
Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

Intelligent and efficient grouping algorithms for large-scale regular
expressions☆

Zhe Fu⁎,a,b, Kai Wangd, Liangwei Caie, Jun Lib,c

aDepartment of Automation, Tsinghua University, Beijing, China
bResearch Institute of Information Technology (RIIT), Tsinghua University, Beijing, China
c Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, China
d Yunshan Networks, Beijing, China
e College of Information Engineering, Shenzhen University, Shenzhen, Guangdong, China

A R T I C L E I N F O

Keywords:
Regular expression matching
Grouping algorithms
DFA
Intelligent optimization

A B S T R A C T

Regular expressions are widely used in various applications. Due to its low time complexity and
stable performance, Deterministic Finite Automaton (DFA) has become the first choice to perform
fast regular expression matching. Unfortunately, compiling a large set of regular expressions into
one DFA often leads to the well-known state explosion problem, and consequently requires huge
memory consumption. Regular expression grouping is a practical approach to mitigate this
problem. However, existing grouping algorithms are either brute-force or locally optimal and
thus not efficient for large-scale regular expressions. In this paper, we propose two grouping
algorithms, namely Reevo and Reant, to solve this problem intelligently and efficiently. In ad-
dition, two optimization methods are presented to accelerate the convergence speed and reduce
the running time of proposed algorithms. Experimental results on large-scale rulesets from real
world show that our algorithms achieve around 25% to 45% improvement compared to previous
regular expression grouping algorithms.

1. Introduction

Nowadays, pattern matching is playing important roles in many practical applications. In network security, the payloads of
network packets are scanned against a set of predefined patterns to identify the potential security threats, including viruses, intru-
sions, spams, data leakage and so forth. Bioinformatic research utilizes pattern matching to search for the similarity of DNA/RNA
sequences. As the patterns are getting more and more complex, exact strings are being substituted gradually by regular expressions
[1], which have more expressiveness and flexibility. To perform regular expression matching, regular expressions are compiled into
Nondeterministic Finite Automaton (NFA) or Deterministic Finite Automaton (DFA). NFA has fewer states and transitions, and its
space cost linearly depends on the size of regular expression set. Thus NFA is space-efficient. However, in the worst case, there can be
massive state traversals per input character for NFA, leading to tremendous memory bandwidth requirement and slow matching
speed. On the contrary, DFA only activates one state and requires precisely one state traversal per input character. As a result, DFA is
fast, and thus it is the preferred choice for time-sensitive applications such as deep inspection in network security.

However, the time-efficiency of DFA is at the cost of the huge amount of memory consumption. Compared to NFA, DFA needs far
more states and transitions, and suffers from the state explosion problem in many cases. What’s more, the number of regular

https://doi.org/10.1016/j.compeleceng.2018.03.040
Received 30 June 2017; Received in revised form 23 March 2018; Accepted 23 March 2018

☆ Reviews processed and recommended for publication to the Editor-in-Chief by Associate Editor Dr. Y. Sang.
⁎ Corresponding author.
E-mail addresses: fu-z13@mails.tsinghua.edu.cn (Z. Fu), wangkai@yunshan.net.cn (K. Wang), cailw@szu.edu.cn (L. Cai), junl@tsinghua.edu.cn (J. Li).

Computers and Electrical Engineering 67 (2018) 223–234

Available online 30 March 2018
0045-7906/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00457906
https://www.elsevier.com/locate/compeleceng
https://doi.org/10.1016/j.compeleceng.2018.03.040
https://doi.org/10.1016/j.compeleceng.2018.03.040
mailto:fu-z13@mails.tsinghua.edu.cn
mailto:wangkai@yunshan.net.cn
mailto:cailw@szu.edu.cn
mailto:junl@tsinghua.edu.cn
https://doi.org/10.1016/j.compeleceng.2018.03.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2018.03.040&domain=pdf

expressions in practical use is increasing rapidly. The open-source network intrusion prevention system Snort [2] has already em-
ployed more than 27,000 rules1 that are written in regular expressions. Such a large scale of regular expressions make it impossible to
build a single DFA from these regular expressions on commodity processing platforms. Yu et al. [3] summarized several categories of
regular expressions that can cause blow-up of corresponding DFA, and one major factor is concluded as the interactions among
regular expressions. In general, for the regular expressions with interactions, the DFA constructed from them has a far larger size than
the sum of the sizes of DFAs which are built from each regular expression individually. Based on this analysis, a number of regular
expression grouping algorithms have been put forward to address this problem. However, the most state-of-the-art methods [3–6] can
hardly find the optimum solution, and the techniques they employ do not fit for large-scale regular expressions.

In this paper, we propose novel grouping algorithms for regular expressions to solve the state explosion problem and reduce the
memory consumption when regular expressions are constructed into DFAs. In detail, our contributions can be concluded as follows.
First, we analyze the practical demands of regular expression grouping and formulate the grouping problem into two separate
aspects: (1) when the number of groups is specified, minimize the total number of DFA states and (2) when the memory space of each
group is limited, minimize the number of groups. Then, two intelligent and efficient grouping algorithms, namely Reevo and Reant,
are proposed for each goal. In addition, we put forward two optimizations, including an improved approach to approximating the
number of DFA states and a method to obtain better initial solutions, in order to accelerate the convergence speed and reduce the
running time of the proposed algorithms. Experimental results based on practical large-scale rulesets show that our grouping al-
gorithms could obtain around 25%–45% improvement compared to previous grouping algorithms.

