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Abstract—Packet classification is one of the key functionalities 
provided by network devices for QoS and network security 
purposes. Recently the rapid growth of classification ruleset 
size and ruleset complexity has caused memory performance 
woes when applying traditional packet classification 
algorithms. Inheriting the divide-and-conquer idea of pre-
partitioning the original rules into several groups for 
significant reduction of memory overhead, this paper proposes 
Swin Top, a new ruleset partitioning approach based on 
swarm intelligent optimization algorithms, to seek for the 
global optimum grouping of rules. To enhance convergence 
accuracy and speed up the iterative process, Swin Top employs 
several novel ideas, such as the introduction of grouping 
penalty, the combination of PSO and GA, and a new memory 
usage estimation method. On the publicly available rulesets 
from Class Bench, SwinTop is shown to achieve 1 to 4 orders of 
magnitude lower memory consumption than simply applying a 
traditional packet classification algorithm without ruleset 
partitioning, and outperform the state-of-the-art partitioning 
algorithms EffiCuts and ParaSplit on all kinds of large-sized 
rulesets. 

Keywords - QoS; network security; packet classification; 
memory efficiency; ruleset partitioning; swarm intelligence 
optimization 

I.  INTRODUCTION 

The rapid development of the Internet and the fast 
increase of network services have brought great challenges to 
deploying high-speed and quality-of-service (QoS) 
guaranteed networks. Besides packet forwarding, modern 
network devices need to provide more advanced services, 
such as access control, firewall, IDS (intrusion detection 
system) and VPN (virtual private network), etc. All these 

functionalities require the network devices to identify the 
packets being transmitted. 

Packet classification, as a fundamental technique 
employed by network devices, is the process of classifying 
packets based on pre-defined rules. Each rule specifies a 
desired action (e.g., drop, forward) on a set of packets 
identified by some specific fields of the packet header (e.g., 
source IP, destination IP, source port, destination port, 
protocol type).  

Although packet classification has been widely studied 
for years [1] [2], researchers are still motivated to seek novel 
packet classification solutions to keep pace with the 
emerging applications on the Internet. Recently it has been 
noticed that despite the optimization for throughput, the 
memory performance of software-based algorithms has 
become one of the major issues regarding the practical usage 
(or even the feasibility of implementation) of packet 
classification. The reasons are as follows in Table I: 

TABLE I.  MEMORY CONSUMPTION OF HYPERSPLIT 

Ruleset FW_1K FW_10K IPC_1K IPC_10K

# rules 791 9311 938 9037 

Memory consumption 3.6MB 1.01GB 1.5MB 66.8MB

 
Space inefficiency of traditional algorithms: Traditional 

packet classification algorithms have relatively low memory 
efficiency, and the memory requirements are in-deterministic 
with the ruleset size [3]. Specifically, the sizes of the data 
structures (e.g., decision trees) generated by these algorithms 
may inflate to multiple times their common sizes if the 
ruleset size scales up or the rules are extensively overlapped. 
As shown in Table I, the size of the decision tree generated 
by HyperSplit (the state-of-the-art decision tree based 
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algorithm) [4] for a real-life ruleset IPC_1K [5] (with 916 
five-dimensional rules) is only 85KB, while that for ruleset 
FW_10K (with 9,311 five-dimensional rules) is up to 
1.01GB. 

Fast growth of real-life ruleset size: In order for fine-
grained management, the ruleset size of a server at today’s 
multi-tenant data centers can be up to 200K [6], causing 
memory performance woes to traditional packet 
classification schemes.  

Memory limitation for running packet classification: The 
memory used for running packet classification is always 
limited, for which the concerns are twofold. First, the data 
structure size required for a complex ruleset may exceed the 
available memory size (e.g., the quota memory size for Xen 
hypervisor is less than 1GB). Second, the memory-
consuming algorithms have to be implemented with mass-
but-slow memories (e.g., SDRAMS), which undermines the 
classification speed. 

