
AHI: Efficient Policy Space Set Operations
Danyang Li∗†, Xiaohe Hu∗†, Linli Wan∗, Zhi Liu∗†, Jun Li∗†‡
∗ Department of Automation, Tsinghua University, Beijing, China

† Research Institute of Information Technology (RIIT), Tsinghua University, Beijing, China
‡ Tsinghua National Lab for Information Science and Technology (TNList), Tsinghua University, Beijing, China

{lidangyan16, hu-xh14, wan-ll13, zhi-liu12}@mails.tsinghua.edu.cn, junl@tsinghua.edu.cn

Abstract—With the fast industrial deployment of software-
defined networking (SDN) and network function virtualization
(NFV) technologies, network function policy enforcement in large
scale virtualized networks becomes a key challenge for network
management. Distributed policy enforcement heavily involves
network policy space analysis, where set operations consume
most of the computation. Based on spatial projection and bitmap
indexing, a novel algorithm AHI (Atomic Hyper-Rectangle Index-
ing) is proposed for fast policy space set operations. Experiments
with real datasets demonstrated that AHI improves set operation
speed by two to three orders of magnitude and achieves the same
least space cost, comparing to existing state-of-the-art algorithms
r-BDD, wildcard expression, and PSA.

Index Terms—Policy Enforcement; Policy Space; Set Operation

I. Introduction

Facing the great demands for network agility, software-
defined networking (SDN) is rapidly adopted by the industry,
followed by network function virtualization (NFV). Decou-
pling the control plane and the data plane, SDN exposes
logically centralized control interfaces for network operators
to write policies and deploy applications. Furthermore, SDN
incorporating NFV forms a flexible and scalable framework
to provide network function services [1]–[3], e.g., Access
Control, Firewall, IDS, WAN Optimization, for end users.
However, in this new architecture, network function policy en-
forcement becomes heavy-loaded, distributed and much more
complicated than traditional middlebox policy configuration,
which was usually done by hands.

A. Network Function Policy Enforcement

The network function policy enforcement architecture and
its key parts are depicted in Fig. 1. In the control plane,
one network function policy is a set of policy entries that
specifies an end-to-end packet header set, represented by the
term policy space in this paper, and its corresponding actions,
the network function symbols, e.g. DROP, Firewall, IDS, or
chains of these functions. The control plane routing policy also
states a policy space and its connectivity properties. Network
function policies and routing policies of the control plane
are mapped to comprehensive network function entries and
forwarding entries of the data plane, which contain additional
local information such as the in port and out port. Network
function policy enforcement is the mapping process of the
control plane network function policies and the data plane

Fig. 1. Network Function Policy Enforcement Architecture

network function entries. The typical components of the policy
enforcement are policy placement and policy verification.

On policy placement, the global network function policies
are partitioned by the controller and placed to corresponding
network nodes considering the traffic distribution decided by
routing policies and network function locations in the topol-
ogy, aiming to achieve load-balance, replication minimization,
or other objectives. Existing policy placement methods are
classified to two groups, one is to place policies while chang-
ing routing, e.g., DIFANE [4] and vCRIB [5], and the other
is to place policies with respecting routing, e.g., Palette [6],
One-Big-Switch [7] and MBPE [8].

On the other hand, periodical policy verification is needed
to make sure that the entries in the data plane nodes are
consistent with the original policies in the control plane, as
some incidents such as system resets or manual configuration
mistakes might happen. By combining the forwarding entries
on paths and the network function entries on the related nodes,
policy verification generates the splicing policies, then checks
the consistency between the splicing policies and the original
network function policies. Existing work of policy verification
includes Header Space Analysis (HSA) [9], Net Plumber [10],
and Atomic Predicates Verifier (AP-Verifier) [11].

B. Policy Space Set Operation

Both the partition-then-assign process of policy placement
and the combine-then-compare process of policy verification
heavily involve network policy analysis, and most of the
analysis relies on policy space set operations such as intersec-

tion, union, and difference. For example, the policy spaces of
network function policies should be intersected with the policy
spaces of relevant routing policies to heuristically choose
efficient policy placement nodes [8], and the policy space of
one global network function policy should be compared to
the union of the policy spaces of its corresponding network
function entries in data plane to verify if the policy is correctly
placed [9]. Therefore, the theoretical and practical mechanism
to conduct set operations of policy spaces lays a foundation
for policy enforcement in future networks.

