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Abstract 

 
While delay-critical applications typified by online 

multimedia communication are growing rapidly, the 
end-to-end (E2E) delay behavior in the Internet 
remains poorly understood. This paper proposes a 
stochastic process model, in which E2E delay 
alternations are classified into two categories, jump 
and perturbation, according to whether the statistical 
characterizations alter or not. As the chief type of 
majority delay alternations, perturbations generally 
occur continuously in a period, and can be analogous 
to an ergodic stationary process. The authenticity of 
the model is verified with real life delay measurements 
in the Internet collected by all pairs pings (APP) 
project through months from PlanetLab nodes. Based 
on the model, several delay estimation algorithms are 
comparatively analyzed, and the experimental results 
demonstrate that in terms of minimizing the mean 
squared error, the most accurate delay prediction is 
the minimum of the two most recent measurements. 
 
1. Introduction 
 

Understanding the E2E delay behavior has been 
becoming increasingly important for the further 
development of the Internet. A wide variety of 
emerging applications such as voice over IP (VoIP) 
and multiplayer online games are being deployed onto 
the Internet. These applications are highly interactive 
and delay-critical. For example, VoIP requires one-
way domestic E2E delay no more than 150 
milliseconds to achieve the same quality as PSTN 
telephony, not to mention some first-person-shoot 
online games such as Quake III necessitate delay 
generally under 100 milliseconds to play smoothly. 

However, the Internet provides little control over 
the E2E delay because of its fundamental characteristic 
of best-effort packet switching. In the Internet, each 
packet generated by a source is routed through a 

sequence of intermediate nodes to the destination. For 
a specific route, the E2E delay consists of the sum of 
delays experienced at each hop, a physical link and its 
terminal node, on the way. One-hop delay depends on 
two kinds of factors: fixed factors including the node’s 
capacity and the link’s distance and medium, and 
variable factors mainly including the load of the node. 
The variable factors together with the alternation of 
routes make it difficult, if not impossible, to precisely 
measure the E2E delay. 

The objective of this paper is to better understand 
the E2E delay behavior in the Internet. By analyzing 
the periodical round trip time (RTT) data collected by 
APP project [1] through months between hundreds of 
pairs of nodes on PlanetLab [2], we address and verify 
a stochastic process model to characterize the 
inherence of the Internet’s E2E delay behavior. Based 
on the model, various delay estimation algorithms are 
comparatively studied. The results contribute to the 
design of mechanisms for improving the performance 
of the newly risen delay-critical applications. 

The rest of this paper is organized as follows. 
Section 2 describes the data set and methodology. 
Section 3 presents the stochastic process model, and its 
verification and explication. Section 4 comparatively 
analyzes delay estimation algorithms. Section 5 
presents related work, and Section 6 makes conclusion. 
 
2. Methodology 
 
2.1. Data set 
 

Unlike bandwidth, E2E delay usually needs to be 
measured actively by means of probing methods rather 
than passively. As over-frequently probing packets 
may not only burden traffic but also trigger security 
alerts, and the time synchronization is difficult in 
distributed systems, the data of E2E delay in the 
Internet are usually collected between controlled nodes 
in terms of RTT. The data used in this paper are 



periodical RTT measurements between PlanetLab 
nodes, collected by APP project from June 1 to August 
31 2005. As long-term continuous delay measurements 
betweens nodes scattered all over the world, the data 
typically characterize the E2E delay behavior in the 
Internet. 

APP project measures RTT by means of the well-
known program ‘ping’. Every 15 minutes, APP project 
makes a source node keep pinging a destination node  
(two adjacent ICMP echo-request packets are 
interspaced by 200 milliseconds), until the source node 
gains 10 RTT measurements, or until it times out by 
120 seconds. Then, the source node records a RTT 
tuple consisting of the minimum, mean and maximum 
of the valid RTT measurements. If no RTT has ever 
been measured successfully before timeout, the source 
node will record it as a failure at that time. 
 