TABLE II.  AN EXAMPLE 2-DIMENSIONAL RULESET 

Rule Dimension X Dimension Y Action 

R1 [4,5] [0,7] Drop 

R2 [0,7] [0,1] Forward 

R3 [4,7] [4,7] Forward 

R4 [0,1] [6,7] Drop 

R5 [0,3] [0,7] Drop 

R6 (default) [0,7] [0,7] Forward 

 
Recently, several advanced solutions [3][7][8][9] have 

shown the superiority of ruleset partitioning in the 
improvement of memory performance. The basic idea is to 
trade classification performance for significant reduction in 
memory requirement, which can be achieved by partitioning 
the original ruleset into several sub-rulesets and build 
independent decision trees for the subsets using traditional 
packet classification algorithms. However, the existing 
solutions either scale poor as the dimension number grows, 
or bring uncertainty in eliminating rule replications and thus 
trap into local optimum. 

Going beyond existing solutions, this paper presents a 
novel ruleset partitioning algorithm named SwinTop (SWarm 
INTelligence Optimization based Partitioning) that seeks for 
the global optimum grouping of rules. The main 
contributions of this paper include: 

The ruleset partitioning problem is modeled as an integer 
programming problem with a huge and unsmooth search 
space, for which it is suitable to apply swarm intelligence 
algorithms. Moreover, inspired by the selective tree merging 
procedure of a previous work, the grouping penalty of rule 
pairs is defined to further provide guidance in the rule 
grouping process. 

A novel intelligent ruleset partitioning algorithm is 
proposed for acquiring the global optimum grouping of rules 
in terms of memory consumption. The proposed algorithm is 
based on Particle Swarm Algorithm and Generic Algorithm, 

which are revised and combined in our approach in order to 
adapt to the ruleset partitioning problem.  

A new method of estimating the memory consumption 
trends is proposed for significantly improving the time 
efficiency of the ruleset partitioning process.  

The performance of SwinTop is evaluated on 18 rulesets 
of various sizes ranging from 100 to 50K rules. Experimental 
results show that on the large-sized rulesets, SwinTop 
achieves 1 to 4 orders of magnitude lower memory 
consumption than applying a traditional packet classification 
algorithm without ruleset partitioning. Compared with the 
state-of-the-art partitioning algorithms, SwinTop requires 
30%~95% less memory than EffiCuts [7] and 20%~35% less 
memory than ParaSplit [9]. 

The rest of the paper is organized as follows: Section II 
introduces the background and relates work; Section III 
describes some preliminaries and Section IV presents the 
proposed algorithm in detail; Section V introduces the 
optimizations to the implementation of the algorithm; 
Section VI provides evaluation results; Section VII 
concludes the paper. 

 

 

II. BACKGROUND 

A. The Packet Classification Problem 

The purpose of packet classification is to find the 
matching rule from a pre-defined ruleset for a packet. Each 
rule R contains D fields, and each field is a range match 
expression on a selected field of the packet header. 
Mathematically, packet classification can be viewed as a 
point location problem in computational geometry: In a D-
dimensional search space S, a packet P is viewed as a point 
and a rule R is viewed as a D-dimensional hyper-rectangle. 
A packet P matches a rule R if the point represented by P 
locates inside the hyper-rectangle specified by R. If a packet 
hits more than one rules (some rules may be overlapped with 
each other), among them the highest-priority rule will be the 
final result. Table II shows an example ruleset with 6 two-
dimensional rules, and Figure I shows the geometrical model 
of the ruleset. 

x

y
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R4

R5

R6 (default)

0 7

7
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R2

 
Figure 1.  The geometrical model of the 2-D example ruleset
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The theoretical complexity bounds derived from 
computational geometry show that a packet classifier with N 
rules and D fields need either  logN  time and ( )DN  

space; or  1Dlog N time and ( )N  space [10]. Thus in 

theory, even a ruleset with 1K five-dimensional rules can 
consume 1000TB memory in the worst case. 

In practice, fortunately, the complexity can be 
significantly reduced by the well-designed packet 
classification algorithms for two reasons. First, despite the 
variety in statistical characteristics, the complexity of real-
life rules is always far less than the theoretical worst case [4]. 
The common distribution patterns lying in the rules can be 
leveraged for lowering the size and depth of the decision 
trees. Second, given the ruleset, the classification data 
structure is generated during pre-processing (offline), and 
hence can be optimized in numbers of ways to achieve fast 
classification speed with rational memory usage.  