This paper is organized as follows. Section 2 states the related work about regular expression matching. In Section 3, we illustrate
the motivation of regular expression grouping and categorize the grouping problem into two kinds of situations based on practical
demands. Two grouping algorithms are proposed correspondingly in Section 4. In Section 5, further optimizations for our grouping
algorithms are put forward. Experimental results are shown in Section 6. In the last section, we give our conclusion.

2. Related work

During the past decades, many techniques for improving regular expression matching have been proposed. Most studies are aimed
at compressing the transitions or states of DFA to reduce the memory consumption. Kumar et al. [7] invented D2FA (Delayed input
DFA) to reduce the number of transitions by adding a default transition, and it diminishes the memory occupied by DFAs to represent
the regular expressions. However, it is at the expense of more memory accesses overhead, because multiple default transitions will be
executed when no corresponding transitions are found in the compressed states for certain input character. The D2FA-derived al-
gorithms (like A-DFA [8] etc.) are all designed for further improving the matching speed or compression ratio. PaCC [9] partitions a
complex regular expression into multiple simple segments without semantic overlap, and uses a Relation Mapping Table (RMT) to
record their dependencies. But this method only works for several types of complex regular expressions. Other techniques for re-
ducing DFAs’ space consumption such as state merging [10], character set reduction [11] similarly reduce memory at the cost of more
matching time and worse temporal efficiency. Our methods are orthogonal and complementary to these methods.

Several studies leverage hardware platform to improve the executing efficiency of regular expression matching. FPGA based
methods [12,13] have advantages in the implementation with pipeline and parallelism. However, the small size of on-chip memories
of FPGA limits the practical deployment of large-scale rulesets. GPU based methods [14] take advantage of the massive parallel
execution units and high memory bandwidth, while the performance is sensitive to the divergences in memory accesses and execution
path. TCAM devices are fast [15], but the updating algorithm may cost large amounts of storage space. Worse more, the high cost and
big power consumption make TCAM devices not cost-effective for large-scale regular expression matching. The regular expression
grouping methods can help obtain more efficient data layout on these hardware platforms to benefit maximally from hardware
acceleration.

Regular expression grouping is a relatively new and independent direction to solve the state explosion problem of DFA. In [3], Yu
et al. first put forward the ideas of greedily grouping regular expressions to construct multiple automata, and implemented a grouping
algorithm that only uses the information whether a regular expression interacts with each other, without quantifying the interaction
relationship. Moreover, the simplicity of this algorithm makes it run into local optimum easily. Becchi et al. [16] simply divided the
rulesets binarily until the DFA states number of each group is smaller than a given limit. Rohrer et al. [4] evaluated the distance
between each pair of regular expressions and converted the grouping problem to the Maximum Cut problem. Methods including Poles
Heuristic and Simulated Annealing are leveraged based on the distance relationships among regular expressions. RegexGrouper [5]
estimates the DFA size in a similar way by measuring the convolvement relationship. The authors map the k-grouping problem to the
maximum k-cut problem in theory, and prove the grouping solution is not less than − −k1 1 times of the optimal partition of the
corresponding maximum k-cut problem. Other proposals are based on these ideas and get similar results [6]. However, all of these
algorithms only find sub-optimal solutions within a reasonable running time, and could hardly deal with various situations where
regular expressions are grouped.

1 Extracted from snortrules-snapshot-29110, which was released on January 4, 2018.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

224

3. Motivation and problem formulation

3.1. Regular expression grouping

Selectively distributing a set of regular expressions into several groups and constructing DFAs separately can reduce total memory
usage, because the interactions among regular expressions can be isolated by multiple DFAs. Fig. 1 shows a simple example which
distributes two regular expressions (“ab.*cd” and “ef.*gh”) into two groups. When compiling these two regular expressions into one
DFA, it has 16 DFA states. After grouping, the total number of DFA states decreases from 16 to 10. Since the memory cost by DFAs is
proportional to the number of states in DFAs, the reduction in states number equals to the decrease of memory consumption. By
adding two new states: a start state and an accept state, and four ε transitions that link individual DFAs to the newly added states, the
two separate DFAs perform the equivalent matching function as the composite one.

Different grouping solutions of regular expressions have different processing complexity and different storage cost. Suppose there
are m regular expressions with average length n, there are at least two approaches: one is to compile each regular expression
individually into m DFAs, and the other is to compile them altogether into a single DFA. The processing complexity for the former
method is O(m), and the storage cost is O(m×|Σ|n). For the latter method, the processing complexity is exactly O(1) while the
storage cost surges to O(|Σ|n×m). Regular expression grouping, however, can be regarded as a trade-off between these two ap-
proaches. If m regular expressions are distributed into k groups (1≤ k≤m), the processing complexity is distinctly O(k), and the
storage cost becomes O(k×|Σ|n×m/k).

Although the huge space cost caused by the DFA state explosion problem can be effectively mitigated via regular expression
grouping, it doesn’t make any sense to focus only on the total number of DFA states or the number of groups which regular ex-
pressions are distributed into. On one hand, minimizing only the total number of DFA states will end up with a large group number,
which will increase the processing complexity. On the other hand, minimizing only the number of groups will apparently get back to
DFA state explosion. In other words, we should obtain a better trade-off between processing complexity and storage cost according to
different demands of various application scenarios.