However, realizing the policy space set operation is a
challenging problem. First, given that the policy space of a
network function policy entry can be a set of discrete sub-
spaces for multi-dimensional packet headers, it is complex
to organize these sub-spaces. Second, since arbitrary overlaps
frequently occur between sub-spaces of two policy entries, set
operations on those intermittent multi-dimensional sub-spaces
is highly computation-intensive [11]. Third, as the amount
of the policies and the size of packet header dimensions
grow exponentially with the increasing diversity of SDN/NFV
deployment scenarios and protocols, the scalability of the set
operations also requires critical algorithm design.

As a consequence, it is urgent and crucial to analyze existing
methods and develop a more efficient and scalable policy
space set operation mechanism. This paper proposes a novel
algorithm of the policy space set operation, AHI (Atomic
Hyper-Rectangle Indexing), which provides an efficient data
structure to represent the policy space and the basal set
operations on this structure to support complex policy analy-
sis. By carefully pre-processing policy spaces leveraging the
mechanisms of spatial projection and bitmap indexing, AHI
performs operations faster than previous work by two or three
orders of magnitude while maintaining the same least space
cost.

C. Main contributions and Organization of this Paper

The main contributions of this paper are:

• Conclude policy space set operation as a foundation
component in policy enforcement in SDN/NFV, then
present the mathematical model of the problem.

• Devise a time and space efficient algorithm called AHI
to provide basal policy space set operations for policy
analysis.

• Use real-life network datasets to evaluate the performance
of the proposed algorithm, comparing with three existing
state-of-the-art algorithms in terms of average set opera-
tion time and memory usage.

The rest of this paper is organized as follows. Sec. II gives
the model of the basic concepts and formulates the policy
space set operation problem. Sec. III introduces the policy
space set operation methods used by existing state-of-the-art
policy placement and verification works. Sec. IV elaborates
the algorithm design of AHI. Experiment results of AHI and

existing algorithms are presented in Sec. V. Sec. VI concludes
this paper and shows the future work.

II. Problem Statement

In this section, the model primitives in policy analysis are
first presented from a computation geometry perspective, then
the policy space set operation problem is formulated based the
given model.

As shown in Fig. 1, policies in the SDN/NFV scenario have
different variants in terms of the control plane and the data
plane. To conduct a universal analysis, this paper unifies the
policy analysis objects as policy (set) and entry (element):

Entry consists of two parts, a set of consecutive packet
header values and its corresponding action.

Policy is equal to a set of numbered entries. The ranking of
each entry in the policy represents the entry priority. When two
entries overlap with each other, i.e. containing the same part of
packet header values, and the corresponding actions conflict,
the entry with the higher priority(smaller ranking) effects.

Both of entry and policy specify a set of packet header
value and corresponding actions, and the set operations are
ultimately executed on the packet header sets1.

A. Model Primitives

Consider a network with d fields in the packet header, and
each field consists of Wi, i = 1, 2, ...d bits. Leveraging the
computation geometry theory, the model of the primitives are
indicated as follows:

Packet Space, P = (p1, p2, ..., pd), a d-dimensional vector.
pi, i = 1, 2, ..., d represents the value of packet header in the
corresponding field. A packet space P stands for a point in
the d-dimensional geometric space.

Universe Space, U = {P = (p1, p2, ..., pd) | 0 ≤ pi ≤

2Wi−1,∀i ∈ {1, 2, ..., d}}, the universal set of all the packet vec-
tors. The universe space is the whole d-dimensional geometric
area.

Entry Space, E = {P = (p1, p2, ..., pd) | ti ≤ pi ≤ ki,∀i ∈
{1, 2, ..., d}}, ti, ki, i = 1, 2, ..., d are constants. An entry is set of
consecutive packet vectors and represents a hyper-rectangle in
the universal space.