2.2. Data formalization 
 

Theoretically, the E2E delay between a pair of 
nodes in the Internet is a continuous process, and the 
data used to analyze the process should be discrete 
samplings of the process with a specified interval. 
However, each of the samples provided by the APP 
project is not a single value but a statistical tuple of no 
more than 10 consecutive RTT measurements, which 
raises the following questions. Can we still use the 
mean of the RTT measurements in each interval as the 
RTT sample at that time? And will this approach keeps 
the inherent characteristic of the E2E delay behavior? 
The next paragraphs clear up these concern. 

Given the minimum, mean and maximum of a batch 
of RTT measurements in an interval, the upper bound 
of their standard deviation can be figured out by 
Theorem 1. When the divergence of a specific batch of 
RTT measurements is measured by the ratio of 
standard deviation to mean, the ratios of over 80% 
RTT tuples are less than 0.1. Thus, it is convincing to 
use the mean RTT measurements in an interval to 
approximately characterize the delay at that time. 

Theorem 1: If the minimum, mean and maximum of 
arbitrary positive real numbers 1 2, , , nx x x  are 
respectively x , x , and x , then the upper bound of 
their standard deviation is  
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, and 

y n x p x q x= ⋅ − ⋅ − ⋅ . 
The key observations in the rest of this paper are 

based on the RTT time series of various node-pairs, 
which are formed by arranging the valid RTT samples 

between each pair of nodes in chronological order. 
Through this paper, the terms ‘RTT’ and ‘E2E delay’ 
are of the same meaning and interchangeably used. For 
a specific pair of nodes, ( )X t  stands for the actual 
RTT at time t , and 1 2{ , , , }nX X X  stand for the RTT 
time series. Note 1 2{ , , , }nX X X  are not strictly 
laddered, because there are intervals in which failures 
rather than valid RTT tuples are recorded by APP 
project. In order to make the interference of spacing 
error as little as possible, we select the node-pairs of 
which the E2E delay is fairly measured in most 
intervals. All the RTT time series of the selected node-
pairs at most miss 442 out of 8832 samples, which is 
negligible. For the sake of brevity, in the rest of this 
paper 1 2{ , , , }nX X X  will be considered as a RTT 
series laddered by one time unit, which in reality is 
equal to 15 minutes. 
 
3. Stochastic process model 
 
3.1. Overview 
 

As shown in Figure 1, E2E delay between a pair of 
nodes keep varying drastically even over short period; 
some sharp peaks are even twice larger than the 
average. Besides, there appears to be little, if any, 
regularity of the alternation of E2E delay, i.e. RTTs. 

Generalizing from the RTT time series plots of 
dozens of node-pairs, we propose a model that 
considers the E2E delay between a pair of nodes in the 
Internet as a stochastic process. According to whether 
or not the statistical characterizations change, the 
model classifies the alternations of E2E delay into two 
categories, namely jump and perturbation. If there is no 
jump at all during a continuous period, the E2E delay 
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in the period is named as a perturbation process, which 
is analogous to an ergodic stationary process. 
 
3.2. Jump recognition 
 

Before verifying whether or not the perturbation 
process can be modeled by an ergodic stationary 
stochastic process, it is necessary to recognize where 
jumps occur in a RTT time series, and cut that into a 
number of perturbation processes.  

According to Section 3.1, a RTT jump is the 
breakpoint between two consecutive perturbation 
processes with different statistical characterizations, as 
shown in Figure 2. As the perturbation processes are 
stationary, their mathematical expectations (MEs) can 
be respectively denoted by 1µ  and 2µ , standard 
deviations by 1σ  and 2σ , and all the four parameters 
are constants. We make two apart windows of the same 
size, namely 1W  and 2W , sliding along the RTT time 
series, and let w  denote the window size, l  denote the 
distance between 1W  and 2W , and h w+  denote the 
duration time of the second perturbation process. The 
medians of the RTT samples in window 1W  and 2W , 
denoted by