B. Traditional Packet Classification Algorithms 

Most well-known traditional packet classification 
algorithms are based on search space decomposition: the 
search space is decomposed into multiple sub-spaces, each of 
which is associated with a subset of rules (with rule 
replication); by recursively applying the decomposition, a 
decision tree is finally built for the run-time classification 
process. 

HiCuts[11], HyperCuts[12] and HyperSplit[4] are typical 
examples of such algorithms. HiCuts and HyperCuts apply 
equal-sized cutting to decompose the current space at each 
stage into equal-sized sub-spaces. In contrast, HyperSplit 
applies unequal-sized binary splitting at each stage, which 
avoids the inefficiency of equal-sized cuttings for non-
uniformly distributed rules, and achieves superior 
performance compared to HiCuts and HyperCuts. 

However, it is important to note that all these algorithms 
inevitably introduce rule replication in the decomposition 
steps, which may significantly increases the decision tree 
size. For example, in the HyperSplit decision tree illustrated 
in Figure 2(a), R2 and R5 are inevitably replicated once, 
causing memory overhead. As a matter of fact, the memory 
consumption of the decision tree grows exponentially as the 
size of ruleset or the number of dimensions increases. 

C. Ruleset Partitioning Solutions 

In recent years, several solutions based on ruleset 
partitioning [3][7][8][9] have been proposed to tackle the 
memory overhead issue. 

In ruleset partitioning solutions, the original ruleset is 
divided into several subsets according to particular heuristic 
information; each of the sub-ruleset is then applied a 
traditional packet classification algorithm independently. In 
general, the sum of the sizes of the data structures built from 
each subset individually can be far smaller than the size of 
the data structure built from the full ruleset. This effective 
divide-and-conquer strategy makes it possible for the 
complex classification data structures to meet the overall 
memory consumption constrains again. 

According to different ruleset partitioning methods, 
existing solutions can be categorized into structural 
characteristic based and stochastic search based. 

Structural characteristic based partitioning: This kind of 
algorithms partitions the original ruleset according to the 
distribution or overlap characteristics of rules, in order for 
the rules in each sub-ruleset to have relatively nice 
“separability”. As a representative algorithm of this category, 
EffiCuts[7] defines the rules in a subset to be separable if all 
the rules are either small or large in each dimension, and 
partitions the original ruleset by separating rules with 
different combinations of wildcard size (large or small) in all 
the dimensions. As shown in Figure 2(b), the original ruleset 
is partitioned into 4 groups according to this principle. 

Stochastic search based partitioning: As one of the latest 
works, ParaSplit[9] views ruleset partitioning as a 
combinatorial optimization problem and applies simulated 
annealing to optimize the grouping of rules. 

Both EffiCuts and ParaSplit achieve lower memory 
consumption than simply using a traditional packet 
classification algorithm (e.g., HyperSplit) alone. However, 
EffiCuts partitions the ruleset into (2 )D  groups, which is 
not scalable when the number of dimensions rises. And the 
selected tree merging step brings great uncertainty in 
performance and may introduce considerable rule replication 
in some cases. ParaSplit also suffers the downside of 
trapping into local optimum before the pre-defined limited 
number of iterations. It is because of the incapacity of 
simulated annealing in solving such combinatorial 
optimization problems with large and complex solution 
space. In general, the potential of ruleset partitioning, for 
minimizing the memory consumption of packet classification 
algorithms, has not been fully exploited. 

III. PRELIMINARIES 

A. Problem Modeling 

In our approach, since the group number always follows 
the maximum number that a particular platform supports to 
execute in parallel (e.g., 8 cores or threads), it is given 
(determined) before the partitioning process. 

Given a ruleset 1 2{ , , , }NRS r r r   and the group number 
K, the aim is to find K disjoint subsets that minimize the 
overall memory consumption. Mathematically, it can be 
viewed as an integer programming problem: 

x:4

y:2 x:6

x:2

y:6

R5 R4

R5

R2 R1 y:4

y:2

R2 R6

R3

R4 R1 R2

x:4

y:4

R6 R3

R5

Subset 1 Subset 2 Subset 3

Subset 4

 
(a)  HyperSplit                                   (b)  EffiCuts 
 
Figure 2.  Decision trees for the example ruleset
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   represents the sum of the 

sizes of the data structures built from each subset, i.e., the 
overall memory consumption. 

According to the principle of inclusion-exclusion, there 

are in total 
0

1
( 1) ( )

!