Policy Space, S = ∪n
i=1Ei. One policy is a union of n

arbitrary entries. Also, one policy stands for a union of n
arbitrary hyper-rectangles ∪n

i=1Ei, which can be converted to
a union of m non-overlapped hyper-rectangles ∪m

i=1E′i , where
m ≥ n. To keep the priority semantic, each entry space holds
an index as its priority, and the converted entry spaces also
hold the corresponding original priority. The overlapped sub
entry space inherits the highest priority of the original entry
spaces.

1This paper doesn’t contain operations on actions of the same packet header,
such as combining different security network functions to enhance the shield.
Recent research works, e.g. PGA [12], model the service function chain
operations, which can be complementary to this work.

B. Problem Formulation

Given the mathematical model and the computation geom-
etry view, the following formulation of the policy space set
operation problem is easy to understand.

First, the set operation of the entry space can be
viewed as geometrical union, intersection and difference
of two hyper-rectangles. For entry space E = {P =

(p1, p2, ..., pd) | ti ≤ pi ≤ ki,∀i ∈ {1, 2, ..., d}} and entry space
E′ = {P = (p1, p2, ..., pd) | t′i ≤ pi ≤ k′i ,∀i ∈ {1, 2, ..., d}}, the
union operation denotes E ∪ E′ = {P = (p1, p2, ..., pd) |
ti ≤ pi ≤ ki,∀i ∈ {1, 2, ..., d} or t′i ≤ pi ≤ k′i ,
∀i ∈ {1, 2, ..., d}}, and the intersection operation is E ∩ E′ =

P = (p1, p2, ..., pd) | max {ti, t′i } ≤ pi ≤ min {ki, k′i },∀i ∈ {1, 2, ...,
d}}, and the difference operation indicates if E ∩ E′ =

∅, then E \ E′ = E, else E \ E′ = E \ (E ∩ E′) = {P =

(p1, p2, ..., pd) | ti ≤ pi ≤ ki, and pi < t′′i , and pi > k′′i ,∀i ∈
{1, 2, ..., d}}.

Then, the set operation of two policy spaces is equal to mul-
tiple set operations of the entry spaces of two policy spaces.
For policy space S = ∪n

i=1Ei and policy space S ′ = ∪m
i=1E′i , the

union operation represents S ∪S ′ = (∪n
i=1Ei)∪(∪m

i=1E′i), and the
intersection operation indicates S ∩ S ′ = (∪n

i=1Ei) ∩ (∪m
i=1E′i),

and the difference operation is S \ S ′ = (∪n
i=1Ei) \ (∪m

i=1E′i).

III. RelatedWork

Ever since SDN and NFV came into being, policy en-
forcement has been a focus of research. As introduced in
the primary section, various frameworks are proposed to
realize policy placement or policy verification. Each of these
frameworks has its own methods for conducting basal policy
space set operations. This section summarizes and analyzes
the used operation mechanisms.

Policy space set operation algorithms used by existing
policy placement and verification frameworks can be summed
up into the following three categories:

1) Decision Diagram: This kind of algorithms translate
policy spaces into decision diagrams where each bit of
packet header serves as a decision node, and provide set
operations of policy spaces based on this representation.
Since the size of decision diagram grows exponentially
with the number of bit in packet header, algorithms such
as [13] [14] adopt reduction or aggregation process to
improve the scalability. AP-Verifier uses reduced Binary
Decision Diagram (r-BDD) [15] to represent policy
space. Due to the reduce process in the construction
and operation of r-BDD, which removes the duplicated
branches of the original diagram, the scale of the dia-
gram is sharply reduced, and the time and memory cost
of r-BDD is respectively lower.

2) Wildcard expression: In this category, policy spaces
are represented by lists of wildcard expressions. The
masks of packet header can be easily transformed into
wildcard expressions, which consist of ‘0’, ‘1’ and ‘X’.
Set operations of policy space are converted into set

Fig. 2. Policies Fig. 3. Atomization

operation wildcard expression lists. HSA and its further
work Net Plumber, use this method as the basis of their
design. Although the representations and operations on
wildcard expressions are simple, operations on two wild-
card expression can result in multiple expressions and
the linear operations on expression lists are inefficient.

