
Optimizing Network Latency with Fast Path
Assignment for Incoming Flows

Qing Lyu, Hang Zhu

Abstract—Various flows in the network require to go through
different types of middlebox. The improper placement of network
middlebox and path assignment for flows could greatly increase
the network latency and also decrease the performance of network.
Minimizing the total end to end latency of all the ows requires to
assign path for the incoming flows. In this paper, the flow path
assignment problem in regard to the placement of various kinds
of middlebox is studied. The flow path assignment problem is
formulated to a linear programming problem, which is very time
consuming. On the other hand, a naive greedy algorithm is studied.
Which is very fast but causes much more latency than the linear
programming algorithm. At last, the paper presents a heuristic
algorithm named FPA, which takes bottleneck link information and
estimated bandwidth occupancy into consideration, and achieves
near optimal latency in much less time. Evaluation results validate
the effectiveness of the proposed algorithm.

Keywords—Latency, Fast path assignment, Bottleneck link.

I. INTRODUCTION

FLOWS in network often change rapidly. Many of which
are required to go through a chain of middlebox to meet

the performance and security demand. The flows may suffer
significant latency due to the improper assignment of the
flow paths and load distributions, unbalancing the network
resources. This may further cut down the network resource
utilization, such that some middlebox will be loaded with too
many ows and thus risk packets losses.

In the context of Software Defined Network (SDN) [1], [2]
and Network Function Virtualization (NFV) [3], the devices of
the network turn to be programmable, and network middlebox
can be deployed as software modules/components. The flows’
status are changing frequently, when some flows are finishing
transmitting, some other flows are being formulated and begin
to transmit at the same time. At the same time, a flow
may require to go through several different middlebox or
a ordered sequence of middlebox, i.e., service chain [4].
The path assigned for a specific flow should include specific
types of middlebox or service chain. To keep pace with the
rapidly changing flows and complex middlebox requirements,
how to efficiently handle the incoming flows to optimize
the utilization of network resource is a tough problem. In
order that the flow paths adapt to the dynamic changes of
the network environments, flow paths should be carefully
assigned to accommodate the network topology and global
information should be taken into consideration so that network

Qing Lyu is with the Department of Automation and Research Institute
of Information Technology, Tsinghua University, Beijing, China (email:
lvq16@mails.tsinghua.edu.cn).

Hang Zhu is with Johns Hopkins University, USA.

resource utilization is optimized. Moreover, flows should be
assigned among different middlebox to avoid the disable of
the instance of middlebox and keep the network operating in
a good condition.

Many recent works focus on middlebox placement as
well as the path switching problem in the network [5]–[8].
[9] addresses the problem of load distribution in datacenter
network when there are traffic spikes. A hybrid approach is
proposed to handle the load distribution problem when there
are traffic spikes. The system is consisted of a load distributing
controller in the control plane and a load distributor in the
data plane. For the flat flows, the controller will assignment
paths for them according to the topology and bandwidth
information. While for spiked flows, the load distributors are
classied into several groups in advance to handle different
flows. For a incoming flow, the controller will firstly checks
the statuses of the distributors in its group and choose the
idlest distributor to distribute the flow, if the distributors in
the group are too busy to meet the constraint to handle the
incoming flow, then the controller will guide the flow to other
groups until it is effectively guided to the wanted destination.
The grouping are updated periodically by the controller
according to the load statuses of the distributors. SIMPLE
[10] turns the policies in the middlebox to forwarding rules
in SDN switches in the condition of load balance. SIMPLE
consists of a resource manager, a modification handler and
a rule generator. The resource manager takes care of the
load balance among the middlebox, the modification handler
deals with the changes caused by the middlebox, and the
rule generator converts the policies in middlebox to rules
in the SDN switches. Reference [11] considers the traffic
rate changing effect of middlebox and puts forward a traffic
aware middlebox placement scheme. It first sort the middlebox
according to the traffic rate changing factor in the increasing
order. For a single flow with predetermined path, it adopts
a rule called Least-First-Greatest-Last (LFGL) to place the
middlebox. While for multiple flows without predetermined
paths, it is proved that the middlebox placement problem is
NP-hard and can not be solved in polynomial time, a MinMax
path guided heuristic is applied to address the problem.
[12] takes into account the service chains and propose a
solution to place the middlebox in the optimal locations when
network information such as topology is known as well as
the policies specifications. The authors firstly convert the
placement problem to 0− 1 programming and prove that it is
NP-hard, then two heuristic algorithms, greedy algorithm and
simulated annealing based algorithm, are employed to obtain