1WM  and 
2WM  respectively,  are used to 

approximate the ME of RTT at that time. Because the 
distribution of RTTs is known to be single-side-heavy-
tailed which will be discussed in more detail later, 
using the median rather than mean to approximate the 
ME is usually more accurate when the number of 
samples is small. As 1W  and 2W  slide along the RTT 

time series, 
1 2W WM M−  to some extent reflects how 

the ME of RTTs varies with time. However, it is too 
assertive to judge a RTT jump whenever 

1 2W WM M−  
is larger than certain constant threshold H , because 
RTT perturbations can also be drastic in some periods. 
To better trade off misjudgment against dropout of 
RTT jumps, two improving approaches are utilized.  

First, the threshold H  is set to be 
1 2W Wλ σ σ⋅ , 

where 
1Wσ  and 

2Wσ  respectively denote the standard 

deviations of the RTT samples in window 1W  and 2W , 
and λ  is a constant parameter. In this way, the 

threshold accordingly rises up and comes down with 
the RTT perturbations becoming drastic and placid.  

Second, a RTT jumps is finally judged based on the 
timing sequence diagrams of 

1 2W WM M−  and H . 
Given that the moment demonstrating in Figure 2 is 

0t = ,  Figure 3 (assuming h l> ) presents how 

1 2W WM M−  and H  will evolve with time in future. If 

at sometime 
1 2W WM M−  is larger than H , a RTT 

burst (more specifically, an up-burst when 
1 2W WM M> , 

and down-burst when 
1 2W WM M< ) is considered to 

happen at that time. A RTT jump upwards/downwards 
around t τ=  is finally judged if and only if during the 

period 
2

[ , ]ww w l  + +  
, RTT up-bursts/down-bursts 

happen more than l  times.  
It is important to note that the second approach may 

miss one or both of two consecutive RTT jumps when 
the interval between them is less than l w+ . With this 
problem in mind, we choose the parameters 5w = , 

3l =  and 5λ = . Because RTT jumps are mainly 
caused by route alternation, which will be discussed in 
detail later, and more than 90% of routes in the Internet 
persist as long as several hours [3], such configuration 
makes the missed RTT jumps insignificant. 
 
3.3. Stationarity of perturbation process 
 

This subsection aims to investigate whether the 
perturbation process of E2E delay is stationary or not, 
which can be equivalently converted to examining 
whether or not each RTT time series of the 
perturbation processes is sampled from a stationary 
process. We use unit root tests [4] outlined in the 
following paragraph to achieve this purpose.  

The unit root tests assume a simple autoregressive 
process: 1t t t ty y xρ δ ε− ′= + + , where tx′  are optional 
exogenous regressors which may consist of a constant, 
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Figure 2. Sketch for RTT jump determination 
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or a constant and a trend, ρ  and δ  are parameters to 
be estimated, and tε  are assumed to be white noise. If  

1ρ ≥ , y  is a nonstationary series and the variance of 
y  increases with time and approaches infinity. If 

1ρ < , y  is a (trend-)stationary series. Thus, the 
hypothesis of (trend-)stationary can be evaluated by 
testing whether the absolute value of ρ  is strictly less 
than one. The unit root tests generally test the null 
hypothesis 0H : 1ρ =  against the one-sided 
alternative 1H : 1ρ < . Depending on the data to be 
tested, the null hypothesis 0H  can or cannot be 
rejected. The result that 0H  is rejected with a 
significance level α  can be interpreted that not the 
hypothesis 0H  but 1H  is true and the possibility of 
making a wrong decision is α . 

We utilize Eviews [5], a data analysis software, to 
examine the stationarity of the RTT time series of 
perturbation processes. Specifically, we choose 
Augmented Dickey-Fuller (ADF) test, one of the most 
popular unit root tests methods, and make the 
exogenous regressors only include a constant, and the 
maximum lag be five. RTT time series of fifty node-
pair’s perturbation processes are tested, and the results 
show that all the perturbation processes can reject the 
hypothesis 0H  with the significance level 1%α = . We 
also tried some other unit root tests methods, such as 
Phillips-Perron (PP) test, and the hypothesis 0H  is also 
rejected with the significance level of 1% for the 
examined perturbation processes. Therefore, it is 
convincing that the perturbation process of E2E delay 
possesses the property of stationarity. 
 