3) Decision Tree: PSA [8] constructs a decision tree struc-
ture R-Tree to realize fast policy space set operation.
Based on range represented hyper-rectangles and spatial
index borrowed from database territory, PSA leverages
a set of non-overlapping hyper-rectangles indexed by R-
Tree to represent the policy space, and implements set
operations with clipping region management methods.
PSA is used in MBPE to conduct efficient partitions on
control plane policy spaces.

All the above set operation algorithms apply set operations
on policy spaces with less and inefficient indexing design.
Given that the preparation of policy changes in policy en-
forcement is usually at human time scales, it is practical
to add further pre-processing strategies on relevant policy
spaces to accelerate the intensive set operations. Although
it is a trade-off between pre-processing time and operation
time, a substantial improvement of the set operation time can
be achieved with reasonable pre-processing cost by careful
and efficient design. This paper proposes an algorithm with
more efficient indexing structure design to accelerate the set
operations. The details are explained in the next section.

IV. Atomic Hyper-rectangle Indexing Algorithm

The proposed AHI algorithm constructs the policy space
indexing structure based on spatial projection and bitmap in-
dexing and provides digestible and fast set operations benefit-
ing from the indexing structure. In this section, the concept of
spatial projection and bitmap indexing are explained, followed
by the elaboration of AHI design and implementation.

A. Spatial Projection and Universal Space Atomization

Spatial projection is a common idea in some network packet
classification algorithms such as HyperSplit [16] and so on. It
projects entries in a direction perpendicular to the coordinate
axis in universal space, dividing each dimension of universal

Algorithm 1 Universal Space Atomization

1: function SpaceAtomization(S {S j = ∪
n j

i=1E j
i }, j =

1, 2, ...,m)
2: Let Pt[d] and S eg[d], d = 1, ...,D be lists
3: for S j ∈ S do
4: for Ei

j ∈ S j do
5: for d = 1→ D do
6: Add end points of range Ei

j[hyper −
rectangle][d] to Pt[d]

7: for d = 1→ D do
8: De-duplicate list Pt[d]
9: Sort Pt[d] in increasing order

10: for i = 0→ len(Pt[d]) − 1 do
11: S eg[d].append(range([Pt[d][i], Pt[d][i + 1]))
12: return S eg[d], d = 1, ...,D

space into many intervals. After spatial projection, whole
universal space can then be atomized by cutting it along each
interval get from the former process. In this way, universal
space is divided into many atomic hyper-rectangles. Since
universal space has been cut to the finest granularity, the effect
of space overlapping is eliminated, and every single entry
space or policy space can now be represented as a set of several
atomic hyper-rectangles.

An example of spatial projection and universal space atom-
ization is given in Fig. 2. There are two dimensions in the
illustrated universal space, and the figure shows two overlap-
ping policy spaces, Policy1 with 3 entries and Policy2 with
2 entries. By projecting each entry of each policy along the
horizontal axis and the vertical axis, the universal space is di-
vided into 16 atomic hyper-rectangles (rectangles in this case),
as shown in Fig. 3. In this case, it’s easy to conclude that the
original overlapping policy spaces can now be represented by
different sets of atomic rectangles separately. For example, the
policy space of the blue policy can now be represented by set
{H0∪H1∪H2∪H3∪H5∪H6∪H7∪H9∪H10∪H11}. And if divided
by different action, the policy space of the blue policy can be
divided into two sub policy spaces: action1’s policy space can
be represented by set {H2∪H5∪H6∪H7∪H9∪H10∪H11}, and
action2’s policy space can be represented by set {H0∪H1∪H3}.

B. Bitmap Indexing

After the universal space atomization, a concise representa-
tion of atomic hyper-rectangle set is needed. Bitmap indexing
is a commonly used type of indexing in recent years, which
is the perfect choice for representing atomic hyper-rectangle
set. On the other hand, bitmap indexing is most appropriate
for columns having low distinct values (in this scenario only
‘1’ and ‘0’ to represent ‘contain’ and ‘not contain’) and
demonstrate very fast query operation and set operation, which
is exactly what we need for implementing fast policy space
set operations.