K
i i N

K
i

C N i
K 

   distinct feasible solutions 

to the partitioning problem. For example, there are about 
9010  possible ways of grouping for the case N = 100, K = 8. 

Furthermore, the curve of 1 2( , , , )NM r r r  is not smooth (e.g. 
moving only one rule from a group to another may be able to 
results in considerable memory increment/reduction in some 
cases). Therefore, it is difficult or even infeasible for brute-
force computation or other straightforward methods to search 
for the optimal solution. 

B. Grouping Penalty of Rule Pairs 

To provide guidance to the rule grouping process of the 
proposed algorithm (described in the next section), we define 
the grouping penalty for two different rules. For a 
ruleset 1 2{ , , , }NRS r r r  , the grouping penalty of each rule 
pair is calculated as follows: 

First, for each rule r, every dimension of r is labeled to 
be either small or large according to [7]. For the example of 
Figure 1, the six rules are labeled {small, large}, {large, 
small}, {large, large}, {small, small}, {large, large}, {large, 
large}. 

Second, for each rule pair ir  and jr , if in the 
thd dimension the two rules are both small or both large, the 

size-conflict ( , , )size i jC d r r  is set to be 0; otherwise 1. If in 

the thd dimension the ranges of the two rules are disjoint, the 
position-conflict ( , , )pos i jC d r r  is set to be 0.5; otherwise 1. 

The grouping penalty for ir  and jr  is calculated as follow: 

 2 2

1

( , ) ( ( , , ) ( , , )) /
D

m i j size i j pos i j
d

P r r C d r r C d r r D


   

where D is the number of dimensions. 

IV. THE SWINTOP ALGORITHM 

Swarm intelligence optimization algorithms, which 
simulate the collective behavior of natural systems 
(especially biological systems), have made great progresses 
on solving combinatorial optimization problems [13]. 

Since the ruleset partitioning problem is formulated into 
an integer programming problem with a huge and unsmooth 
solution space, it is very suitable to apply swarm intelligence 
algorithms with the characteristics of high searching 
capability, easy operation, and no special requirements for 
optimized function. Based on these principles, a revised 
hybrid swarm optimization algorithm SwinTop, which 

combines the best of Particle Swarm Optimization (PSO) 
and Genetic Algorithm (GA), is proposed to solve the ruleset 
partitioning problem. 

In this section we present the details of SwinTop. Some 
optimizations to the implementation of SwinTop will be 
discussed in Section V. 

A. Introduction to PSO and GA 

1) Particle Swarm Optimization (PSO) 
The basic concept of Particle Swarm Optimization (PSO) 

stems from the research on foraging behavior of bird blocks. 
PSO was first proposed by Eberhart and Kennedy in 1995 
[14], since when PSO has been applied to numbers of fields 
including combinatorial optimization and data mining, etc. 

Imagine a flock of birds seeking for one piece of food in 
a huge searching area. None of the birds knows the exact 
location of the food, but they do know the approximate 
distance between their positions and the food. As a matter of 
fact, the complex but intelligent global behaviors of birds are 
actually caused by the interactions of simple rules. By 
leveraging the equilibrium between the diversification and 
centralization, the bird flock can eventually find the food. 

In a PSO algorithm, the location of the food represents 
the global optimum solution. The birds keep updating 
(optimizing) their speed and location through both 
competition and cooperation, until someone finding the food. 
As the crucial part of PSO, the three key elements that 
influence the update of a bird’s speed include: 

Inertia: the bird keeps its previous speed in some degree. 
Self-cognition: the bird flies partly towards the best 

location that the bird itself has ever found. 
Social-cognition: the bird flies partly towards the best 

location that the entire flock has ever found. 
2) Genetic Algorithm (GA) 

Inspired by Darwin's biological theory of evolution, in 
1975 J. Holland et al. proposed the first Genetic Algorithm 
(GA) [15], which simulates the mechanism of “the survival 
of the fittest” in biological evolution. The algorithm gained 
extensive attentions with the development of computer 
science, and was widely applied in fields like optimal control, 
pattern recognition and machine learning, etc. 