3.4. Ergodicity of perturbation process 
 

The goal of this subsection is to investigate whether 
the perturbation process is ergodic. Strictly speaking, 
what to be examined is whether the time average of 
RTT perturbation process is equal to its ensemble 
average, which is also named as mean-ergodicity. 

Ergodicity is an important property for a stationary 
stochastic process. Theoretically, to study the statistical 
characterizations such as the ME of a stochastic 
process need to repeatedly measure the variate at the 
same time in the same circumstances to obtain enough 
samples, which however is generally impossible in 
practice. This is because a pair of nodes can only send 
and receive probing packets one by one rather than 
processing them all simultaneously. But if a stationary 
process is ergodic, its statistical characterizations will 
be able to be studied through samples repeatedly 
measured at different time, because the ergodic 
property implies statistical homogeneity. Therefore, 
the ergodicity of RTT perturbation process is the basis 
to estimate future RTTs with historical measurements. 

A necessary and sufficient condition for a wide-
sense stationary process, say { ( ), 0}X t t > , to be 

ergodic is such that 
0

1lim 1 ( ) 0
T

T
R d

T T
τ τ τ

→∞

 − = 
 ∫ , 

where ( )R τ  is the autocorrelation function and defined 

as 
0

1( ) lim ( ) ( )
T

R X t X t dt
T

τ τ
∞

→∞
= ⋅ +∫ . Therefore, we can 

investigate the ergodicity of the perturbation process 
by examining whether or not the RTT time series 

1 2{ , , , }nX X X  can satisfy the condition 
1

0

1 (1 ) ( ) 0
n

k

k R k
n n

δ
−

=
= − →∑ , where 

1

1( )
n k

i i k
i

R k X X
n k

−

+
=

=
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RTT perturbation processes of 590 node-pairs 
excluding loop-back ones are investigated; Figure 4 
presents the cumulative distribution function (CDF) of 
their δ  values. Comparing to RTT samples varying 
from a few dozens to a few hundreds (milliseconds), 
most δ  values are small enough to be considered as 
zero, for example around 70% of them are less than 
0.05. Moreover, the δ  values that are much greater 
than zero are mainly caused by the few individual fly 
spots (greater than 10,000), which are generally due to 
accidental factors. Therefore, it is convincing that the 
perturbation process of E2E delay indeed can be 
analogous to an ergodic stationary process. 
 
3.5. Analysis and explication 
 

To analyze the practical causes of the jump and 
perturbation of E2E delay, we divide the RTT into 
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three parts: 1) terminal delay caused by terminal nodes 
to send, receive and process the packet; 2) switching 
delay caused by network devices to do the same thing; 
3) propagation delay caused by electric or light signal 
traveling through the media. The determinative and 
random factors affecting each parts are shown in Table 
1, in which the factors depending on a specific route 
are marked out by asterisks.  

As can be seen, given a specific route, the E2E 
delay mainly varies due to random factors. As the 
statistical characterizations of the random factors 
generally remains invariable with time, that is why the 
RTT perturbation process is stationary and ergodic. 
Prior work shows that most dominant route in the 
Internet persist a long time, which makes the 
perturbation to be the majority type of E2E delay 
alternations. On the other hand, when the route alters, 
several determinative factors affecting E2E delay will 
change, which accordingly modifies the statistical 
characterizations of E2E delay. In summary, the RTT 
perturbations are mainly due to the alternations of the 
load of processors and networks, while the causes for 
RTT jumps are mainly substantial alternations of route. 
 