TABLE I
A FLOW EXAMPLE

Source IP Destination IP Source Port Destination Port Protocol Required Bandwidth Service Chain
59.66.8.2/24 64.10.8.2/24 0-65535 80 TCP 600bps FW,IDS

a sub-optimal solution.
Other works such as [13]–[15] target on the policy

enforcement problem and distribute the policy on switches.
Furthermore, [16] solves the network-wide middlebox
extending problem by using FlowTags. Reference [17]
considers the security problem in finding the optimal path as
well as the updating problem. Reference [18] uses SDN to
manage the middlebox placement.

The middlebox aware flow path assignment is formulated to
a optimization problem in this paper. The optimization goal is
to minimize the total end to end latency of the flows. However,
the optimization goals can also be flexibly generalized to other
metrics such as maximizing the utilization of bandwidth or
minimizing the maximum link load ratio (the ratio of current
link load to link bandwidth capacity) [11] in the network.

We put out a strategy to dynamically assignment path for
each incoming flow. We firstly formulate the problem to a
linear programming (LP) problem, but due to the difficulties
of handling the path loops in the network, finding optimal
solution to the LP problem is time consuming. Therefore,
we come up with a heuristic algorithm FPA which takes into
consider the bandwidth occupancy of each link and assigns the
shortest path that does not impact the path assignment of the
following flows to the current flow. We verify our proposed
heuristic algorithm in three different network topologies by
comparing to it the LP method and a naive greedy algorithm.
Evaluation results show that FPA assigns latency optimized
paths for arriving flows efficiently.

II. PROBLEM FORMULATION

We formulate the network as a directed graph G(V,E),
where G represents the nodes set while E represents the
links set. The nodes include the hosts and forwarding devices,
the links denote the connections the nodes. Flows can be
transmitted from hosts to hosts. A flow example is given in
Table I. The first 5 fields are the 5-tuple of a packet, the
other 2 fields are the demanded bandwidth and service chain
respectively. In this example, the specifications are firewall
(FW) and intrusion detection system (IDS).

We define the variables in the network into 3 categories:
topology variable, flow variable and assistant variable.
Topology variable specifies the nodes and links in the network,
nodes represents the hosts and forwarding devices. Denote
(i, j) as the link from node i to node j, Capai,j as the
bandwidth capacity of link (i, j), Lij as the latency of link
(i, j), Mlocam as the positions of middlebox type m, a type
of middlebox may have multiple instances in the network.
M denotes the set of middlebox types, such as FW, IDS,
Proxy, Deep Inspection (DI), Network Address Translation
(NAT), Load Balance, etc [12]. Flow variables describe the
information of flows. Denote F as the set of flows that need

to assignment paths, (s, t) as a flow from source node s to
destination node t, Ms,t as the middlebox that flow (s, t) needs
to go through, Cst as the bandwidth demanded by flow (s, t).
Assistant variables are the decision variable which used in
the linear programming, for example, Xs,t

i,j is an indicating
variable that defined as

xst
ij =

{
1, if (s, t) go through link (i, j)
0, otherwise (1)

Similarly, ysti is used to indicate a flow (s, t) go through a
node i, ysti can be represented as

∀i ∈ V :

ysti = max

 ∑
j∈V,(j,i)∈E

xst
ji,

∑
j∈V,(i,j)∈E

xst
ij

 (2)