In this paper, the atomic hyper-rectangles of the universal

Algorithm 2 Construct Bit Vector

1: function BitVectorCon(S {S j = ∪
n j

i=1E j
i }, j = 1, 2, ...,m,

S eg[d], d = 1, ...,D)
2: Let BV j, j = 1, 2, ...m be dictionaries
3: for S j ∈ S do
4: Sort E j

i by pri j
i in increasing order

5: let ActionS et be an empty set
6: for E j

i ∈ S j do
7: Add E j

i [act] to ActionS et

8: De-duplicate ActionS et
9: for act ∈ ActionS et do

10: BV j[act]← 0000000...0︸ ︷︷ ︸
number of 0s:

∏D
d=1(len(S eg[d]))

11: for E j
i ∈ S j do

12: IndexS et j
i ← index of atomic hyper-rectangles

contained in E j
i [hyper − rectangle]

13: for act ∈ ActionS et do
14: BV j[act][IndexS et j

i]← 0

15: BV j[E
j
i [action]][IndexS et j

i]← 1)

16: return BV j, j = 1, 2, ...,m

space are encoded to create a one-to-one mapping between
hyper-rectangles and bits in a bit vector. Every bit in this bit
vector serves as an index for corresponding hyper-rectangle,
and if a policy space contains one atomic hyper-rectangle, the
corresponding bit in bit vector of this policy space is set to ‘1’
and vice versa. In this way, policy spaces are transformed into
bit vectors, and set operation between them can be done by
set operation between bit vectors. As bit vector set operation
is very fast, an extremely high efficiency of set operations
between policy spaces can be reached using this method. On
the other hand, since one overall atomic hyper-rectangle set
is used to represent every policy space, these atomic hyper-
rectangles have to be recorded for only once. In addition,
the bit vector representation of policy space itself is memory
saving enough, which serves as a double insurance for space
efficiency.

Continue with the example shown before, by encoding
the atomic hyper-rectangle set from 0 to 15, each policy
space can be represented by a bit vector. In Fig. 3, the
blue policy’s policy space can be mapped into bit vector
‘1111011101110000’.

C. Indexing construction on policy space in AHI

Leveraging spatial projection and bitmap indexing, AHI first
pre-processes policy space. Basically, pre-processing can be
divided into two parts: Universal Space Atomization and Bit
Vector Construction. The pseudo code of each part is shown
in Algorithm 1 and 2.

In Universal Space Atomization, AHI projects the entry
E j

i : (Hyper−rectangles, action, priority) of each policy along
every dimension d in the universal space U to get the interval

lists S eg[d], d = 1, 2, ...,D on each axis. These intervals divide
U into

∏D
d=1(len(S eg[d])) atomic hyper-rectangles, and these

atomic hyper-rectangles can be encoded by dimensions. In
detail, the index of the atomic hyper-rectangles formed by
S eg[1][i1] × S eg[2][i2] × ... × S eg[D][iD] can be calculated as∑D

d=1(
∏d−1

k=1 len(S eg[k]) · ik + ik).
Then in Bit Vector Construction part, for each policy space

S j, AHI sorts its entry E j
i by priority in increasing order.

Then for each unique action of one policy, AHI creates a bit
vector of

∏D
d=1(len(S eg[d])) bits, all initialized to 0. Then for

each entry E j
i in the sorted entry list of policy S j, AHI finds

the corresponding index set IndexS et j
i of the atomic hyper-

rectangles contains by E j
i [hyper−rectangles]. After this, firstly

AHI sets the bits with indexes in IndexS et j
i of every action’s

bit vector in S j to be 0, secondly AHI sets the bits in IndexS et j
i

of E j
i [action]’s bit vector to be 1. In this way, AHI generates

a bit vector for each unique action in each policy.

