
can be reduced by larger packet buffers, since the
cache misses will not last long in real traffic according
to the previous observations.

5 Conclusions and Future Work

This paper analyzes the efficiency of the cache

mechanism in NPs with a criterion for evaluating the
cache efficiency. Theoretical timing models for three
typical cache mechanisms were described based on the
Intel IXP 2800 NP with a real-life network backbone
trace. The cache miss rates were estimated using the
cache jitter rates with the throughput speedups evalu-
ated according to the packet processing models.

Tests show that the cache miss rate of session
lookup application can be reduced to 25%-30% with
appropriate cache table sizes with throughput speedups
of 65%-70%. It is proved that the cache mechanism is
still quite effective in NP. Furthermore, the cache
mechanism can collaborate with multithreading to
achieve even higher performance speedups. The results
demonstrate that cache is an efficient, irreplaceable
part of NP cores, even with multithreading.

Future work includes detailed analyses of the mutual
influences of cache and multithreading mechanisms.
The hardware design of NP chips to embed consider-
able sized caches is another challenge, since cache
chips are usually relatively large and the space on ac-
tual chips is quite limited.

Acknowledgements

The authors thank Qi Yaxuan, Zhou Guangyu, and all the other
colleagues in the Network Security Lab for their suggestions
and help.

References

[1] Intel. IXP2XXX product line of network processor.
http://www.intel.com/design/network/products/npfamily/ix
p2xxx.htm, 2009.

[2] AMCC. Network processor. https://www.amcc.com/
MyAMCC/jsp/public/browse/controller.jsp?networkLevel=
COMM&superFamily=NETP, 2009.

[3] Freescale. C-Port network processors. http://www.frees-
cale.com/webapp/sps/site/homepage.jsp?nodeId=02VS01D
FTQ3126, 2009.

[4] Agere. Network processor. http://www.agere.com/tele-
com/network_processors.html, 2009.

[5] Venkatachalam M, Chandra P, Yavatkar R. A highly flexi-
ble, distributed multiprocessor architecture for network
processing. Computer Networks, 2003, 41(5): 563-586.

[6] Derek C, Prabhat J, Srinivas D, et al. Application-specific
memory management for embedded systems using soft-
ware-controlled caches. In: Proc. of the 37th Design
Automation Conference (DAC). Los Angeles, CA, USA,

XU Bo () et al. Efficiency of Cache Mechanism for Network Processors

585

2000.
[7] Liu H. Routing prefix caching in network processor design.

In: Proc. of the 10th International Conference on Computer
Communications and Networks. Scottsdale, Arizona, USA,
2001.

[8] Gopalan K, Chiueh T. Improving route lookup perform-
ance using network processor cache. In: Proc. of the 5th
International Symposium on High Performance Computer
Architecture. Orlando, Florida, USA, 1999.

[9] Rajan K, Govindarajan R. A heterogeneously segmented
cache architecture for a packet forwarding engine. In: Proc.
of International Conference on Supercomputing (ICS).
Cambridge, MA, USA, 2005.

[10] Xu J, Singhal M, Degroat J. A novel cache architecture to
support layer-four packet classification at memory access
speeds. In: Proc. of IEEE INFOCOM. Tel-Aviv, Israel,
2000.

[11] Tung Y, Che H. A flow caching mechanism for fast packet
forwarding. Computer Communications, 2002, 25(14):
1257-1262.

[12] Li K, Chang F, Berger D, et al. Architectures for packet
classification caching. In: Proc. of the 11th IEEE Interna-
tional Conference on Networks. Sydney, Australia, 2003.

[13] Li B, Venkatesh G, Calder B, et al. Exploiting a computa-
tion reuse cache to reduce energy in network processors. In:
Proc. of International Conference on High Perform-
ance Embedded Architectures and Compilers. Barcelona,

Spain, 2005.
[14] Memik G, Mangione-Smith W H, Hu W. NetBench: A

benchmarking suite for network processors. In: Proc. of
IEEE/ACM International Conference on Computer-Aided
Design. Braunschweig, Germany, 2001.

[15] http://www.simplescalar.com/, 2009.
[16] Wolf T, Franklin M. CommBench-a telecommunications

benchmark for network processors. In: Proc. of IEEE In-
ternational Symposium on Performance Analysis of Sys-
tems and Software. Austin, Texas, USA, 2000.

[17] Mudigonda J, Vin H M, Yavatkar R. Overcoming the
memory wall in packet processing: hammers or ladder? In:
Proc. of the Symposium on Architecture for Networking
and Communications Systems. Princeton, NJ, USA, 2005.

[18] Mudigonda J, Vin H M, Yavatkar R. Managing memory
access latency in packet processing. In: Proc. of the Inter-
national Conference on Measurement and Modeling of
Computer Systems. Banff, Canada, 2005.

[19] Abilene-III Trace data. http://pma.nlanr.net/Special/ipls3.
html, 2009.

[20] Internet2. http://www.internet2.edu/, 2009.
[21] Abilene backbone network. http://abilene.internet2.edu/,

2009.
[22] Hamed H, El-Atawy A, Al-Shaer E. Adaptive statistical

optimization techniques for firewall packet filtering. In:
Proc. of IEEE INFOCOM. Barcelona, Spain, 2006.