4. Estimation of E2E delay 
 

This section studies practical algorithms estimating 
E2E delay according to infrequently probing packets. 
Recently, considerable research has proved the power 
of path switching and overlay routing as the means for 
improving E2E performance [6,7,8]. For real-time 
interactive communications that are sensitive to E2E 
delay, an accurate and portable delay estimation 
algorithm is the basis to make confident decisions for 
selecting efficient paths. 

Assuming it is time t i=  at the moment, let a given 
vector 1 2[ , , , ]i l i l iu X X X− + − +=  denote the latest l  
RTT samples, an unknown vector 

1 2[ , , , ]i i i kv X X X+ + +=  denote the future k  RTT 

samples, and a vector 1 2
ˆ ˆ ˆˆ [ , , , ]i i i kv X X X+ + +=  

depending on u  denote the estimative values of v . 
Given these, the problem of delay estimation can be 
interpreted as to find such a mapping ˆ:f u v→  that 
makes the estimative error, measured by ˆ,d v v=< > , a 
certain form of distance between v̂  and v , as little as 
possible. For the sake of lucidity, we choose d  as the 
generally used mean squared error between v̂  and v , 
and define the average estimative error as ( , )E l k , 
which is a function of l  and k  defined in Equation 1. 

2
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1 1 ˆ         ( )
1

n k

i i
i l

n k k

i j i j
i l j

E l k d v v
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X X
n l k k

−

=

−

+ +
= =

= < >
− − +

= −
− − +

∑

∑ ∑
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Therefore, a tuple of ( , , )l k f  uniquely stands for a 
RTT estimation algorithm. As the average error 

( , )E l k  of an algorithm is related to l  and k , 
algorithms with the same l  and k  are evaluated by 
relative average error, or relative error for brevity. As 
shown in Equation 2, the relative error of a specific 
algorithm is defined as the proportion of the 
algorithm’s error to the error caused by simply 
assuming all the future k  RTT samples to be equal to 
the most recent measurement.  
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Considering the facts that 1 2{ , , , }nX X X  consists 
of several RTT perturbation processes and the 
mathematical expectation is the best estimation of a 
stationary process in the sense of minimizing squared 
error, we respectively make use of the mean, median 
and minimum of the elements in u  to approximate the 
RTT expectation during that period. Specifically, for 
every given  l  and k , three forms of mapping  meanf , 

medianf , and minf  are defined in Equation 3.  

{ }
{ }

1

1 2

1 2

1ˆ:

ˆ: median , , , (1 )
ˆ: min , , ,

i

mean i s j
j i l

median i s i l i l i

min i s i l i l i

f X X
l

f X X X X s k

f X X X X

+
= − +

+ − + − +

+ − + − +

=

= ≤ ≤

=

∑

                   (3) 

Table 1. Main factors affecting E2E delay 

 Determinative Factor Random Factor 
Node capacity CPU load Terminal 

Delay Interface bandwidth Load of multiaccess 
network  

# of passed routers * Load of routers* Switching 
Delay Router capacity* Scheduling policies* 

Link media type* Propagation 
Delay Link distance* 

None 

 



Table 2 gives the average relative error of the RTT 
estimation algorithms with f  respectively being 

meanf , medianf  and minf , while l  and k  severally 
varying from one to five, given over the RTT time 
series between the 590 node-pairs. The last row of 
Table 2 presents the relative error of another form of 
mapping that is defined in Equation 4, where β  is set 
to its commonly used value 0.9. As the iterative 
formula is well-known as the smoothed RTT 
estimation in the original TCP specification [9], we 
name it as tcpf . It is easy to understand the relative 
error of tcpf  is independent to the value of l . 

1

ˆ:        (1 )

(1 ) ( 5)
( 5)

tcp i s i

i i
i

i

f X Y s k

Y X i
Y

X i
β β

+

−

= ≤ ≤

⋅ + − ⋅ >
=  =

      (4) 

 As can been seen from Table 2, for RTT estimation 
algorithms using meanf  or medianf  as the mapping, 
increasing the number of historical samples, i.e. l , can 
make the algorithm’s relative error decline at first and 
then bounce back. This is because the more samples 
are used, on the one hand the more accurately can the 
mean and median of the samples approximate the RTT 
expectation in each perturbation process, but on the 
other hand the greater error will be introduced when a 
jump occurs. The decline of the relative error at the 
beginning is subject to the former factor, while the 
subsequent rebound is subject to the latter one. It 
appears that the best choice for such kinds of 
algorithms is 4l =  on average. 