3.2. Given the number of groups, minimize the number of DFA states

In practical use, the group number of regular expressions is limited by the maximum number of DFAs a particular hardware
platform supports to execute simultaneously. If the number of groups is smaller than that of cores/threads, several cores/threads are
in the idle state, which fails to make full use of the computational resource. Conversely, if more DFAs are generated than the cores/
threads, the excess DFAs will not provide any performance improvement, but bring more overhead and latency. Therefore, for the
hardware platform with k cores/threads available or allocated for regular expression matching, the optimal number of groups (DFAs)
is k.

In this case, the target of the problem is to distribute a set of regular expressions into k groups, where each subset of regular
expressions constructs a DFA individually, and the total state number of all DFAs is minimal. In mathematics, the problem can be
formally defined as follows:

Problem 1. For a regular expression setS = r r r{ , , ..., , ...},i1 2 1≤ i≤m and a given k, 1≤ k≤m, the goal is to find k disjoint subsets

R R R, , ..., ,k1 2 R S⋃ == ,j
k

j1 to minimize the overall DFA states number R∑ = T (),j
k

j1 where R
R⎜ ⎟= ⎛

⎝
∑ ⎞

⎠
∈T T r()j r ii j

denotes the number

of states of the DFA constructed by subset Rj.

3.3. Given upper limit of DFA size, minimize the number of groups

In some application scenarios, the memory cost by DFAs is limited by the physically available memory size of a particular
hardware platform (such as certain embedded devices), which results in the fact that the maximum memory usage, rather than the

Fig. 1. Composing two DFAs by regular expression grouping.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

225

number of groups, becomes the primary goal for implementing regular expression matching on these platforms. For example, Xilinx
Zynq-7000 series FPGAs have up to 4.9Mb Block RAM2, which is still too small for large-scale regular expression rulesets. Therefore,
if the regular expression rulesets could be distributed into as few groups as possible within the limit of memory space, we can utilize
least hardware resources to process all DFAs, and meanwhile reduce the latency of throughput and accelerate the matching speed.
The target of the problem in this case can be mathematically defined as follows:

Problem 2. For a regular expression set S = r r r{ , , ..., , ...},i1 2 1≤ i≤m and a given upper limit THR, the aim is to find k disjoint
subsets R R R, , ..., ,k1 2 R S⋃ == ,j

k
j1 1≤ k≤m, where k is minimal, and ∀j∈ [1, k], there exists R ≤T THR() ,j where

R
R⎜ ⎟= ⎛

⎝
∑ ⎞

⎠
∈T T r()j r ii j

denotes the number of states of the DFA constructed by subset Rj.

In order to further reduce memory consumption, a secondary goal under this situation is to reduce the total number of DFA states
corresponding to the set S as much as possible on the premise that k is minimal.

4. Grouping algorithms

4.1. Why use intelligent algorithms

From the analysis above, the regular expression grouping problem can be abstracted into optimization problems. An accurate
optimum solution can be obtained by traversing through all possible solutions for a small-scale optimization problem. However, for a
set of m regular expressions which is to be distributed into k groups, there exists ∏ =k k k k()/ ! / !m

m distinct solutions. The ex-
ponential growth makes the number of possible distributions too enormous to find the optimal solution. Take a practical ruleset used
in deep inspection for example. The ruleset of L7-filter [17] is relatively small, which is composed of 111 regular expressions. If
distributing these regular expressions into two groups, the number of distinct possible distributions is = ≈ ×2 /2! 2 1.3 10111 110 33. For
larger rulesets such as Snort [2], the grouping possibilities grow exponentially. This problem is proved to be NP-complete [5]. Thus, it
is obviously infeasible to use a brute-force method to find the optimal or close-to-optimal grouping solution from all possible si-
tuations, and we need intelligent algorithms to find the optimum solutions to the regular expression grouping problem. Section 3
categorizes the grouping problem into two separate cases according to practical needs. Correspondingly, two intelligent grouping
algorithms are proposed in this section, being called Reevo and Reant respectively, to handle each situation.

4.2. Reevo – minimize DFA states under given group number

When the group number k is specified, this grouping problem (Problem 1) is similar to the Bounded Knapsack Problem (BKP).
Genetic Algorithm (GA) proves to be an efficient method to solve this type of problems. Inspired by GA, we propose Reevo algorithm
to obtain efficient grouping solutions under given group number. However, the chromosomes of individuals in classical GA are
represented in binary strings of 0s and 1s, yet this representation is not suitable for regular expression grouping problem. Thus, a
novel index structure instead of the conventional binary chromosome is proposed to represent one grouping solution of regular
expressions. For a problem of distributing a set of m regular expressions into k groups, each chromosome in Reevo represents one
grouping solution of regular expressions. The length of all chromosomes is m, and each position in the chromosomes represents one
corresponding regular expression, and the value (ranging from 1 to k) represents the group label which the regular expression is
placed into.

