
Abstract-- Packet classification on multiple header fields is one 
of the basic techniques for policy enforcement applications in 
network devices. In this paper, we analyzed the existing packet 
classification algorithms from a theoretical point of view, 
focusing on the information exploitation in each algorithm. A 
novel packet classification scheme is proposed that exploits not 
only the structural characteristics of network packet classifiers 
but also the statistical characteristics of network traffic flows. 
The proposed algorithm D-Cuts (Dynamic Cuttings) is based on a 
decision tree data structure similar to but improved than the 
previously well-known algorithm HiCuts. However, the memory 
allocation function in D-Cuts is significantly improved by 
introducing the statistical characteristics of network traffic. A set 
of unified discrimination criterion based on entropy 
measurement is also adopted by D-Cuts. Experimental results 
show that D-Cuts performs superior to other popular multiple-
field packet classification algorithms. Its average search time is 
on the same order as for the HiCuts optimized for speed while its 
memory usage is on the same order as for HiCuts optimized for 
space. 

 
Index terms—packet classification, traffic statistics, search 

space. 
 

A. INTRODUCTION 
 
The Internet is becoming a more and more complex 

place to live in because of its use for more and more 
mission critical tasks executed by organizations. It is 
desired that those critical activities not be subverted 
either by heavy traffic sent by other organizations or by 
malicious intruders. Traffic engineering, access control, 
and many other services require a discrimination of 
packets based on multiple fields of packet headers, 
which is called packet classification. 

Packet classification is employed by policy enforcing 
devices to implement a number of advanced Internet 
services, such as policy-based routing, access-control, 
service differentiation, load balancing, traffic shaping 
and traffic billing. Each service requires the Internet 
devices to classify packets into different flows and then 
perform appropriate actions depending upon which flow 
the packet belongs to. These flows are specified by a 
classifier containing a set of rules. 

With the rapid development of policy enforced 
networks, packet classification becomes more and more 
important and there is a need for efficient packet 
classification algorithms to enable high speed policy 
enforcement. Several popular algorithms have been 
proposed and some of them provide reasonable solutions. 
Most of the new algorithms proposed in recent years, 
especially the heuristic algorithms, are inspired by the 

observation of redundancy in the data structure of real-
life classifiers. Such observation is introduced into the 
design of packet classification algorithms to improve the 
classification performance. The importance of the 
observation against real-life classifiers is undeniable, but 
it was a bottom-up approach and hence lack of 
theoretical guidance. Therefore, it is hard to further 
improve and refine those algorithms following this 
direction.  

Our research starts from the theoretical analysis on the 
packet classification problem. We compared and 
analyzed the existing algorithms from two aspects: the 
exploitation of the heuristic information and the division 
of the search space. Based on the conclusion of such 
analysis, we present a novel packet classification scheme 
that adopts network traffic statistical characteristics into 
the decision tree based classification algorithms. 
Compared to the well-known algorithm HiCuts, its 
average search time is on the same order as for the 
HiCuts optimized for speed while its memory storage 
requirements are on the same order as for HiCuts 
optimized for space.  

The rest of the paper is organized as follows. SECTION 
B gives a mathematic definition of the packet 
classification problem; SECTION C compares and 
analyzes the most popular existing packet classification 
algorithms; SECTION D presents the reasoning to 
introduce network traffic statistical characteristics into 
the decision tree based data structure; SECTION E 
describes the proposed algorithm Dynamic Cuttings (D-
Cuts); SECTION F illustrates the experimental results of 
D-Cuts in comparison with the existing algorithms; as a 
summary, SECTION G states our conclusions. 

 
B. MATHEMATIC DEFINITION OF PACKET 

CLASSIFICATION 
Generic packet classification classifies a packet based 

on multiple fields of its header. Each rule of the 
classifier specifies a class that a packet may belong to, 
based on certain specifications on the F  fields 
(dimensions) of the packet header. The class uniquely 
determines the action associated to the rule. Each rule 
has F  components. The ith  component of rule R , 
referred to as [ ]R i , is a regular expression on the ith  
field of the packet header. A packet P  is said to match a 
particular rule R , if, the ith  field of the header of P  
satisfies the regular expression [ ]R i , for all 0 i F≤ < . 
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The classes specified by the rule set may be overlapping, 
i.e. one packet can match several rules. 