Another observation is that when l  is less than or 
equal to four, with the same l  and k , the algorithms 
using medianf  get less relative error than what using 

meanf . This is due to that the E2E delay in the Internet 
generally follows a Gamma-like distribution with a 
single-side heavy tail, in which case, the median can 
generally approximate the mathematical expectation 
more precisely than the mean, especially when the 
amount of samples is small. Note when l  increases to 

five from four, the rebound of the relative error of 
algorithms using medianf  is stronger than the counterpart 
for meanf . This is comprehensible because when a jump 
occurs, the algorithms using medianf  trigger greater 
estimative error than the ones using meanf . It is 
correspondent with the model proposed in Section 3. 

It is surprising to note that for each k , the 
algorithm using minf  with 2l =  (predicting future 
RTTs equivalent to the minimum of the most recent 
two measurements), always obtains the least relative 
error out of all the evaluated algorithms in the same 
condition. It indicates that such an algorithm can best 
balance the estimative error caused by the two different 
categories of RTT alternations, namely jump and 
perturbation. According to the model presented in 
Section 3, two principles can help to reduce estimative 
error. One is to set l  small in order to immediately 
discover a jump when it occurs. The other is to make 
the estimation as close as possible to the RTT’s ME in 
a RTT perturbation process without any jump. These 
two principles may conflict in some sense, and the 
algorithm using the minimum of the most recent two 
measurements balances both the advantages better than 
other algorithms. For example, if an algorithm using 

meanf  or medianf  sets 2l =  according to the first 
principle, it will be difficult for the algorithm to 
precisely access the RTT’s ME in a perturbation 
process, due to the RTT’s Gamma-like distribution 
with a single-side heavy tail. In particular, algorithms 
using tcpf  perform worst nearly all the time. 

Finally, it is important to point out that there is not a 
single algorithm superior to the others for all RTT time 
series between every node-pair. The above comparison 
and analysis of algorithms are actually all in the sense 
of statistics. As an example, Figure 5 presents the CDF 
plot of the relative error of four different algorithms 
when giving them over the RTT time series between 
the 590 node-pairs.  

Moreover, the comparative analysis in this section 
generally suggests how to estimate the E2E delay i.e. 

Table 2. Relative average error of various estimation algorithms1 
 1k =  2k =  3k =  4k =  5k =  

 meanf  medianf  minf meanf  medianf  minf meanf  medianf  minf meanf medianf minf  meanf  medianf minf

2l =  .856 .856 .763 .843 .843 .730 .840 .840 .718 .839 .839 .712 .839 .839 .708 

3l =  .832 .846 .809 .808 .800 .759 .800 .781 .737 .796 .771 .724 .794 .765 .715 
4l =  .837 .830 .869 .804 .781 .805 .790 .760 .774 .782 .748 .755 .777 .741 .741 
5l =  .854 .900 .931 .811 .833 .853 .792 .801 .813 .781 .782 .788 .773 .769 .769 

tcpf  .983 .889 .839 .807 .784 
1 When 1l = , the relative average error of all algorithms that are essentially the same are equivalent to 1. 