Equation (2) means that, for any flow and any node in the
network, if the flow goes into the node (the number of ingress
flow is 1) or leaves the node (the number of egress flow is
1), then the flow goes through the node, thus ysti equals to 1.
Otherwise, the the number of ingress flow and the number of
egress flow for the node both equal to 0, and the flow does
not go through the node, thus ysti equal to 0.
ust
i is a defined function of flow (s, t) and satisfies 1 ≤ u ≤

|V |.
According to the forwarding action of a node, we have the

following constraint

∀s, t ∈ F :
∑

i∈V,(i,j)∈E

xst
ij −

∑
k∈V,(j,k)∈E

xst
jk = −1, j = s

0, j 6= s, t, j ∈ V
1, j = t

(3)

Equation (3) specifies the fact that for any flow (s, t) in the
network, if j = t, it means that node j is the ingress node for
flow (s, t), the number of ingress flows is 1 and the number
of egress flows is 0, thus the number of ingress flows subtract
the number of egress flows is 1, (3) holds. If j = s, vice versa,
the subtract value is −1. If j 6= s, t, j ∈ V , whether flow (s, t)
go through node j or not, the subtract value is 0. Equation (3)
also determines that a flow is successfully routed.

To make sure there is no forwarding loop in the network,
we make the following constraint

∀(s, t) ∈ F,∀(i, j) ∈ E : ust
i −ust

j +|V |xst
ij ≤ |V |−1. (4)

From (4) we know that for any flow (s, t) and any link
(i, j) in the network, if flow (s, t) does not go through link
(i, j), then xst

ij = 0, as we have assumed the assistant variable
1 ≤ u ≤ |V |, thus (4) holds. Otherwise, flow (s, t) does go
through link (i, j), xst

ij = 1, the constrain (4) makes sure that
ust
i − ust

j ≤ −1. Which means that, for the node that a flow

goes through before, its node value u is less than that the flow
goes through later. If there is a loop in the flow path, there
should be a node that the flow goes through twice or more.
Without loss of generality, assume there is a flow goes through
nodes {a, b, c, d, e, f, a} sequentially, we can obtain

ust
a − ust

b ≤ −1,
ust
b − ust

c ≤ −1,
ust
c − ust

d ≤ −1,
ust
d − ust

e ≤ −1,
ust
e − ust

f ≤ −1,
ust
f − ust

a ≤ −1,

(5)

sum the items of Equation (5) by adding left to left side and
right to right side, we can obtain

0 ≤ −6, (6)

which makes contradiction. Therefore, there should be no loop
according to (4).

For the link bandwidth constrain, we have

∀(i, j) ∈ E :
∑

(s,t)∈F

xst
ij × Cst ≤ Capaij . (7)

Equation (7) specifies that the total demanded bandwidth of
all flows that go through a link does not exceed the bandwidth
capacity of that link.

Furthermore, a flow need to go through a specific type
middlebox, we have the constraint

∀(s, t) ∈ F,m ∈Mst :
∑

i∈Mlocam

ysti ≥ 1. (8)

Every type of middlebox is placed to certain nodes, each
type may have multiple middlebox instances, for any flow that
need to go through middlebox of a certain type, Equation (8)
configures that the flow go through at least 1 instance node
of the middlebox, thus certain type’s service for that flow is
satisfied.

Lastly, the processing ability of the nodes that deployed
with different types of middlebox should also be considered.

∀i ∈Mlocam :
∑

(s,t)∈F

ysti R(st) ≤ Ri. (9)

Where R(st) is the processing resource that flow (s,t) needs.
Ri is node i’s processing resource capacity that can be spared
to deal with the flows that routed to node i.

Considering the fact flows with higher bandwidth such as
video may require higher priority, we take the bandwidth
weighted end to end latency as our optimization target, and
the whole optimization problem can be represented as

min
∑

(s,t)∈F

∑
(i,j)∈E

xst
ijLijCst

s.t. (1), (2), (3), (4), (7), (8), (9).