D. Set Operations on policy space in AHI

After pre-processing, set operation between policy space
can be straight-forward enough. Since the bit vector set BV j

of policy S j can be generated by the previous described
pre-processing algorithm, which contains the policy space of
each unique action of S j, the policy space denoted by bit
vector of S j can be calculated by doing union operation on
each action’s bit vector: BitVec j = ∪kBV j[actionk]. Then set
operation between policy S j1 and S j2 can be calculated by
BitVec j1∆BitVec j2, where ∆ = ∪,∩, \.

However, in policy analysis, set operation between policy
spaces of different actions of policies is performed much more
frequently than it between policy spaces of policies. In this
case, set operation is even more simple: just apply the set
operation on the corresponding bit vectors of related actions.
This simplicity guarantees the efficiency of AHI algorithm.

V. AHI Evaluation

In this section, the proposed algorithm AHI is evaluated
against three existing policy space set operation algorithms: r-
BDD, wildcard-expression, and PSA. Their performances are
compared in two aspects: average operation time, memory
cost. AHI demonstrates two to three orders of magnitude im-
provement on operation time, along with memory space com-
parable to wildcard expression, which has the lowest memory
consumption among the three existing algorithms.However,
to achieve this improvement, the AHI pre-processing time of
current implementation version is higher than other algorithms,
which is being optimized in the on-going work.

The experiment was carried out on the Stanford backbone
network [9], a real-life data set used by HSA to test its
efficiency. This data set contains the raw data acquired from
16 Juniper routers in the Stanford campus backbone network.
It consists of the routing tables, access control lists, and con-
figuration lists. The physical configuration of the experiment
machine on which the tests of these algorithm run is as

Fig. 4. Average operation time Fig. 5. Memory Usage

follows: CPU: Intel(R) Core(TM) i7-3770 CPU @3.40GHz,
MEM: 16G, OS: Ubuntu 12.04.4 LTS.

The evaluation uses the raw data parser provided by Hassel
[17] to parse the raw data into the prefix form. For each
algorithm, the evaluation first pre-processes the policy space
of policies on each network function, and then by randomly
choosing a sequence of policy spaces to conduct random set
operations, the operation time and the memory cost of these
four algorithms are tested.

Fig. 4 shows the average operation time of doing 500 rounds
of set operations on policy space of policies on each network
function by each algorithm. Results show that the operation
time of AHI is much lower than all other three algorithms.
This is reasonable since AHI algorithm adopts the most fine-
grained cutting on universal space so that it turns the set
operation of policy spaces into set operations of bit vectors,
which is incredibly fast compared with other three algorithms.
The PSA tool is also faster than the remaining two algorithms,
which has to be attributed to its reference to the clipping
region management in computer graphics field [8]. As for the
remaining two algorithms: r-BDD and wildcard-expression,
the reason of their failure to compete with AHI or PSA is
as follows: 1) The set operation itself is quite complicated.
For r-BDD, it has to recursively calculate on each node in the
diagram, and for wildcard-expression, it has to do set operation
between each wildcard expression in two lists of wildcard
expressions. 2) The data structure of these two algorithms
will get more and more complex as the number of operations
performed increases, and the time cost of doing set operation
on such data structure will increase simultaneously.

Another thing must be mentioned is that, among these
four algorithms, AHI is the only algorithm that avoids the
‘cumulative effect’ in intensive set operation tests. That is,
when we perform intensive set operations continuously, the
size of the data structure used by other three algorithms to
hold the result policy space of these set operations will grow
rapidly. As a result, algorithms which have ‘cumulative effect’
will have increasing average operation time cost when doing
intensive set operations. In detail, the node number in r-BDD’s
decision diagram will grow when the result policy space gets
complex, and the number of wildcard expressions used to
represent the result will also grow, so as the number of hyper-
rectangles in PSA. But as for AHI algorithm, because we have
already divided the universal space into the smallest atomic

hyper-rectangles, however complex the result is, we can still
use a fixed length bit vector to represent it, and the time cost
of doing set operation on it will not change.