Fig. 2a depicts a simple example of encoding 6 regular expressions into chromosomes when k is set to 3. As can be seen, each
individual corresponds to one chromosome, and the length of the chromosome is determined by the number of regular expressions,
and all values on the chromosome are between 1 and 3. The first digit on the first chromosome indicates that in this grouping
solution, the regular expression r1 is to be placed into group 2. By analogy, the first chromosome {2 3 3 1 2 1} encodes one grouping
solution that the fourth, sixth regular expressions are assigned to Group 1, the first, fifth are assigned to Group 2, and the second,
third are assigned to Group 3. In Fig. 2a, the other three chromosomes are encoded in the same manner as the initial solutions of
Reevo.

To evaluate each chromosome, we define the unfitness in our algorithm instead of the fitness in classical GA. The unfitness of the
chromosome is exactly the number of total DFA states. Mathematically, for the chromosomeC = c c c c{ },i m1 2 the unfitnessU is

Fig. 2. Example of Reevo algorithm for distributing 6 regular expressions into 3 groups.

2 Xilinx Zynq Z-7020 has 140 Blocks, and each block has 36Kb RAM.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

226

calculated byU C
S⎜ ⎟= ∑ ⎛

⎝
∑ ⎞

⎠
= ∈T r() ,j

k
r i1 i j

whereSj denotes the set of regular expressions in Group j. ∀i∈ [1, m], if =c j,i then S∈ri j.

After unfitness calculation, individuals are selected according to Roulette Wheel Selection [18]. Small unfitness of a chromosome
often leads to a large possibility for the chromosome to be chosen for further evolution. In Reevo, for a population of l chromosomes
C C C, , ..., ,l1 2 the probability for C to be selected is calculated as: U C U C− ∑ =1 ()/ ()i

l
i1 . Next, the chromosome performs crossover

with the other one with a probability of pc, and then a random digit in the chromosome is picked and mutates with a probability of pm.
pc and pm are two configurable parameters which determine the global optimality and convergence speed of Reevo.

As shown in Fig. 2b, the chromosomes of the first and second individuals are selected as an example, and then a position is chosen
randomly (between the fourth and fifth digits in the figure) and the two chromosomes are crossovered with the probability of pc. This
operation is also performed for the remaining two chromosomes. After that, a digit on the chromosome is picked randomly and
mutated into an arbitrary value between 1 and k with the probability of pm. Based on the above steps, the Reevo algorithm generates a
new population with four different individuals, as shown in Fig. 2c.

Using Finite Markov Chains, Rudolph et al. [19] prove that this type of algorithms with the process of crossover, mutation, and
selection operations cannot guarantee the convergence to the global optimum. For this reason, Reevo adopts an Elitist Strategy which
maintains the best solution found over time before next-round selection, i.e., find the individual with the worst chromosome in the
current generation and replace it with the best chromosome from the last generation. The global convergence is proved in theory
when this strategy is taken [19].

The pseudo-code of Reevo is as shown in Algorithm 1. The operations of crossover and mutation (Line 8 - Line 11) guarantee that
the algorithm will not fall into local optimum, meanwhile the Roulette Wheel Selection (Line 6 - Line 7) and Elitist Strategy (Line 4,
Line 13 - Line 14) accelerates the convergence speed.

4.3. Reant – minimize group number under given space limitation

If the space of each group is limited, the goal becomes to obtain as few groups as possible. This problem (Problem 2) could be
regarded as a new variant of partition problems, which are generally solved by greedily algorithms or dynamic programming.
However, existing methods may be trapped in a local optimum easily. To achieve better solutions, we propose Reant algorithm,
which takes advantage of the two core ideas from Ant Colony Optimization algorithm (ACO), namely probabilistic wandering and
positive feedback.

Probabilistic wandering
In Reant, whether two or more regular expressions are distributed into the same group will be determined by the pre-estimated

probability. With reference to the upper limitation THR, the smaller the space cost by DFAs is, the greater the probability being in the
same group should be. Further, the probability function is designed to be non-linear so that the regular expressions which cause less
state explosion will have much greater chances to be put together in the same group.

For a regular expression setS = r r r{ , , ..., , ...},i1 2 and a given space limitation THR, the probability of adding regular expression ri
into the subset Rm is: (pheromones omitted here)

R
R

R

=
− ∑ +

= −
∑ +

∈

∈

()

()

()

()
p i

THR T r r

THR

T r r

THR

(,)
log() log

log()

1
log

log()

add m
r k i

r k i

k m

k m

(1)

where RT ()m represents the number of states of the DFA constructed by regular expression setRm. Since RT ()m is always greater than

0, Rp i(,)add m would be no larger than 1. On the other side, if
R⎜ ⎟

⎛
⎝

∑ + ⎞
⎠

>∈T r r THR,r k ik m
Rp i(,)add m will below zero, which means that

there is no possibility to put regular expressions ri into the group RT ()m . Under normal circumstances, padd(Rm, i)∈ (0, 1).
Positive feedback
We also employ the idea of pheromones from ACO algorithm. pheromone(i, j), ranging from 0 to 1, stands for the interrelationship

between two regular expressions ri and rj. Large pheromones mean that ri and rj have been tried to be put into the same group
repeatedly, which indicates that ri and rj have a high tendency to be grouped together. The improved formula of calculating the
probability of adding regular expression ri into the subset Rm is:

R R
R

R′ = − +
∑ ∈p i α p i α

pheromone i k
(,) (1) (,)

(,)
add m add m

r

m

k m

(2)

where α is the weight of pheromones, Rm stands for the number of regular expressions in group R ,m and
R