(10)

Algorithm 1 Find Bottleneck Link
Input: Topology, Mloca, flow set F2, bandwidth
Output: Bottleneck link
1: function BOTTLENECK LINK(F2)
2: //Find the shortest latency path with demanded middlebox for

flow set F2

3: for flow f in F2 do
4: //Get the location of middlebox for f: fmb

5: Calculate the shortest path that goes through fmb

6: path = Dijkstra(topology, f, fmb)
7: shortest path[f] = path
8: end for
9: //Calculate the demanded bandwidth for related links

10: for link l in shortest path[F2] do
11: sum demanded bandwidth of flows go through l
12: Calculate ratio of demanded BW and residue BW
13: end for
14: //Find the link with biggest ratio
15: bottleneck link=link with Max ratio
16: return result
17: end function

III. ALGORITHM DESIGN

Solving the optimization problem is time consuming and
can not meet the processing requirement in real deployment,
which will be illustrated in the Section V. We turn to heuristic
algorithms to assign paths for flows rapidly.

Due to the bandwidth constrain of the links, not every
flow can be assigned to the best choice of path with
the minimum latency. We consider both the bandwidth
consumption information of each flow and the bandwidth
residue of each link in the network, and assign path for each
incoming flow aiming at minimizing the total end to end
latency of all the flows.

A natural heuristic algorithm is the greedy algorithm.
For the flow set remains to be assigned paths, we handle
the incoming flows one by one. Calculate the path for the
incoming flow with smallest latency that goes through needed
middlebox by Dijkstra algorithm [19]. If the path can not
meet the bandwidth constrain then go to the path with second
smallest latency until the bandwidth constrain of all the links
in the path are satisfied. Repeat the progress until all the
flows have been assigned paths. It just considers the bandwidth
capacity constraint when calculate the flow path can always
chooses the path with least latency for the current flow.

We propose another heuristic algorithm called FPA. It
considers the effect of the path assignment for the current flow
to the later flows. Suppose there are multiple incoming flows
waiting for path assignment, denote F1 = {f11, f12, ..., f1K}
as the set that flows have already been assigned, F2 =
{f21, f22, ..., f2L} as the set that flows waits to be assigned. As
the bandwidth capacity of each link is limited, and a link may
be demanded by multiple flows, we could not assign path with
the least latency for every flow. We make effort to minimize
the total end to end latency for all flows. Define the link ratio
as the total expected bandwidth of all flows that prepare to go
through the link under the shortest latency path condition with

TABLE II
A BOTTLENECK LINK EXAMPLE

Flow Included Link Link Ratio

f20 link1, link2 link1
f20,dem+f23,dem
BWresiduelink1

f21 link3, link4 link2
f20,dem+f22,dem
BWresiduelink2

f22 link2, link3 link3
f21,dem+f22,dem+f23,dem

BWresiduelink3

f23 link1, link3 link4
f21,dem

BWresiduelink4

Algorithm 2 Calculate latency1
Input: Topology, Mloca, flow set F2, bandwidth
Output: Latency1
1: function CALCULATE LATENCY1(F2)
2: //Calculate the latency when always assigning the shortest

latency path for current flow
3: for flow f in F2 do
4: current topology=topology
5: for link l in current topology do
6: if l’s bw smaller than f ’s demanded bw then
7: remove l from current topology
8: curr topo=RemoveLinks(l)
9: end if

10: end for
11: //Get the location of middlebox for f: fmb

12: Calculate the shortest path that goes through fmb

13: path=Dijkstra(curr topp, f , fmb)
14: assignment the path to f
15: latency1=0
16: latency1=latency1+f ’s path latency
17: update bandwidth residue
18: move f to F1

19: end for
20: return result
21: end function

the demanded middlebox to the bandwidth residue of that link

linkRatioij =

∑
f∈F2,(i,j)∈pf

fdem

BWresidueij
. (11)

where fdem denote the demanded bandwidth by flow f , pf is
the shortest latency path by Dijkstra algorithm for flow f . We
define the link with highest link ratio as the bottleneck link.