GA imitates the co-evolutionary process of a population 
formed by multiple individuals (i.e., the locations of the birds 
in the context of PSO), and keep improving the fitness of the 
population until the strongest individual is found. A typical 
GA includes the following steps:  

Encoding: encode a feasible solution, i.e. an individual, 
into a chromosome according to the specific problem; 

Initialization: initialize the individuals to form a 
population;  

Evaluation: evaluate all individuals at current iteration 
step and terminate the algorithm if the best individual is 
found;  

Selection: select some of the individuals according to 
certain probability model, promising that the excellent 
individuals are more likely to be selected; 

Crossover and mutation: conduct chromosome crossover 
and mutation operation to the selected individuals and then 
return to the evaluation step. 
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B. Design Decisions of SwinTop 

Inspired by PSO and GA, the proposed SwinTop 
algorithm simulates a bird flock seeking for food, while at 
the same time conducting gene (position) exchange and 
mutation selectively. The main design decisions include: 

The combination of PSO and GA: Dealing with the 
multi-dimensional ruleset partitioning model, GA suffers 
from low convergence speed due to the randomness of 
crossover and mutation operations, but can guarantee global 
optimum when adopting the elitist strategy [16]. In contrast, 
PSO converges speedily but may trap into local optimum due 
to the lack of solution perturbation. In SwinTop, the best of 
PSO and GA are combined to keep the good convergence 
accuracy and speed simultaneously. 

The introduction of individual pair compatibility: 
According to the grouping penalties of rule pairs, SwinTop 
can dynamically estimate the “compatibility” of two 
individuals (which will be explained later) to provide 
guidance to the iterations, and thus can further increase both 
the convergence accuracy and speed.  

In the following part, the SwinTop algorithm will be 
presented in the order of encoding, initialization, and 
iteration. 

C. Encoding 

As described in Section III, when partitioning a ruleset 
with N rules into K subsets, the objective of SwinTop is to 
find the best distribution of rules {r1, r2, … , rN} that 
minimizes the overall memory consumption. Table III shows 
the correspondence of some concepts and encodings. 

TABLE III.  CORRESPONDENCE OF CONCEPTS 

Problem Concepts Biological Concepts 
Integer 

programming 
Encoding Classic PSO Classic GA 

A variable in a 
feasible solution 

ri (the ID of the sub-
ruleset that this rule 
is distributed into, 
ranging from 1~K) 

Location of 
one 

dimension 
Gene 

A feasible 
solution 1 2, ,   ( , )Nrr r r  Location 

(Bird) 
Chromosome 
(Individual) 

Some feasible 
solutions 

11 1 2

1

1 1

2

( )

.....

, , ,

,( ,

.

),

.

M M

N

M MN

r

r

r r r

r r r













 

Bird flock Population 

The optimal 
solution 

1 2, ,   ( , )Nrr r r  

that minimize 

1 2( , , , )NM r r r  

Location of 
the food 

The strongest 
individual 

that maximize 
fitness 

D. Initialization 

In SwinTop, the population (i.e. bird flock) is initialized 
with 17 individuals (i.e. birds). Among them 8 individuals 
are called pilots, which will update themselves in each 
iteration step. Another 8 individuals are called pbest_holders, 
responsible for holding the historical best position of each 
pilot. The rest one individual is called gbest_holder, which 
holds the historical best position of all the pilots (i.e. gbest is 
the best of pbests). 

To provide a nice initial solution, we propose a new 
direct ruleset partitioning algorithm (see Algorithm I) that 
approximates a relatively nice grouping of rules, which to 
some extent reduces the overall memory consumption and 
possesses the potential for further optimization by iteration. 

ALGORITHM I.   ALGORITHM FOR INITIAL PARTITIONING 

function InitPartitioning (Ruleset) 
1 Sub_Rulesets = {} 
2 while Ruleset is not empty: 
3   RS = {} 
4   for each rule in Ruleset: 
5     If rule is neither crossed nor partially-overlapped with any rule 

in RS: 
6       RS.insert(rule) 
7       Ruleset.delete(rule) 
8   Sub_Rulesets.insert(RS) 
9 return Sub_Rulesets 

 
The basic idea of this direct partitioning algorithm is to 

eliminate all the orthogonal structures of rules. According to 
[17], orthogonal structure is the major (and also commonly 
encountered) pattern that causes a large amount of rule 
replication, leading to significant memory overhead. 