R
∑ ∈ pheromone i k(,)/r mk m

means the average amount of pheromones between regular expression ri and the existing groupRm. It is
clear that more pheromones lead to a higher probability of adding ri into Rm. If ri is added into the group R ,m the pheromones
between ri and each regular expression of Rm increase as: R R= × ∀ ∈pheromone i k p i β rΔ (,) (,) , ,add m k m where β is the weight of
pheromones that are laid down. The pheromones evaporate by the parameter γ, i.e.,

S= × − ∀ ∈pheromone i j pheromone i j γ r r(,) (,) (1), ,i j . The only thing to note here is that the maximum value of pheromones is 1,

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

227

1
P
←

in
iti

al
iz

at
io

n(
);

2
w

hi
le

te
rm

in
at

io
n

cr
it

er
io

n
ha

s
no

tb
ee

n
m

et
do

3
ca

l_
un

fit
ne

ss
(P

);
4

C b
es

t
←

fin
d_

be
st

(P
);

5
w

hi
le

si
ze

_o
f(
P′

)
<

si
ze

_o
f(
P)

do
6

C i
←

ro
ul

et
te

_w
he

el
_s

el
ec

t(
P)

;
7

C j
←

ro
ul

et
te

_w
he

el
_s

el
ec

t(
P)

;
8

C′ i,
C′ j
←

cr
os

so
ve

r
C i,
C j

w
ith

pr
ob

ab
ili

ty
p c

;

9
C′ i
←

m
ut

at
e
C′ i

w
ith

pr
ob

ab
ili

ty
p m

;
10

C′ j
←

m
ut

at
e
C′ j

w
ith

pr
ob

ab
ili

ty
p m

;

11
ad

d
C′ i

an
d
C′ j

to
po

pu
la

tio
n
P′

;

12
en

d
13

C w
or

st
←

fin
d_

w
or

st
(P

);
14

C w
or

st
←
C b

es
t;

15
P
←
P′

;
16

P′
←
∅;

17
en

d
18

re
tu

rn
fin

d_
be

st
(P

);

A
lg
or

it
hm

1.
R
ee
vo

–
m
in
im

iz
e
D
FA

st
at
es

un
de

r
gi
ve

n
gr
ou

p
nu

m
be

r.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

228

1
w

hi
le

te
rm

in
at

io
n

cr
it

er
io

n
ha

s
no

tb
ee

n
m

et
do

2
pu

t_
al

l_
an

ts
_i

n_
in

iti
al

_s
ta

te
()

;
3

fo
r

ea
ch

an
t i

in
th

e
co

lo
ny

do
4

cn
t i
=

0;
5

ad
d

a
ra

nd
om

re
to

an
t i

as
gr

ou
p[

cn
t i]

;
6

en
d

7
w

hi
le

al
la

nt
s

ha
ve

sp
ac

e
to

go
do

8
fo

r
ea

ch
an

t i
in

th
e

co
lo

ny
do

9
fo

r
ea

ch
re

j
re

m
ai

ne
d

fo
r

an
t i

do
10

ad
d

re
j
to

an
t i

w
ith

pr
ob

ab
ili

ty
P

ad
d

(gr
ou

p[
cn

t i]
,r

e j
) ;

11
if

re
j
ad

de
d

to
gr

ou
p[

cn
t i]

th
en

12
ph

er
om

on
es

_i
nc

re
as

e(
re

j,
gr

ou
p[

cn
t i]

);
13

en
d

14
en

d
15

if
no

re
ad

de
d

to
gr

ou
p[

cn
t i]

th
en

16
cn

t i
=

cn
t i
+

1;
17

ad
d

a
ra

nd
om

re
to

an
t i

as
gr

ou
p[

cn
t i]

;
18

go
to

L
in

e
9;

19
en

d
20

en
d

21
en

d
22

re
su

lt
←

be
st

an
t;

23
ph

er
om

on
es

_e
va

po
ra

te
()

;
24

en
d

25
re

tu
rn

be
st

of
re

su
lt

s;

A
lg
or

it
hm

2.
R
ea
nt

–
m
in
im

iz
e
nu

m
be

r
of

gr
ou

ps
un

de
r
gi
ve

n
sp
ac
e
lim

it
at
io
n.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

229

otherwise, the pheromones will increase uncontrollably even if there exists a process of evaporation.
The pseudo-code of Reant is as shown in Algorithm 2. “Ants” are used to simulate the process of regular expression grouping. The

merit of grouping regular expressions with probabilities (Line 10) lies in the avoidance of converging to a locally optimal solution,
and the introduction of pheromones (Line 11 - Line 13) facilitates the positive feedback and accelerates the convergence speed. In
[20], the authors prove the convergence of this class of algorithms.

5. Optimizations

Due to the fact that both Reevo and Reant algorithms require a lot of iterative computations, calculating the accurate number of
total states by building DFA in each-round iteration is impractical. Through testing, for the problem of distributing 111 regular
expressions into 4 groups with given 50 individuals and 5000 iterations in Reevo, it takes nearly 20 h to obtain a final solution by
using the Regular Expression Processor [21], and the time cost may grow exponentially with the increase of regular expressions and
groups that regular expressions are distributed into. What’s worse, the randomness of both Reevo and Reant may lead to a situation in
which the construction of a temporal DFA is infeasible. In this section, two optimization methods are proposed to accelerate the
convergence of Reevo and Reant algorithms.