Table II gives an example of the calculation of the
bottleneck link, where the link with the highest link ratio will
be the bottleneck link. The pseudo code to find the bottleneck
link is shown in Algorithm 1.

For the current flow, if the shortest latency path with needed
middlebox on it does not include the bottleneck link, then
choose it as the path for the current flow and go to take care
of the next incoming flow. However, if the shortest latency
path for the current flow does include the bottleneck link,
we have two options, the first one is we still assign the
shortest path for the current flow and assign paths for the later
incoming flows in the same way. Then calculate the end to end
latency. Nevertheless, this may bring troubles to the later flows
because the current flow could occupy the link bandwidth
and the later flows can not choose the wanted paths as the
link bandwidth capacity is exhausted. Under this strategy, the
latency calculation is depicted in Algorithm 2. The second
one is we do not select the path which has the shortest latency

Algorithm 3 Calculate latency2
Input: Topology, Mloca, flow set F2, bandwidth
Output: Latency2
1: function CALCULATE LATENCY2(F2)
2: //Calculate latency when always assigning the shortest latency

path without bottleneck link for current flow
3: latency2=0
4: for flow f in F2 do
5: current topology=topology
6: for link l in current topology do
7: if l’s bw smaller than f ’s demanded bw then
8: remove l from current topology
9: curr topo=RemoveLinks(l)

10: end if
11: end for
12: //Get the location of middlebox for f: fmb

13: Calculate the shortest path that goes through fmb

14: path=Dijkstra(curr topp, f, fmb)
15: bottleneck link=BOTTLENECK LINK(F2)
16: if bottleneck link is not in f ’s path then
17: assignment the path to f
18: latency2=latency2+f ’s path latency
19: update bandwidth residue
20: move f to F1

21: continue
22: else
23: remove the bottleneck link from curr topp
24: curr topo=RemoveLinks(bottleneck link)
25: //Calculate the next shortest latency
26: CALCULATE LATENCY2
27: end if
28: end for
29: return result
30: end function

contains the bottleneck link for for the current flow, we turn to
the second shortest latency path , if it still include a bottleneck
link, then go to the next shortest latency path with demanded
middlebox until there is no bottleneck link in the selected path
for the current flow. If all available path for the flow contains
bottleneck link, choose the first shortest latency for the flow. In
this way the later incoming flows have larger space to choose
the paths as the link bandwidth is relatively adequate. Update
the link bandwidth residue information. Repeat doing this
until all the flows have been assigned paths. Finally calculate
the total end to end latency. Under this strategy, the latency
calculation is depicted in Algorithm 3. Finally, we compare
the total end to end latency of the two methods and choose
the one with the lower value. The path assignment algorithm
FPA is given in Algorithm 4.

IV. IMPLEMENTATION

We generate different network topologies to perform
simulations on the proposed flow path assignment algorithm.
The method described by [20] is used to generate network
topology. The network topology generator takes multiple
parameters as inputs. The number of connection (nodes and
links) can be adjusted conveniently. The degree of connectivity
in the network can be set as low, medium or high. We adopts
three kinds of network topology, Class A, B, C. Specifically,

Algorithm 4 Path assignment
Input: Topology, Mloca, flow set F2, bandwidth
Output: Path assignment
1: function PATH ASSIGNMENT(F2)
2: //assignment path for flows in flow set F2