For the initial population, one of the pilots is initialized 
with the result of the above algorithm, and the other pilots 
are initialized with random locations and random speeds. 
According to our observation, the special pilot is much likely 
to be the best solution among all the initial solutions. 

E. Iteration 

After initialization, the population begins to evolve. To 
evaluate each individual based on the objective function 

1 2( , , , )NM r r r , we define the fitness of individual as follow: 

2 2

1

( ) ( _ 2 ) / ( ( ))
i

K

r m i
m

fitness r m node N T r


  
  

where m_node is the memory size of each node in the 
decision tree built by a traditional packet classification 
algorithm, and T represents the actual size of a decision tree. 
In SwinTop, we choose HyperSplit to be the traditional 
algorithm for its superior memory efficiency compared to 
others, in which case m_node is 8 (Bytes). 

The fitness ranges from 0 to 1. For an individual, the less 
memory overhead its grouping causes, the higher fitness it 
achieves. For the limiting case that no rule replication occurs 
(even for the default rule), the fitness reaches 1. 

Next we define the compatibility of two individuals as 
follow: 

1 2 1(k) 2(k)
1

( , ) / ( , )
K

m
k

compatibility r r K P r r


  
 

where mP  is the grouping penalty as defined in Section III, 

and 1(k)r ( 2(k)r ) is a rule randomly picked from the thk  sub-

rulesets of the feasible solution 1r


( 2r


) , i.e., 1(k) 2(k)r r k  . 

Compatibility is used to estimate the structural similarity 
between two individuals. The more compatible the two 
individuals are, the more likely that the distribution of their 
rules in each subset falls into similar patterns. By 
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continuously checking the compatibility between an 
individual and current gbest, the algorithm can determine 
whether to conduct speed/position updates, or to conduct 
gene communications with other excellent individuals 
(including gbest), to evolve the individual itself. When 
compatibility is not enough, the former operations are chosen 
for encouraging the individual to bravely search in a broader 
area while to some extent drawing closer to the flock; 
otherwise, the latter is chosen, for making the individual 
carefully perturb current solution according to the effective 
information of others 

 
The pseudo-code of SwinTop algorithm is as below: 

ALGORITHM II.   THE SWINTOP ALGORITHM 

function SwinTop (Ruleset) 
1 Encode() 
2 Initialize() 
3 Calculate_fitness() 
4 while termination condition not reached: 
5   Update_pbests() 
6   Update_gbest() 
7   for each pilot in the population: 
8     if pilot.fitness decreased and compatibility(pilot, gbest) not 

improved: 
9       Update_speed(pilot) 
10       Update_location(pilot) 
11     else: 
12       if rand(0,1) < p_crossover: 
13         Cross(pilot, gbest) 
14       if rand(0,1) < p_crossover: 
15         Selected_pbest = Select(pbests) 
16         Cross(pilot, selected_pbest) 
17       if rand(0,1) < p_mutation: 
18         Mutate(pilot) 
19   Calculate_fitness() 
20 return gbest 

 
For line 9 and line 10, the methods of updating the speed 

and location is defined as follow: 
( 1) ( ) ( )

0 1
( )

2
( 1) ( ) ( 1)

(0,1) ( )
(0,1) ( )
1, 2, ,

n n n
i i i i

n
i i

n n n
i i i

v c v c rand pbest v
c rand gbest v

r r v i N



 

     
   

   
 

where we set the inertia weight 0c = 1, the self-cognition 

weight 1c = 1.5, and the social-cognition weight 2c = 0.9. 
For line 12 to line 18, the crossover and mutation 

operations are illustrated in Figure 3. We set the possibility 
of crossover p_crossover = 0.5 and the possibility of 

mutation p_mutation = 0.2. In line 15, the Roulette Wheel 
Selection strategy is used to select one of the pbests based on 
their fitnesses (i.e., fitness-proportionate selection). 

When any of these two criteria reached, the iteration 
terminates: (1) the fitness of gbest reaches 1, (2) the fitness 
of gbest has not increased for a certain number of iteration 
steps. 

V. OPTIMIZATION TO SWINTOP IMPLEMENTATION 

During the iterations, the time-consuming packet 
classification algorithm (HyperSplit in our case) is frequently 

called to compute the accurate memory consumption for 
evaluating the fitnesses of individuals, resulting in significant 
amount of computation time before convergence. To tackle 
this issue, we propose a new concept, named overlapping 
degree, to estimate the memory consumption trends of 
rulesets much more efficiently. 