From a theoretical point of view, the F  fields of the 
packet header make up a multi-dimensional space, which 
is called the search space in this paper. Each of the F  
fields is a dimension of the search space. A packet P  is 
a point in the multi-dimensional search space. For the 
generalized range matching, the regular expression [ ]R i  
refers to a range in the ith  dimension of the search space 
and all of these ranges make up a F-dimensional hyper-
cube. If a packet P  matches a particular rule R , the 
point P  falls into the hyper-cube specified by R . 
Therefore, packet classification can be treated as a point 
location problem in computing geometry. 

The point location problem is inherently hard to solve. 
It has been proved [2] that in its fullest generality, packet 
classification requires either 1(log )FO N−  time and 

( )O N  space, or (log )O N  time and ( )FO N  space 
where N  is the number of rules, and F is the number of 
header fields. Therefore, it is relatively simple to 
perform packet classification at high speed using large 
amounts of storage, or at low speed with small amounts 
of storage. When matching multiple fields (in another 
word, searching in multiple dimensions) simultaneously, 
however, it is difficult to achieve both high classification 
speed and modest storage in the worst-case. 

 
C. ANALYSIS OF PREVIOUS WORK 

 
The design of classification algorithms is encumbered 

by worst-case bounds on search time and memory 
requirements that are so onerous as to make brutal force 
algorithms unusable [3]. Therefore, it will be futile to try 
to find a global optimized algorithm under all 
circumstances. Instead we must search for structures or 
characteristics of certain classification problems that can 
be exploited in pursuit of algorithms that are “fast 
enough” and use “not too much” space. 

The simplest classification scheme is a linear search of 
each rule of a classifier. While it is very efficient in 
terms of storage requirements and update time, linear 
search requires a comparatively long search time of 

( )O N . This makes it impractical to deal with large size 
classifiers as the search time increase linearly with 
larger N . 

In resent years, a variety of packet classification 
schemes have been proposed to solve the general 
problem of multi-dimensional packet classification. The 
generic idea to deal with large classifiers is divide and 
conquer: Most of the existing algorithms appropriately 
divide the multi-dimensional search space into a certain 
number of sub-spaces. Since there are fewer rules in 

each sub-space, the original classification problem is 
simplified and hence easier to deal with. Each algorithm 
has its own way to divide the search space. Different 
ways in which to apply the division depend on  the 
information exploited by the algorithms. Such 
information includes: 
1. Basic attributes of the search space, such as its 

dimensionality and the ranges of value in each 
dimension.  

2. Structural properties of real-life classifiers, 
including the distribution, redundancy and many 
other characteristics of the given rule set. 

3. Statistical characteristics of real-life (or specific, 
particular) networks, such as the traffic flow 
statistics and the hit rates of the rules. 

The above items 1 and 2 are static information. They 
are definitely specified by certain classification problems 
(IDS/IPS interacting with firewall and introducing 
firewall policies reactively can be treated as a special 
case and does not impact the generalness of this claim). 
The item 3 is dynamic information because statistical 
characteristics of certain networks are time-variant. 

Srinivasan et al. [5] proposed two algorithms Grid-of-
trie and Cross-producting. Like Hierarchical tries [4] and 
Set-pruning tries [4], Grid-of-trie uses a trie-based data 
structure and the search space is equally divided bit by 
bit at each trie node. Superior to other trie-based 
algorithms, Grid-of-trie adopts switch pointers to avoid 
the time-consuming back tracking search. These switch 
pointers allow the query process to switch from one sub-
space to another. Cross-producting divides the search 
space according to the rule segmentations along each 
dimension. Each segment refers to a sub-region in one of 
the F dimensions, and the cross-product of the F sub-
regions makes up of a sub-space. Search can be done 
quickly by separate lookups on each dimension and then 
indexing into the cross-product table. 

Gupta and McKeown [1,3] introduced two new 
algorithms, RFC and HiCuts. HiCuts is based on a 
decision tree structure. At each tree node, the current 
search space is equally cut (divided) along a chosen 
dimension. Which dimension to cut and the number of 
cuttings (divisions) depend on the characteristics of the 
rules belong to the node. Different from trie-based 
algorithms, the division in HiCuts is not a simple binary-
division. The algorithm determines the number of 
divisions according to the given rule set. RFC is really 
an improved form of Cross-producting that significantly 
compresses the cross-product table. In the first phase of 
RFC, the division of the search space is the same as that 
of Cross-producting. However, RFC is a recursive 
algorithm and does not obtain the classification result 
though one table lookup. The main idea of RFC is to 
place the smaller cross-products into equivalence classes 



before combing them to form larger cross-products. This 
equivalencing of partial cross-products considerably 
reduces memory requirements, because several original 
cross-product terms map into the same equivalence class 
[8]. 