5.1. Fast DFA states calculating

The convolvement relationship of regular expressions is proposed in [5] to estimate DFA states. First, the coefficient ai is defined
as the number of states of the DFA constructed by regular expression ri itself, and the coefficient bi, j is defined as the number of states
of the DFA constructed by regular expression pair ri and rj. Then for a regular expression rulesetS , the number of DFA states can be
estimated by the following formula:

S
S S

∑ ∑= + − −
∈ ∈ <

E a b a a() ()
r

i
r r i j

i j i j
, ,

,
i i j (3)

The experimental results (shown in Section 6.1) point out that although Formula (3) can be an applicable approximation on the
condition of a small quantity of regular expressions, the increase of accurate number of DFA states is far greater than the approximate
number for large rulesets, which will cause remarkable bias for the optimization goals. To achieve better approximations, we define
another coefficient ρi, j as the expansion rate of regular ri and rj: = − − + = +ρ b a a a a w a a()/() /()i j i j i j i j i j i j, , , . The increase of the
approximate number of states is relevant to not only wi, j, but also the expansion rate ρi, j, especially in the situation where there exists
a relatively huge number of regular expressions or serious state explosion. When adding a third regular expression rl into the groupR ,m
according to the improved approximation, the increase in the number of states is:

R R

⎜ ⎟∑ ⎛
⎝

∑ ⎞
⎠

= + ×
∈ ∈ ≠

E ρ ρ wΔ ()
r r i j

l j i j l i
,

, , ,
i m j m (4)

Then the sum of states of group Rm when compiled into the same DFA is:

R
R R R

∑ ∑ ∑= + + ×
∈ ∈ < ∈ ≠

E a ρ ρ w() ()m
r

i
r i j r l i j

i l l j i j
, , ,

, , ,
i m i j m l m, (5)

For a regular expression set S = r r r{ , , ..., , ...}i1 2 which is to be distributed into k groups, the new DFA states approximation
R= ∑ =E S E() ()m

k
m1 . In Section 6.1, a comparison experiment between the previous method and our improvement is conducted. The

result shows that the improved method which uses the additional coefficient ρi, j results in far better approximation in both numeric
and variation tendency.

5.2. Initial solution set improving

Another optimization for fast convergence is to improve the initial solution set of both Reevo and Reant algorithms. Rather than
random solutions, a better initial solution will avoid unnecessary iterations and reduce algorithms running time. In Section 5.1,

= − −w b a ai j i j i j, , is denoted as a coefficient to quantify the relationship between regular expression ri and rj. Larger wi, j implies that
the DFA states will expand more if ri and rj are grouped together. For a regular expression setS = r r r{ , , ..., , ...},i1 2 1≤ i≤m, which is
to be distributed into k groups, a graph that consists of m nodes and × −m m(1)/2 edges could be built, and the weight of each edge
is wi, j. Taking advantage of the ideas from spectral clustering [22], we can obtain a quick initial grouping solution that is far better
than the random one. The steps are as follows.

Step 1: Generate the affinity matrix ∈ ×A m m by = −A w σexp(/)i j i j, , when where σ is a free parameter. If =i j, =A 0i j, .
Step 2: Calculate the unnormalized graph Laplacian matrix L by = −L D W , where D is a degree matrix (D’s each diagonal
element is the sum of A’s each row).
Step 3: Find k smallest eigenvalues from matrix L, and form a new matrix ∈ ×X m k by stacking the corresponding k eigenvectors.
Step 4: Treat each row of X as a vector in k-dimensional space, and use K-means to cluster into k groups.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

230

Experiments in Section 6.4 show that this method could obtain a satisfactory initial solution in a short time.

6. Evaluations

In this section, we conduct a series of experiments to evaluate the optimality and efficiency of our intelligent grouping algorithms.
Six rulesets picked from the open-source software and commercial companies are used, as shown in Table 1. Ruleset01 comes from
L7-filter [17], a popular application layer packet classifier for Linux. Ruleset02, ruleset03 and ruleset04 are from network intrusion
detection and prevention systems Snort [2] and Bro [23]. We also obtain two large rulesets from a major commercial networking
vendor. Experiments are conducted on an Intel(R) Core(R) i7-4790 platform with 4 × 64 KB L1 Cache, 4 × 256 KB L2 Cache, 8 MB
L3 Cache, 8 GB memory and Ubuntu 14.04 operating system. Our grouping algorithms are implemented in C++. The Regular
Expression Processor [21] is used to calculate the number of DFA states of each regular expression grouping solution.

6.1. DFA states approximation

In Section 5.1, a fast DFA states approximation method is proposed. Among all the existing grouping algorithms, [5] is the only
one that presented a similar approximation method to estimate DFA states before grouping. It is infeasible to compare every accurate
DFA states number value with the approximations in all possible grouping solutions. Therefore, we repeatedly add one random
regular expression to a test group and calculate the states number of the DFA constructed from this test group. Fig. 3 depicts the
comparison of the accurate states number, DFAestimator [5] and our improved approximation when the number of regular ex-
pressions in the test group is increasing. It is shown that if the test group contains only a fewer regular expressions (fewer than 10),
both of the previous method and our improved approximation are close to the accurate number. However, if more regular expressions
are added to the test group, our improved method and the accurate value increase following the same trend, while the approximation
of DFAestimator increases much slowly. When 20 or more regular expressions are contained in the test group, the DFA states number
of our improved approximation and the accurate value are around 10 times as huge as that of the previous method. When more than
24 regular expressions are added to the test group, the space consumption of the corresponding DFA is beyond the memory limit of
our experimental machine.