The memory overhead of decision trees mainly comes 
from the overlap of rules [4]. We categorize the overlapping 
relations of two ranges into four types according to different 
possibilities of causing rule replication, as shown in Figure 4. 
We first define the overlapping degree of two rules: 

1

_ ( , ) ( , , ) ( )
D

i j i j
d

ovlp r r r seg r r d w d


   

where 

0 1

1 2
( , , )

2 3

3 4

th

th

i j th

th

if case in the d dimension

if case in the d dimension
seg r r d

if case in the d dimension

if case in the d dimension



 



. 

For a ruleset, ( )w d  is proportional to the number of 

unique end-points if all rules are projected on the thd  

R1 R2 R3 R4 R5 R6

Individual a

Individual b

2 1 1 4 2 3

1 3 2 4 4 2

R1 R2 R3 R4 R5 R6

Individual a

Individual b

2 3 2 4 2 3

1 1 1 4 4 2

R1 R2 R3 R4 R5 R6

Individual a

Individual b

2 3 2 4 2 4

1 1 1 4 4 2

(a)  An example of two individuals. For                (b) Crossover: randomly choose a part                      (c) Mutation: randomly choose a position 
                instance, R1 is distributed in subset                       (e.g. (R2, R3)) and swap the genes                            (e.g. R6) and mutate the gene in this 

No.2 for the grouping represented by                    of the two individuals in this part.                             position. 
individual a. 

Figure 3.  Crossover and mutation 

Case 1: disjointed Case 2: coincident 

Case 3: nested and exactly 
one end-point coincident 

Case 4: the other relations 

 
Figure 4.  The four types of relations for two ranges
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dimension, and 
1

( ) 1
D

d

w d


 . The ovlp_r values are 

computed and stored in the initialization procedure, and will 
be directly read during iterations. 

Next, the overlapping degree of a ruleset is defined as 
follow: 

,
2

,( )

1_ ( ) _ ( , )
i j i jr r RS r rsize RS

ovlp g RS ovlp r i j
C  

    

which is the average of the ovlp_r of all the rule pairs. Thus 
in SwinTop, the objective function (i.e., the accurate overall 
memory consumption) can be replaced by: 

1 2
1

( , , , ) _ ( )
i

K

N r m i
m

M r r r overlap g r


    

When implementing SwinTop, the estimation objective 
function M is first applied in the early stage of iterations, for 
efficiently finding a near-optimal grouping of rules. The 
accurate objective function M  is then applied for acquiring 
the optimal grouping.  

VI. EVALUATION 

A. Data Set and Test-bed 

The effectiveness and performance of the proposed 
SwinTop approach is evaluated using publicly available five-
dimensional packet classification rulesets from ClassBench 
[5]. We use in total 18 rulesets, each of which is named 
according to its type (ACL: access control list, FW: firewall, 
IPC: IP chains) and size (100, 1K, 5K, 10K, 20K, 50K). 

On an HP Z220 SFF workstation with 3.40GHz CPU, 
16GB memory and 64bit Ubuntu 12.04, we implement 
SwinTop along with the two state-of-the-art partitioning 
algorithms, EffiCuts and ParaSplit, for comparison. The 
number of sub-rulesets is set to 8 for SwinTop and ParaSplit 
in all cases. For EffiCuts the number depends on the 
selective tree merging strategy and usually exceeds 8. 

B. Effects of Combining PSO and GA 

The iteration design of SwinTop is based on the revision 
and combination of classic PSO and classic GA. To verify 
the effects of this strategy, we implement the two classic 
optimization algorithms as well, using the same parameters 

as SwinTop (e.g., population size, crossover/mutation 
possibility, inertia/self-cognition/social-cognition weight, 
etc). 

On each of the rulesets ranging from 100 to 5K, the three 
intelligent optimization algorithms (PSO, GA and SwinTop) 
are applied with the same initial population. We record the 
memory consumption of current best grouping when the 
iteration reaches 500 steps, 5000 steps, as well as when it 
meets the termination criteria.  