Objective evaluation of the performance of each 
algorithm can be done both in worst-case analysis and 
experimental comparison. We list the worst-case 
complexity of time and space in Table.1, from which we 
found that it is not obvious that some algorithms are 
superior to others. However, experimental results (given 
in SECTION F) show that the decision tree based 
algorithm mostly works well. This is because the flexible 
data structure of the decision tree makes it possible to 
exploit more useful information of real-life classifiers 
into the design of packet classifiers. We summarize the 
existing algorithms as three aspects: 
1. The algorithm generality. Some of the existing 

algorithms, such as Grid-of-trie, are designed 
for 2-dimensional packet classification and not 
efficient for multi-dimensional problems. 
Although Cross-producting works well with 
small number of rules in multiple fields, it is not 
able to handle large classifiers. RFC is very 
efficient for multi-dimensional classification, 
but it is found that RFC consumes too much 
storage for classifiers with more than 2000 rules. 
HiCuts mostly works well with thousands of 
multi-dimensional rules. While it is slower 
compared to RFC, HiCuts is able to give a 
practical solution for large classifiers. This is 
because the memory requirement for the 
decision tree data structure does not 
explodingly increase.  

2. The information exploitation. Grid-of-trie 
exploits the information that some of the rules 
share the same part of the prefix, so the 
searching process can switch from one sub-
space to another in order to avoid the redundant 
back-tracking search. RFC takes advantage of 
the observation that, in real-life classifiers, the 
number of overlapping regions is considerably 
smaller than the worst-case, thus a recursive 
mapping can be applied. HiCuts exploits much 
more heuristic information in such structural 
redundancy, especially some abstract 
information, such as the discriminating ability 
in each dimension. More information exploited, 
more efficient will the algorithms be. 

3. The search space division. There are two ways 
to divide the search space: dividing equally and 
dividing according to the rules. Grid-of-trie and 
HiCuts adopt the former way. At each node, 
Grid-of-trie bisects the search space while 

HiCuts divides (cuts) the search space into a 
certain number of equal-sized sub-spaces. 
Cross-producting and RFC use the latter 
method, dividing each dimension of the search 
space into segments according to the given rules. 
Searching in equal-sized space needs just one 
operation while in unequal-sized space  
(division according to the rules) it requires a 
binary search with log( )N  operations. On the 
other hand, equal-sized division is not as 
discriminative as the division according to the 
rules, i.e. it requires larger number of divisions 
to discriminate the give rules. Figure.1 is a 
simple example to compare the two ways for 
division. Although at each node, HiCuts applies 
an equal-sized division, but when considered 
globally, the whole decision tree virtually 
divides the search space into unequal-sized sub-
spaces. 

 
Table.1 Comparison of popular algorithms. In this table N  is 
the number of rules, W  is bit-width of header vector in a 
certain dimension (e.g. for IP address, 32W = ), F  is 
dimensionality of the search space. 

Algorithm Worst time Worst space 
Linear Search ( )O N  ( )O N  

Hierarchical Tries ( )FO W  ( )O N  

Cross-producting ( )O FW  ( )FO N  

Grid-of-tries 1( )FO W −  ( )O N  
RFC 
HiCuts 

( )O F  ( )FO N  

 
As a conclusion, the reason why HiCuts can exploit 

more useful information is that the decision tree based 
data structure of HiCuts is very flexible to adapt to 
different classifiers. The proposed algorithm D-Cuts 
(Dynamic Cuttings) is also based on decision tree data 
structure. Different from HiCuts, D-Cuts exploits not 
only the static information, but also the dynamic 
information of certain networks. In addition, D-Cuts 
uses an improved discrimination criterion in building the 
decision tree. 

 



 
Figure.1 Two ways of the search space division in one 
dimension for three rules ( 1, 2, 3R R R ). (a) refers to equal-
sized division. It needs 4 divisions to discriminate the 3 rules 
and 1 operation to search. (b) is the division according to the 
rules. It needs 3 divisions to discriminate the rules but more 
(up to 2) search operations. 