Fig. 5 shows the memory cost of each algorithm in the test.
We can see that AHI algorithm has a memory cost comparable
to the wildcard expression algorithm, and these two algorithms
have the lowest memory cost among four algorithms. This is
reasonable because in AHI, we only need to store the projec-
tion points set {Ptd[i], 1 ≤ i ≤ Md}, d = 1, 2, ...,DIM MAX,
and the bit vector of each policy space. In wildcard expression
algorithm, each policy space will be represented by a set of
wildcard expressions composed by ‘1’, ‘0’ and ‘X’. But in
PSA and r-BDD, policy spaces will be represented by sets
of hyper-rectangles and decision diagrams, which is rather
complex and memory-consuming.

However, in this early implementation of AHI, the pre-
processing step to generate the atomic hyper-rectangles is
somekind time-consuming. This is because of by doing the
most fine-grained cutting on the whole packet header space,
AHI generates too many hyper-rectangles, and the process
of deciding the value of each bit in each bit vector sharply
increases the amount of computation in pre-processing. We
are working on some methods to decrease the pre-processing
time by pruning the bit-deciding process in our on-going work.

VI. Conclusion

Addressing on the distributed policy enforcement problem
in the recent overwhelming SDN/NFV architecture, this paper
designs an efficient algorithm leveraging spatial projection and
bitmap indexing to provide basal policy space set operations
for policy analysis. AHI is evaluated with real life datasets,
compared with three other algorithms, r-BDD, wildcard ex-
pression and PSA. The results show that AHI achieves two
to three orders of magnitude operation time improvement,
with the same least space cost. This work shields lights on
implementing fast and scalable policy enforcement framework
with the proposed policy space set operation mechanism.

The on-going research contains reducing the pre-processing
time of AHI by adopting better bit vector generation algorithm,
taking a step further in speeding up the AHI operations by
leveraging the CPU vector instructions, and integrating AHI
into current policy enforcement frameworks.

Acknowledgment

This work was supported by the National Key Re-
search and Development Program of China under Grant
No. 2016YFB1000102, and the National Key Technology
Research and Development Program of China under Grant

No. 2015BAK34B00. And the authors would like to thank
the anonymous reviewers for their helpful and constructive
comments that greatly contributed to improving the final
version of the paper.

References

[1] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles. ACM, 2015,
pp. 121–136.

[2] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX
Association, 2016.

[3] Z. Liu, X. Wang, and J. Li, “From cia to pdr: A top-down survey of
sdn security for cloud dcn,” ZTE Communications, vol. 1, p. 011, 2016.

[4] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 4, pp. 351–362, 2010.

[5] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “Scalable rule
management for data centers,” in Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), 2013, pp. 157–170.

[6] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in INFOCOM, 2013 Proceedings IEEE.
IEEE, 2013, pp. 545–549.

[7] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the one
big switch abstraction in software-defined networks,” in Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies. ACM, 2013, pp. 13–24.

[8] X. Wang, W. Shi, Y. Xiang, and J. Li, “Efficient network security policy
enforcement with policy space analysis,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 2926–2938, 2016.

[9] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), 2012, pp. 113–126.

[10] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), 2013, pp.
99–111.

[11] H. Yang and S. S. Lam, “Real-time verification of network properties us-
ing atomic predicates,” IEEE/ACM Transactions on Networking, vol. 24,
no. 2, pp. 887–900, 2016.

[12] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to
express and automatically reconcile network policies,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4, pp. 29–42, 2015.

[13] Z. Liu, X. Wang, B. Yang, and J. Li, “Bitcuts: Towards fast packet clas-
sification for order-independent rules,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 339–340.

[14] T. Inoue, T. Mano, K. Mizutani, S.-I. Minato, and O. Akashi, “Rethink-
ing packet classification for global network view of software-defined
networking,” in 2014 IEEE 22nd International Conference on Network
Protocols. IEEE, 2014, pp. 296–307.

[15] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on computers, vol. 100, no. 8, pp. 677–691,
1986.

[16] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in INFOCOM 2009, IEEE. IEEE,
2009, pp. 648–656.

[17] “Header space library (hassel),” https://bitbucket.org/peymank/
hassel-public/wiki/Home.