Table 2 shows more evaluation results. A number of regular expression subsets of size 1, 2, 4, 8, 12 and 16 are randomly picked
from the original rulesets, and the average deviations between the approximations and accurate states are recorded after multiple
experiments. It is observed that for large subsets, our method is much more accurate than DFAestimator. On average, the deviation of
our method is around 11%, while DFAestimator gets a deviation of about 43%. On the other side, the computational overhead of our
improved method is negligible since it only requires extra addition and multiplication operations compared to the previous work. As
one can see from the figure and the table, in both numeric and tendency, our improved method which adds the coefficient ρi, j leads to
far better approximation than existing work, which brings more practical grouping solutions to regular expressions.

6.2. Grouping results of Reevo

This subsection shows the experimental results when the regular expression group number is specified. We implement three
algorithms from state-of-the-art work as comparisons: Pole Heuristic and Simulated Annealing from Rohrer et al. [4], and Regex-
Grouper from Liu et al. [5]. These methods also group a regular expression ruleset into a specified number of subsets. For Reevo, pc is
set to 0.7, pm is set to 0.1, the number of individuals is 20, and the maximum number of iterations is 2500. In Fig. 4a and b, the
number of regular expression groups is specified from 2 to 8. From these figures we observe that Reevo achieves the best grouping
results among these four algorithms. For example, when distributing ruleset01 into 3 subsets, the total DFA states of Reevo is only

Table 1
Rulesets used in the evaluations.

name ruleset01 ruleset02 ruleset03 ruleset04 ruleset05 ruleset06

of regexes 111 120 1190 1196 1386 5886
source L7-filter [17] Snort [2] Snort [2] Bro [23] commercial commercial
state explosion moderate serious serious serious serious moderate

Fig. 3. Comparisons of different DFA states approximation methods.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

231

1.97 million, while Simulated Annealing obtains 3.59 million, Pole Heuristic obtains 6.72 million and RegexGrouper gets more than 7
million DFA states. Pole Heuristic and RegexGrouper adopt similar heuristic algorithms, so there is no significant difference between
them. What is more, the results of them are unstable, which can be ascribed to the local optimum that they trap into easily. Simulated
Annealing is also an iterative algorithm, but it ends up with results that are 10%–200% worse than Reevo. Large-scale ruleset
experiments (shown in Fig. 4c) demonstrate the similar effectiveness of the presented algorithm. After making statistics and analysis
of multiple grouping results on different rulesets, it is concluded that Reevo saves 15% at least and 45% on average memory
consumption compared to other regular expression grouping algorithms, since Reevo can find an optimal solution in each situation,
while others can only achieve sub-optimal results.

6.3. Grouping results of Reant

To evaluate grouping methods when the space of each group is limited, we compare our Reant algorithm with Becchi’s approach
[16] and Yu’s algorithm [3], which also distribute regular expressions under given space limitations of each group. In this situation,
the aim is to find a grouping solution which generates as few groups (DFAs) as possible. For Reant, the parameter α is set to 0.5, β is
set to 0.7, γ is set to 0.3, the number of “ants” is 20, and the maximum number of iterations is 50. To verify the effect of pheromones,
we also run Reant algorithm with and without the pheromones. Fig. 5 shows the experimental results under different conditions.
When the state limit is set to 5000 (Fig. 5a), Becchi’s approach gets the worst results since it divides the rulesets in binary until the
number of DFA states is smaller than the limitation. Yu’s algorithm adopts heuristic information and obtains better results than
Becchi’s approach. However, the insufficient information in Yu’s algorithm makes it only achieve the local optimum. Reant algorithm
generates obviously fewer groups than Yu’s algorithm, and with the same parameters, the results of Reant with pheromones are better
than that without pheromones. For example, when distributing ruleset02 into groups with the space limitation of 5000 states,
Becchi’s approach generates 27 groups, Yu’s algorithm generates 14 groups, and Reant only produces 12 groups without pheromones
and 11 groups with pheromones. Experiments under other conditions (Fig. 5b and c) show the same results. For all rulesets, Reant
achieves fewer groups in each situation by acquiring more optimal grouping solutions of regular expressions compared to existing
methods. Specifically, Reant reduces around 55% groups number on average than Becchi’s approach and around 25% groups number
on average than Yu’s algorithm.