 
D. STATISTICAL CHARACTERISTIC OF NETWORK 

TRAFFIC 
 
Most of the existing classification algorithms exploit 

the static information, such as the structural 
characteristics of real-life classifiers. They assume all 
incoming packets are distributed uniformly in the search 
space. However, it is unlikely that the traffic in a certain 
network evenly spread over all IP addresses and/or port 
numbers. For example, most Internet sessions are usually 
Web applications so that majority packet headers are 
having destination port numbers of 80 or 443 (HTTP or 
HTTPS). In a particular network, some of the rules may 
be set to prevent networks from virus or other attacks 
and thus applicable for almost no traffic being classified. 
Although most of time there is no packet matches them, 
these rules have to be kept in the classifier for the sake 
of security, and thus make the division of the search 
space more complex. 

Each network has its own traffic patterns, and the 
packet classification process is affected by the dynamic 
characteristics to a certain extend. Our study focuses on 
the exploitation of network traffic characteristics to 
achieve more time-efficient and less memory-consuming 
classification algorithms. Challenges of adopting this 
new idea include: 
1. Extracting the dynamic information of network 

traffic and expressing them in an appropriate 
form that can be employed in classification 
algorithms. The dynamic characteristics of 
network traffic exploited in our algorithm are 
the IP address and port number statistical 
distribution in the search space. Periodic 
sampling is a practical way to gather statistical 
information of IP and port distribution 
characteristics. After normalization, the 
statistical information is introduced into the 

proposed classification algorithm as prior 
probability of the IP addresses and port 
numbers. 

2. Optimizing the algorithm dependency to the 
statistical characteristics of network traffic. 
Different from the static structural 
characteristics of given classifiers, the dynamic 
characteristics of network traffic are time-
variant. In the proposed D-Cuts algorithm, the 
extent to which it depends on the traffic 
statistics is determined by setting two bounds 
for the space factor. 

3. Applying the statistical characteristics in 
classification algorithm. D-Cuts exploits 
statistical characteristics of network traffic by 
dynamically adjusting the memory allocation 
function. Nodes corresponding to larger traffic 
flow will be allocated with more memory 
storage to reduce the depth of the sub-trees. 

Details of the considerations will be elaborated in the 
next section. 

 
E. THE PROPOSED ALGORITHM D-CUTS 

 
E.1 An Example 

To illustrate the D-Cuts algorithm we proposed in this 
paper, a simple 2-dimensional classifier (similar to the 
classifier used in [4]) is used for demonstration, shown 
in Table.2. This classifier is represented with two fields 
in a 2-dimensional space (X-Y plane), where each rule is 
represented by a rectangle (Figure.2). 

Like HiCuts, the classification scheme D-Cuts is based 
on a decision tree structure. However, the way to 
implement cuttings on the search space is improved by 
exploiting not only the structural characteristics of the 
specific classifier, but also the network traffic statistical 
characteristics. Spaces where there is more traffic will be 
cut into more sub-spaces in order to reduce the depth of 
the sub-trees. 

 
Table 2. A sample classifier with 6 two-dimensional rules, the 
search space is X-Y plane. 

 
Rule Field1(X) Field2(Y)
R1 00* 00* 
R2 0* 01* 
R3 1* 0* 
R4 01* 00 * 
R5 0* 1* 
R6 1* 1* 

 



 
Figure.2 Geometric representation of the sample classifier in 
Table.2. 

 
In HiCuts, space available for each N-size node (node 

with N rules) v  is determined by the 
function ( )SpaceAv v : 

( ) *SpaceAv v N spfac=         (1) 
Where spfac is the space factor [1] and often takes 

value through 1 to 4 for a time/space tradeoff. A larger 
spfac is likely to consume more memory while cost less 
search time. ( )SpaceAv v  sets an upper bound for the 
number of cuttings and, in the example, we simply 
define the cutting number ( )numCuts v  by: 

( ) ( )numCuts v SpaceAv v=          (2) 
Figure.3 shows how HiCuts works for the sample 

classifier listed in Table.2. 
 

 
Figure.3 Decision tree built by HiCuts for the sample 
classifier listed in Table.2. Leaf nodes (rectangle) have only 
one rule while internal nodes (ellipse) have more than one 
rules. 