In Table IV, the experimental results compared with 
classic PSO and GA manifest that the revised and hybrid 
swarm intelligent algorithm improves both the efficiency and 

accuracy of convergence. Specifically, in the early stage of 
iterations (see the memory consumptions of the 500th step), 
SwinTop searches for better solutions as fast as PSO does 
due to the target oriented strategies (i.e., location updates or 
crossover with excellent individuals); In the later stage of 
iterations (see the memory consumptions of the 5000th step 
and TERM.), SwinTop successfully avoid trapping into local 
optimum (which PSO is much likely to encounter due to the 
lack of solution perturbation). As the basis of the 
combination of PSO and GA, the introduction of 
“compatibility” enables the algorithm to adaptively switch 
between the two strategies during iterations. 

TABLE IV.  MEMORY CONSUMPTION IN DIFFERENT STATES OF 
ITERATIONS (KB) 

Algorithm
# of 

iterations

ACL FW IPC 

1K 5K 1K 5K 1K 5K 

Classic 
PSO 

500 139 1312 282 1720 146 1308

5000 80 429 56 799 84 615

TERM. 78 433 53 455 83 405

Classic 
GA 

500 158 1380 319 1774 157 1341

5000 79 483 55 1018 84 670

TERM. 75 379 51 392 70 351

SwinTop

500 135 1320 243 1713 134 1312

5000 81 428 54 682 83 586

TERM. 75 368 51 375 70 324

 
Figure 5.  Memory consumption: SwinTop vs. traditional packet classification algorithms 
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C. Memory Efficiency 

The memory performance of SwinTop is first compared 
against two representative packet classification algorithms, 
HiCuts and HyperSplit, in terms of memory consumption. In 
our workstation with only 16GB memory, it is always 
infeasible to build the decision trees for rulesets larger than 
20K when simply using HiCuts or HyperSplit alone. Thus 
only the 100~10K rulesets are used for this experiment. The 
results are shown in Figure 5. For ACL rulesets, the memory 
reduction of ruleset partitioning is not significant (because 
the ACL rules are not intensively overlapped [4]). For FW 
and IPC rulesets, SwinTop achieves 1 to 4 orders of 
magnitude lower memory consumption compared with 
HiCuts and HyperSplit. For example, instead of building one 
huge decision tree for FW10K, by pre-partitioning the ruleset 
into 8 subsets and building 8 decision trees accordingly, the 
overall memory consumption is reduced from over 1GB to 
719KB, which can fit in small-but-faster kinds of RAMs. 

For comparing memory performance with EffiCuts and 
ParaSplit, the larger-sized rulesets (20K and 50K) are also 
tested. As shown in Figure 6, SwinTop outperforms the other 
two algorithms on all the rulesets. On average, SwinTop 
requires 50% less memory than EffiCuts and 25% less 
memory than ParaSplit. It benefits from SwinTop’s 
capability of finding the global optimum grouping of rules. 

D. Effectiveness of Memory Comsumption Estimation 

In Section V, overlapping degree (OD, for short) is 
introduced to approximate the trends of memory 
consumption. On the representative ruleset FW_1K, we use 
OD-oriented SwinTop to optimize grouping, while at the 
same time calculating the accurate memory consumption 
(MC) in each iteration step. As shown in Figure 7(a) and 
7(b), OD and MC share similar trends (i.e., as OD dives, so 
does MC), and the linear fitting effect is preferable, which 
meets the hypothesis of nice estimation. 

Figure 7(b) also indicates that the best OD does not 
represents the best MC. However, the goal of OD in not to 
precisely replace MC, it is to provide a rough but much more 
efficient way to lower the objective function for the early 
stage of iterations. According to our test, compared with 
using MC all along, the introduction of OD achieves on 
average 20-fold reduction in convergence time. 

VII. CONCLUSION 

To tackle the urgent memory utilization issue of packet 
classification function in network devices, this paper  
proposes SwinTop, a new ruleset partitioning approach for 
significantly reducing the size of memory consumed by the 
traditional packet classification algorithms. Based on the 
study of ruleset characteristics and the modeling of the 
ruleset partitioning problem, SwinTop develops a novel 
swarm intelligence based algorithm to seek for the global 
optimum grouping of rules that minimizes the memory 
consumption of packet classification decision trees. The 
design of SwinTop is extensible to future network 
functionalities with larger, more complex, and higher-
dimensional rulesets used. 
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