3: for flow f in F2 do
4: Compare Latency1 and Latency2
5: if Latency1 is smaller than Latency2 then
6: assignment the shortest latency path to f
7: else
8: assignment the shortest latency path without

bottleneck link in it to f
9: end if

10: move f to F1

11: end for
12: return result
13: end function

Class A with 36 nodes and 108 links, Class B with 75
nodes and 196 links, Class C with 115 nodes and 384 links.
For each topology, we allocate link latency and bandwidth
constraints to the links. We generate flows from host to host
based on the topology described above. We classify all the
nodes in the topology into two categories, the edge nodes with
only one connection and the intermediate nodes with multiple
connection. Only the edge nodes can be chosen to deploy
host, and intermediate nodes are chosen to deploy forwarding
devices. We have implement 5 different types of middlebox.
For a certain type of middlebox, several middlebox instances
are randomly connected to the chosen forwarding devices. We
randomly generate small flows between hosts and then merge
the flows with the same source host and terminal host until a
certain number of bandwidth is exhausted. In this way we can
obtain a set of flows which can meet the bandwidth constraints.
Total end to end latency is selected to evaluate the effectiveness
of our flow path assignment algorithm. The algorithm assigns
path for the incoming flows, the path latency can obtained by
adding links’ latency and processing latency. We calculate the
total end to end latency by adding the path latency of all flows.

We implemented the path assignment algorithm in Python.
Network libraries such as FNSS (Fast Network Simulation
Setup) and NetworkX are adopted to generate the network
topology and flows information. FNSS can setup the network,
such as adding or removing links, acquiring link bandwidth
and latency and obtaining the neighbouring nodes of the
current node. Flows between two hosts can also be generated
and removed. NetworkX offers various graph algorithms such
as the shortest path calculation using Dijkstra algorithm.
Furthermore, the formulated LP problem is solved by LP
solvers [21]–[23].

V. EVALUATION

Several simulation results are carried out to evaluate the
proposed ow path assignment algorithm.

The evaluation is conducted under three kinds of topologies
as described above. The topologies are shown in Table III.

With the rapid variation of network flows and network
environments, the path assignment problem takes the overall

TABLE III
NETWORK TOPOLOGIES

Topology Number of nodes Number of links
A 36 108
B 75 196
C 115 384

Fig. 1 Normalized total end to end latency under different topologies

end to end latency as the optimization target. How to rapidly
assign paths for all the flows is the key indicator that should be
cared about. The memory consumption of all the comparing
methods is not a critical point here, so we focus the emphasis
on the processing time of the algorithms.

To evaluate the effectiveness of the proposed path
assignment algorithms FPA, LP and the naive greedy algorithm
are taken as the baseline. The naive greedy algorithm always
chooses the path with the smallest latency for the current
flow under the bandwidth constraints. It does not consider
the impact of the bandwidth consumption of the link, which
may bring trouble to the path assignment of other flows. It
occupies the link bandwidth no matter the link is required
by the following flows or not. However, the link bandwidth
is limited, therefore the rest flows might have to go through
the path with longer latency if the bandwidth of the required
link is exhausted. This algorithm does not take into account
the overall demands of all the flows and always selects the
optimal path for the current flow in each iteration, which may
increase the total end to end latency.

Hereby, consider three critical questions: (1). What kind of
performance can the algorithms achieve to minimize the total
end to end latency when multiple flows need to be assigned
paths. We compare the latency of the three methods: Linear
Programming, proposed path assignment algorithm FPA and
naive greedy algorithm. (2). How many processing time is
needed to handle all the flows for the three methods, here
we do not consider memory consumption of the algorithms
as it is not a key index in the context. (3). What is
the performance gap between the proposed path assignment
algorithm and LP method, how close does the proposed
path assignment algorithm obtain when comparing to the LP
method which is the optimal solution that considers all the
network constraints. Our methods can be convenient scaled
to other optimization targets such as minimize the maximum

Fig. 2 CDF of the normalized latency for single flow under Topology A.

Fig. 3 CDF of the normalized latency for single flow under Topology B.

Fig. 4 CDF of the normalized latency for single flow under Topology C.

TABLE IV
PROCESSING TIME

Topology A B C
LP 146.81 202.25 266.04

Greedy 0.18 0.31 0.56
FPA 0.28 2.22 22.01

link bandwidth consumption to link bandwidth capacity ratio
or maximize the bandwidth utilization. All we need to do is
to modify the optimization target, add or remove constraints
under the current network model.