 
In D-Cuts, we simply revised the space allocation 

function for node v by: 
( ) * ( )*10SpaceAv v N P v=    (3) 

Where ( )P v  is defined as the probability of traffic 
falling into the region covered by node v  along 
X dimension. In case of 40% traffic falls into region 

[000, 001] of X dimension and the other 60% traffic 
distributed uniformly in [010, 111] along X , Figure.4 
illustrates the decision tree built by D-Cuts. 

 

 
Figure.4 Decision tree built by D-Cuts for the sample 
classifier listed in Table.2, with 40% traffic falls into region 
[000, 001] of X  dimension. 

 
It can be derived from Figure.3 and Figure.4 that the 

number of nodes in D-Cuts does not increase while the 
average depth of decision tree decreases, comparing to 
HiCuts. Worst-case search time (determined by the 
depth of the decision tree) stays the same while the 
average search time is improved because 40% traffic 
travels through the 2-level sub-tree in D-Cuts in stead of 
the 3-level sub-tree in HiCuts.  

 
E.2 Extracting Statistical Characteristics of Network 
Traffic 

Network traffic statistical characteristics are obtained 
by periodic sampling. First, we get the packet header 
distribution information along each dimension, such as 
IP prefixes (16-bit for B class) and port number ranges. 
For example, a two-dimensional array of 4*65536 
entries { [ ][ ], 0,...,3, 0,...,65535}count d i d i= =  can 
be used to count source/destination B-class IP prefixes 
(for d=0 and 1) and source/destination port numbers (for 
d=2 and 3), e.g. [3][80]count  is the number of sampled 
packets with destination port 80. 

After sampling step, a normalization process is applied 
to { [ ][ ]}count d i . We use 
{ [ ][ ], 0,...,3, 0,...,65535}prior d i d i= =  to denote the 
normalized distribution of network traffic, where 

65535

0

[ ][ ]
[ ][ ]

[ ][ ]
j

count d i
prior d i

count d j
=

=

∑
         (4) 

 
E.3 Introducing Statistical Characteristics Of Network 
Traffic To D-Cuts 

SECTION E.1 gives a simple version of function 
( )SpaceAv v  to illustrate the exploitation of network 

traffic statistical characteristics. Here we define two 
general forms of function ( )SpaceAv v . 
FORM-1: 

( ) * ( )

* ( ( min( )) * )l l
min v

SpaceAv v N spfac v

N spfac P P K

=

= + −
  (5) 



3

0

1
[ ][ ]

4

d

d

b
l

v
d i a

P prior d i
= =

= ∑∑     (6) 

for max( ) min( ) 0

for max( ) min( ) 0

( ) /(max( ) min( ))

0

l l

l l

l l

max min

P P

P P

K spfac spfac P P

K

− >

− =

= − −

=

  (7) 

where N  is the number of rules associated with node 
v; l

vP  is the prior probability assigned to node v at level l 
of the decision tree; [ , ]d da b  is the search range of node 

v along the dth  dimension; max( )lP  and min( )lP  are 
the maximum/minimum prior probability among all 
nodes in the same level of the decision tree; minspfac  

and maxspfac  are bounds of the space factor. 
 

FORM-2: 
( ) * ( )

* ( * * , , )l l

v avg min max

SpaceAv v N spfac v

N BOUND P D spfac spfac spfac

=

=
  (8) 

where ( ) / 2avg max minspfac spfac spfac= + ; lD  is the 

number of nodes at the same level as node v; l
vP  takes 

the same definition in (6); and ( , , )BOUND a b c is 
defined as the following that has value a with lower 
bound as b and upper bound as c (for b c≤ ): 

( , , )

a

BOUND a b c b

c

=






  

b a c

a b

a c

≤ ≤

<

>

       (9) 

Different from the space factor spfac  in HiCuts, the 
space factor spfac is not a constant in D-Cuts. It takes 
value in [ , ]min maxspfac spfac . Here minspfac  can be 

specified for space-optimization, while maxspfac  is 
specified for time-optimization. Therefore, it can be seen 
in both FORM-1 and FORM-2 that nodes with larger l

vP , 
i.e. larger traffic volume, will have more memory 
reserved for cuttings to increase the search speed. 