 



RTT in a short term with a few probing packets. In 
practical case, it is unnecessary to periodically probe 
every dozens of minutes; whenever the application on 
the source node needs to know the RTT to another 
node, it can probe the destination node twice with 
some gap, and consider the real RTT in a short term as 
the minimum of the two measurements. Statistically, 
this way is more precise than that just probing once or 
using the mean or median of several measurements. 
For the sake of long-term such as hours or longer RTT 
estimation, which is a seldom scenario in real life, the 
algorithms using minf  with small l  are still statistically 
superior to other algorithms listed in Table 2; and it 
shows that l  rises very slowly with the increase of k . 
For example, when k  exceeds 20, the algorithm 
obtaining the smallest average estimative error is the 
one that uses minf  with 3l = , but the average 
estimative error of what using minf  with l  adjacent to 
3 are quite close to each other. This can be explained 
by the Gamma-like distribution of RTTs. 
 
5. Related work 
 

Systematic measurements of packet delay in the 
Internet can date back to the ARPANET as early as 
1970s. The work included studying how delays across 
the ARPANET were influenced by packet length, 
which were used by Mills in the retransmission timeout 
algorithm aiming to improve TCP’s performance [10]. 
Claffy et al. used the statistical delay data collected 
with an interval of 15 minutes among the NSFNET 
nodes to analyze the distribution of median delay [11].  

Earlier 1990s, Mukherjee measured RTTs in the 
similar way to APP project, but Mukherjee used an 

interval of 1 minute rather than 15 minutes. He found 
the distribution of delay between most examined node-
pairs could be accurately modeled by a gamma 
distribution plus a constant [12]. In fact, the RTT data 
used by Mukherjee were collected in relatively short 
continuous period, no more than 24 hours, in which 
E2E route seldom altered. Thus, what Mukherjee had 
pointed out was actually the distribution feature of 
RTTs in the same perturbation process according to the 
model addressed in Section 3 of this paper, and the 
long-term RTT distribution across several different 
perturbation processes should have multiple peaks. The 
recent work of Bovy et al [13] checked with the above 
argumentation. They analyzed parts of the RIPE NCC 
one-way delay data, and found that about 84% out of 
963 normalized RTT distributions possessed typically 
Gamma-like shape, but there indeed existed around 5% 
containing multiple peaks.  

Sanghi et al. ever used UDP packets with shorter 
interval, i.e. 39.06 milliseconds, to measure and 
analyze RTT. The results indicated that RTT could 
vary substantially over short period, and still without 
any deterministic regularity [14]. Bolot discussed the 
validity to study E2E delay by means of time series 
models, and proposed a simple model of a FIFO queue 
with finite buffer to analyze the delay and packet loss 
in the Internet [15]. 

Different from these prior works, this paper puts 
emphasis on setting up a model to characterize the 
irregular and indeterminate alternations of E2E delay 
in the Internet, and explore its application in delay 
estimation algorithms. 
 
6. Conclusion 
 

This paper studies the E2E delay behavior in the 
Internet with real life RTT data collected by APP 
project from globally distributed nodes on PlanetLab. 
A stochastic process model is proposed to reveal the 
characteristics of the irregular and indeterminate delay 
alternations in the Internet. The model classifies delay 
alternations into two categories, namely jump and 
perturbation, and indicates their natures and practical 
causes. The authenticity of the model is statistically 
verified with APP’s data. Based on the model, various 
delay estimation algorithms are comparatively studied.  

Although PlanetLab cannot represent the whole 
Internet, the results presented in this paper still help to 
better understand the Internet’s E2E delay behavior, 
and are valuable for designing mechanisms to improve 
service of delay-critical applications. 

Future work includes investigating the feasibility 
and accuracy of recognizing route alternations with 
E2E delay measurements. 
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Figure 5. CDF plot of relative error of various RTT 
estimation algorithms given over the RTT time 
series of the 590 node-pairs with 2k = . 
  