LP considers the overall network condition, and dedicates
to find the optimal solution, therefore, the latency is the
least among all the methods. To compare the performance
of the algorithms more intuitively, the latency is normalized,
where we calculate the ratio of the achievements of different
algorithms to least latency solution, LP. The results are shown
in Fig. 1, which can be obviously observed that, the latency of
the naive greedy algorithm is the largest as it only consider the
best path for the current flow. The proposed path assignment
algorithm FPA can achieve almost the same performance of
the LP algorithm. which also indicates that the performance
gap between LP and FPA is quite small.

Under different kinds of network topology, the processing
time of each algorithm is illustrated in Table IV. It can
be obviously observed that the processing time of LP is
much longer than that of the naive greedy algorithm and the
proposed path assignment algorithm FPA. This is because
LP is the globe optimal solution for the path assignment
problem. To find the optimized path for every flow, it needs
to consider multiple constraints while finding the optimal
solution that meets all the constraint is very time consuming.
The processing time of the naive greedy algorithm is the least
as it just chooses the path with the smallest latency for the
current flow, it only needs to consider the path goes through
certain types of middlebox, and the links in the path meet the
flow’s bandwidth demand. It does not care about the bandwidth
consumption of the links, which may bring trouble to the
following flows when assigning paths for them. The processing
time for the proposed path assignment algorithm is a little
longer than that of the naive greedy algorithm. The proposed
path assignment algorithm take the network condition into
account and evaluates the impact it may bring to the following
flows when assigning path for the current flow.

To further exhibit the details of the proposed path
assignment algorithm and illustrate the path assignment
strategy for single flow, we plot the CDF curve of the
normalized latency of a single flow for the proposed algorithm
and the naive greedy algorithm, where single flow’s latency is
normalized by calculating the ratio of it to the biggest flow
latency. The results under different topologies are shown in
Figs. 2-4,. From which the difference of the path assignment
results of the proposed algorithm FPA and naive greedy
algorithm can be observed. Under Topology A, the path
assignment results of the two algorithms apart from each other
in the middle stage, which means for flows with medium

latency, the two algorithms adopt different strategy to assign
the paths and achieve different performance. While under
Topology B, the path assignment results are the different for
the flows with small latency. However, under Topology C,
the path assignment results are quite different for single flow
no matter the flow’s path latency is small or big. This is
because the proposed algorithm and naive greedy algorithm
only choose the same path if the path for the current flow
does not influence the following flows. However, for the
flows which may affect other flows’ path assignment, the
two algorithms make different strategies which leads to the
deviation of the curves.

VI. CONCLUSION

Flows in network often change rapidly. The improper
assignment of the flow paths and load distributions may cause
network to suffer from terrible congest. In this paper, we
consider the problem of path assignment for multiple flows.
How to minimize the total end to end latency while rapidly
assigning paths of all flows need be be carefully addressed.
We first formulate the problem to a LP problem but it is quite
time consuming to find the optimal solution when multiple
network constraints are needed to be considered. To reduce
the processing time, the naive greedy algorithm is put forward,
which always choose the path with smallest latency for the
current. However, the total end to end latency for all the flows
increases as it may cause the later flows to go through path
with longer latency. Therefore, a heuristic algorithm FPA is
proposed, which considers the affects that path assignment for
current flow may bring to the following flows. The algorithm
selects the path for current flow that considers the bandwidth
condition and makes the strategy leads to the minimized
total end to end latency. The evaluation results validate the
effectiveness of the proposed algorithm.

VII. ACKNOWLEDGMENTS

The authors benefit a lot from the fruitful discussions
with colleagues in the Network Security Lab in Tsinghua
University. The authors would also like to thank the
anonymous reviewers for their efforts in the revision. This
work is supported by National Natural Science Foundation
(No. 61872212) and National Key Research and Development
Program (No.2016YFB1000101).