 
E.4 Selecting The Number Of Cuttings ( , )numCuts v d  

An approximate memory measurement for the cutting 
of node v is defined as [1] 

( , )

1

( , ) ( ) ( , )
numCuts v d

i
i

sm v d numRules v numCuts v d
=

= +∑  (10) 

where d is the dimension to cut, iv is a child node of v, 

( )inumRules v  is the number of rules colliding with 

iv ( Rule R is said to “collide with” node v means R 

spans, cuts or is contained in the range associated with v). 
For 0,...,3d =  ( , )numCuts v d is determined by 
maximizing sm(v, d) in (10) with the limit: 

( , ) ( )sm v d SpaceAv v<          (11) 
 

E.5 Selecting The Dimension To Cut ( )dimCut v  
 
To select a dimension to cut at node v, ( )dimCut v is 

determined by the discriminative functions that can be 
found in [1] and [7]. In our experiment, we found that 
under certain circumstances, these discriminative 
functions take the same value, i.e. they cannot determine 
which dimension is more discriminative to apply the 
cuttings. Figure.5 is an example to show that the 
discriminative function (given in [1]) 

min(max( ( , )))id i
numRules v d

∀ ∀
          (12) 

fails to determine ( )dimCut v . 
 

 
Figure.5 In STEP1, cut1 divide the search space [0000, 1111] 
into two equal-sized sub-spaces [0000, 0111] and [1000, 1111]. 
Both DIM1 and DIM2 have two rules fall into the sub-space 
[0000, 0111]. Therefore Eq.12 cannot discriminate which 
dimension to cut. 

 
Note that most of the discriminative functions are 

based on the number of cuttings. We give an improved 
discriminative function that does not depend on the 
number of cuttings. This function describes the 
uniformity of the rule segments distributed in each 
dimension. For the equal-sized division at each tree node 
in D-Cuts, it is favorable to divide the dimension with 
most uniformly distributed segments. Eq.13 and Eq.14 
give the definition of the improved discriminative 
function 

max( ( , ) / ( , ))
d

segEntropy v d numSeg v d
∀

      (12) 



( , )
, ,

1 , ,

( , ) * log
numSeg v d

i d v d

i v d i d

seg range
segEntropy v d

range seg=

= ∑    (13) 

where ,i dseg is the ith  segmented rejoin along the 

dth dimension according to the rules belonging to node 
v; ,v drange is the full range along dimension d in the 

search space of v; ( , )numSeg v d is the total number of 
segments along dimension d in the search space of node 
v. Adopting this discriminative function, the values 
computed for the two dimensions in Figure.5 are: 0.43 
and 0.54. Therefore it is more favorable to cut along the 
second dimension. 

 
E.6 Implementation Flow-chart 

As a summary, the flow-chart shown in Figure.6 
describes the implementation of D-Cuts. Because we use 
the Breadth First methodology to build up the tree, each 
time we try to build a node, all the nodes at the parent 
level is already done. This makes it possible to compute 
the two forms of ( )SpaceAv v for each node. 

 
F. EXPERIMENTAL RESULTS 

 
F.1 Databases 

We evaluate D-Cuts both on real-life firewall and core 
router rule sets as well as on synthetic rule sets. The real-
life rule sets are obtained from typical enterprise 
networks and major ISPs. The two firewall rule sets are 
named FW1, FW2, the two router rule sets are CR1, 
CR2, and the synthetic rule set is SN1. The number of 
rules in the five rule sets varies from 68 to 2000. All the 
classifiers are 4-dimensional with source/destination IP 
addresses represented as prefixes and source/destination 
port numbers represented as ranges. It is reported in [7] 
that the structural characteristics of firewall policy tables 
(rule sets) are different from core router access control 
list (ACL, also rule sets), e.g. most source port ranges in 
core routers are [0, 65535], while in firewall policy 
tables source port ranges are assigned more specifically. 
Statistical characteristics of network traffic are obtained 
by sampling or reasonable manual generation. 
Characteristics of the testing traffic flow are different 
from the sampling traffics in certain extent, in order to 
simulate the time-variant networks. 

 

 
Figure. 6 Flow-chart for implementation of D-Cuts. binth in 
the chart is a constant parameter defined as the maximum 
number of rules for leaf nodes. In D-Cuts, we set binth=8. 

 
F.2 Performance Evaluation 

To test the performance of D-Cuts algorithm with both 
real-life and synthetic classifiers, we examined, for each 
classifier, the number of memory accesses in the query 
process (indicating search time) and the amount of 
memory usage for the whole data structure built by the 
algorithm. Note that the search time indicates the 
average search time which is the mean of the memory 
accesses of all testing packets. 