 
7. Appendix: Proof of Theorem 1 
 

What needed to prove is equivalent to the following 
inequation: 
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Let’s first prove the fact that when 2
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maximized, there exists at most one out of 1 2, , , nx x x  
such that it is neither equal to x  nor x . (using 
reduction to absurdity) Assume there exist such ix  and 

jx  satisfying condition , { , }i j a bx x x x∉  ( 1 ,i j n≤ ≤  
and i j≠ ). If i j a bx x x x+ ≥ + ， then let by x=  and 

i j bz x x x= + − ， obviously a bx z x≤ ≤  and 
2 2 2 2
i jx x y z+ < + ； otherwise i j a bx x x x+ < + ， then 

let ay x= and i j az x x x= + − ， the same there are 

a bx z x≤ <  and 2 2 2 2
i jx x y z+ < + . Therefore, the 

following inequation always holds: 
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where  (1 , , )k kx x k n k i j′ = ≤ ≤ ≠ , ix y′ =  and  jx z′ = . 
This inequation contradicts against the prior condition 

that 1 2, , , nx x x  already make 2

1
( )

n

i
i

x x
=

−∑  

maximized. 
Given the fact proved in the above paragraph, it is 

easy to obtain the inequation given in the beginning.  
Another more straightforward way of proof is to 

convert the theorem into a constrained non-linear 
programming problem, and prove with Lagrange 
Multiplier and Kuhn-Tucker Theorem. 
 
8. Acknowledgments 
 

This work is sponsered by NEC Laboratories China. 
The authors would like to thank Dr. Yong Xia of NEC 
and anonymous reviewers for their helpful comments, 

and are grateful to Jeremy Stribling at MIT for sharing 
the data. 
 
9. References 
 
[1] All-Pairs-Pings: http://pdos.csail.mit.edu/~strib/pl_app/. 
[2] PlanetLab: http://www.planet-lab.org 
[3] V. Paxson, “End-to-End Routing Behavior in the 

Internet,” IEEE/ACM Transactions on Networking, vol. 
5, pp. 601~615, 1997. 

[4] J. D. Hamilton, Time Series Analysis, Princeton 
University Press, 1994. 

[5] Eviews: http://www.eviews.com. 
[6] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh, 

“A Comparison of Overlay Routing and Multihoming 
Route Control,” in Proceedings of ACM SIGCOMM 
2004 Conference, 2004. 

[7] S. Tao, K. Xu, Y. Xu, T. Fei, L. Gao, R. Guerin, J. 
Kurose, D. Towsley, and Z.-L. Zhang, “Exploring the 
Performance Benefits of End-to-End Path Switching,” 
in Proceedings of IEEE ICNP 2004 Conference, 2004. 

[8] S. Tao, K. Xu, A. Estepa, T. Fei, L. Gao, R. Guerin, J. 
Kurose, D. Towsley, and Z.-L. Zhang, “Improving VoIP 
Quality through Path Switching,” in Proceedings of 
IEEE INFOCOM 2005 Conference, 2005. 

[9] V. Jacobson, “Congestion Avoidance and Control,” 
Computer Communication Review, vol. 18, pp. 
314~329, 1988. 

[10] D. L. Mills, “Internet Delay Experiments,” RFC 889, 
1983. 

[11] K. Claffy, H.-W. Braun, and G. Polyzos, “Traffic 
Characteristics of the T1 NSFNET Backbone,” in 
Proceedings of IEEE INFOCOM 1993 Conference, 
1993. 

[12] A. Mukherjee, “On the Dynamics and Significance of 
Low Frequency Components of Internet Load,” 
Internetworking: Research and Experience, vol. 5, pp. 
163~205, 1994. 

[13] C. J. Bovy, H. T. Mertodimedjo, G. Hooghiemstra, H. 
Uiterwaal, and P. V. Mieghem, “Analysis of End-to-End 
Delay Measurements in the Internet,” in Proceedings of 
the Passive and Active Measurement Workshop-PAM, 
2002. 

[14] D. Sanghi, A. Agrawala, O. Gudmundsson, and B. Jain, 
“Experimental Assessment of End-to-End Behavior on 
Internet,” in Proceedings of IEEE INFOCOM 1993 
Conference, 1993. 

[15] J. C. Bolot, “Characterizing End-to-End Packet Delay 
and Loss in the Internet,” Journal of High-Speed 
Networks, vol. 2, pp. 305~323, 1993. 

 