REFERENCES

[1] O. N. Fundation, “Software-defined networking: The new norm for
networks,” ONF White Paper, vol. 2, pp. 2–6, 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[3] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[4] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
et al., “Steering: A software-defined networking for inline service
chaining,” in Network Protocols (ICNP), 2013 21st IEEE International
Conference on, pp. 1–10, IEEE, 2013.

[5] A. Gushchin, A. Walid, and A. Tang, “Scalable routing in sdn-enabled
networks with consolidated middleboxes,” in Proceedings of the 2015
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, pp. 55–60, ACM, 2015.

[6] A. Hari, T. Lakshman, and G. Wilfong, “Path switching: reduced-state
flow handling in sdn using path information,” in Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies, p. 36, ACM, 2015.

[7] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward
software-defined middlebox networking,” in Proceedings of the 11th
ACM Workshop on Hot Topics in Networks, pp. 7–12, ACM, 2012.

[8] A. Abujoda and P. Papadimitriou, “Midas: Middlebox discovery and
selection for on-path flow processing,” in Communication Systems and
Networks (COMSNETS), 2015 7th International Conference on, pp. 1–8,
IEEE, 2015.

[9] Z. Liu, X. Wang, W. Pan, B. Yang, X. Hu, and J. Li, “Towards
efficient load distribution in big data cloud,” in Computing, Networking
and Communications (ICNC), 2015 International Conference on,
pp. 117–122, IEEE, 2015.

[10] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using sdn,” in ACM
SIGCOMM computer communication review, vol. 43, pp. 27–38, ACM,
2013.

[11] W. Ma, J. Beltran, Z. Pan, D. Pan, and N. Pissinou, “Sdn-based traffic
aware placement of nfv middleboxes,” IEEE Transactions on Network
and Service Management, vol. 14, no. 3, pp. 528–542, 2017.

[12] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin, “Improve service chaining
performance with optimized middlebox placement,” IEEE Transactions
on Services Computing, vol. 10, no. 4, pp. 560–573, 2017.

[13] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in INFOCOM, 2013 Proceedings IEEE,
pp. 545–549, IEEE, 2013.

[14] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the one
big switch abstraction in software-defined networks,” in Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies, pp. 13–24, ACM, 2013.

[15] X. Wang, W. Shi, Y. Xiang, and J. Li, “Efficient network security policy
enforcement with policy space analysis,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 2926–2938, 2016.

[16] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags.,” in NSDI, vol. 14, pp. 543–546, 2014.

[17] J. Liu, Y. Li, H. Wang, D. Jin, L. Su, L. Zeng, and T. Vasilakos,
“Leveraging software-defined networking for security policy
enforcement,” Information Sciences, vol. 327, pp. 288–299, 2016.

[18] Z. Qazi, C.-C. Tu, R. Miao, L. Chiang, V. Sekar, and M. Yu, “Practical
and incremental convergence between sdn and middleboxes,” Open
Network Summit, Santa Clara, CA, 2013.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[20] J. McCauley, Z. Liu, A. Panda, T. Koponen, B. Raghavan, J. Rexford,
and S. Shenker, “Recursive sdn for carrier networks,” ACM SIGCOMM
Computer Communication Review, vol. 46, no. 4, pp. 1–7, 2016.

[21] S. Mitchell, M. OSullivan, and I. Dunning, “Pulp: a linear programming
toolkit for python,” The University of Auckland, Auckland, New Zealand,
http://www. optimization-online. org/DB FILE/2011/09/3178. pdf, 2011.

[22] A. J. Mason, “Opensolver-an open source add-in to solve linear and
integer progammes in excel,” in Operations research proceedings 2011,
pp. 401–406, Springer, 2012.

[23] A. Makhorin, “Glpk (gnu linear programming kit),” http://www. gnu.
org/s/glpk/glpk. html, 2008.