The first comparison is done between HiCuts and D-
Cuts on FW2. Figure.7 shows the time/space 
performance in histograms for HiCuts-x ( spfac x= ) 
and D-Cuts (using two forms of ( )SpaceAv v ). It is 
obvious that in HiCuts, when the space factor spfac 
increases, the search time decreases while the memory 
usage blows up. Compared to D-Cuts, the search time is 
very close to the optimized search time (HiCuts-4) while 
the memory usage is just about 2/3 of HiCuts-4. D-Cuts 
effectively balances the storage space usage and the 
average searching time. 

 



 
Figure.7 Time/Space trade-offs for FW2. Memory usage 
(Space) are shown by light histograms, Memory accesses 
(Time) are shown dark histograms. HiCuts-x refers to HiCuts 
with spfac=x. D-Cuts uses FORM1 ( )SpaceAv v  function 
while D-Cuts’ uses FORM2. 
 

Figure.8 and Figure.9 are the comparison on CR2 and 
SN1 via memory usage and average search time. It can 
be seen that the average search time of D-Cuts is on the 
same order as for the HiCuts optimized for speed 
(HiCuts-Topt in the figures) while its memory usage is on 
the same order as for HiCuts optimized for space 
(HiCuts-Sopt in the figures). 

 

 
Figure.8 Time/Space trade-offs for CR2. Memory usage 
(Space) are shown by light histograms, Memory accesses 
(Time) are shown dark histograms. HiCuts-Sopt is space-
optimized while HiCuts-Topt is time-optimized. 
 

Figure.10 is the comparison between HiCuts and D-
Cuts via memory usage, average and worst-case search 
time on FW1. Note that the improvement of the average 
search time is much greater than that of the worst-case. 
This is because D-Cuts focus on reducing the depth of 
the decision tree where there is larger traffic. Therefore, 
if there is no significant traffic flow going though the 
deepest nodes of the tree, D-Cuts will not reduce the 

depth of them because it dose not help to reduce the 
average search time. 

 

 
Figure.9 Time/Space trade-offs for SN1. Memory usage 
(Space) are shown by light histograms, Memory accesses 
(Time) are shown dark histograms. HiCuts-Sopt is space-
optimized while HiCuts-Topt is time-optimized. 

 

 
Figure.10 Time/Space trade-offs for FW1. From left to right 
are memory usage (Space), average memory accesses (Av-
Time) and worst-case memory accesses (Ws-Time). HiCuts-
Sopt is space-optimized while HiCuts-Topt is time-optimized. 

 
Table.3 Memory requirements for the popular packet 
classification algorithms. 

 RFC ABV HiCuts 
(Sopt) 

HiCuts 
(Topt) 

D-Cuts

FW1 816 6.2 12 28 23 

FW2 910 34.8 15 129 57 

CR1 966 1077 85 100 60 

CR2 2,220 3,157 2,653 4,235 2,031

SN1 ∞ * 2435 202 789 473 

*Running Out of Memory 
 
Comparison of memory usage against other popular 

packet classification algorithms is listed in Table.3. The 
worst-case search time (memory accesses) for the 
decision tree based algorithms varies from 30 to 130 
memory accesses. In comparison, the fastest algorithm 



RFC needs just 12 memory accesses while ABV requires 
up to 200 memory accesses.  

 
G. CONCLUSIONS 

 
Worst-case bounds on search time and memory usage 

greatly hamper the design of generic algorithms for 
packet classification. Instead we must search for 
characteristics of classification problems in pursuit of 
“fast enough” algorithms using “not too much” memory 
storage. Our research follows the idea that more heuristic 
information are adopted, better classification 
performance are achieved. The presented algorithm D-
Cuts (Dynamic Cuttings) bases on both structural 
characteristics of real-life classifiers (static information) 
and statistical characteristics of certain network traffic 
(dynamic information). Experimental result shows that 
D-Cuts prominently improves the average search time 
while keeps modest memory usage. 

Future work can be conducted to analyze the impact of 
fast changing traffic patterns and burst caused by virus 
or other attacks. Future work also includes introducing 
traffic statistical characteristics into other existing 
algorithms to develop improved algorithms. The code 
we wrote for D-Cuts, HiCuts, RFC, and ABV will be 
publicly available (on line) to encourage 
experimentation with classification algorithms. 
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