6.4. Initial solution and grouping efficiency

This subsection shows the benefits of the optimized initial solutions introduced in Section 5.2. Fig. 6 depicts the comparison of

Table 2
Average deviation of different approximation methods on subsets with different sizes.

size of regexes 1 2 4 8 12 16

DFAestimator 0.00% 6.25% 20.33% 56.61% 82.49% 94.96%
Our method 0.00% 6.25% 10.16% 14.44% 7.52% 30.55%

Fig. 4. Comparison of total DFA states on different rulesets under given group number.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

232

Pole Heuristic, Simulated Annealing, RegexGrouper and Reevo with/without this optimization. In this case, regular expressions in
ruleset01 are grouped into 4 groups. Since Pole Heuristic and RegexGrouper are not iterative algorithms, their grouping results are
constant: the number of total DFA states obtained by Pole Heuristic is about 6.23 million and that by RegexGrouper is about 6.07
million. The result of Reevo with optimized initial solution converges to about 0.58 million after 2500 iterations, while Reevo
without optimized initial solution only obtains a final grouping solution of 0.82 million states after 5000 iterations. Obviously, the
optimized initial solution speeds up the convergence of our proposed algorithms.

It must be noted that both Reevo and Reant spend more running time compared with existing grouping algorithms. However, the
grouping algorithms often run offline so their consuming time is not a major concern in the situation where regular expression rules
are not frequently updated. To say the least, even if the running time of grouping algorithms is strictly limited, the optimized initial
solution which could be obtained in a very short time is acceptable (even faster and better than existing grouping methods). Table 3
shows the time consumption of our improvement initial solution and non-iterative algorithms on ruleset01. Our optimized initial
solution requires about 30%–50% less time and achieves better grouping results than existing methods.

7. Conclusion

To reduce the huge memory consumption when performing regular expression matching on large-scale rulesets, we propose
intelligent and efficient regular expression grouping algorithms. The practical demands of regular expression grouping are analyzed
and the grouping problem is formulated into two aspects. Two grouping algorithms are proposed accordingly and obtain better

Fig. 5. Comparison of total regex groups on different rulesets and different space limitations.

Fig. 6. Convergence of RegexGrouper and Reevo on ruleset01.

Table 3
Time cost of our improvement initial solution and existing methods.

Number of groups 2 3 4 5 6 7 8

Pole Heuristic (ms) 15.1 22.5 25.4 32.6 34.5 37.8 38.3
DFAgrouper (ms) 18.1 30.9 30.2 39.0 43.7 39.2 50.8
Our initial solution (ms) 15.7 17.2 19.5 20.4 22.0 22.3 24.1

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

233

results than state-of-the-art grouping methods by acquiring the global optimum solution of regular expression distributions. When the
number of groups is given, our proposed algorithm achieves 45% less memory consumption than previous work on average. Under
the circumstance of limited memory space for each group, our proposed algorithm generates around 25% fewer regular expression
groups in comparison with other methods, and hence requires fewer hardware resources for regular expression matching. We also
present an improved DFA states calculation method which achieves far better DFA size approximation when the ruleset is large. The
conducted evaluation shows that our approximation method reduces about 30% deviation compared to existed methods. In addition,
a new initial grouping solution generation approach is proposed, which obtains better initial solutions in a very short time and
accelerates the convergence speed of our algorithms. Our future work will focus on the fast incremental grouping of updated regular
expressions.

References

[1] Xu C, Chen S, Su J, Yiu S, Hui LC. A survey on regular expression matching for deep packet inspection: applications, algorithms, and hardware platforms. IEEE
Commun Surv Tutorials 2016;18(4):2991–3029.

[2] Snort. https://www.snort.org.
[3] Yu F, Chen Z, Diao Y, Lakshman T, Katz RH. Fast and memory-efficient regular expression matching for deep packet inspection. Proceedings of the 2006 ACM/

IEEE symposium on architecture for networking and communications systems. ACM; 2006. p. 93–102.
[4] Rohrer J, Atasu K, van Lunteren J, Hagleitner C. Memory-efficient distribution of regular expressions for fast deep packet inspection. Proceedings of the 7th IEEE/

ACM international conference on hardware/software codesign and system synthesis. ACM; 2009. p. 147–54.
[5] Liu T, Liu AX, Shi J, Sun Y, Guo L. Towards fast and optimal grouping of regular expressions via dfa size estimation. IEEE J Sel Areas Commun

2014;32(10):1797–809.
[6] Liangwei C, Haoping Y. Regular expression grouping optimization based on shuffled frog leaping algorithm. Computer and communications (ICCC), 2016 2nd

IEEE international conference on. IEEE; 2016. p. 1111–5.
[7] Kumar S, Dharmapurikar S, Yu F, Crowley P, Turner J. Algorithms to accelerate multiple regular expressions matching for deep packet inspection. ACM

SIGCOMM computer communication review. 36. ACM; 2006. p. 339–50.
[8] Becchi M, Crowley P. A-dfa: A time-and space-efficient dfa compression algorithm for fast regular expression evaluation. ACM Trans Architect Code Optim

(TACO) 2013;10(1):4.
[9] Wang K, Fu Z, Hu X, Li J. Practical regular expression matching free of scalability and performance barriers. Comput Commun 2014;54:97–119.
[10] Liu AX, Torng E, Liu AX, Torng E. Overlay automata and algorithms for fast and scalable regular expression matching. IEEE/ACM Trans Netw (TON)

2016;24(4):2400–15.
[11] Tang Q, Jiang L, Dai Q, Su M, Xie H, Fang B. Rics-dfa: a space and time-efficient signature matching algorithm with reduced input character set. Concurrency

Comput 2017;29(20).
[12] Chen X, Jones B, Becchi M, Wolf T. Picking pesky parameters: optimizing regular expression matching in practice. IEEE Trans Parallel Distrib Syst

2016;27(5):1430–42.
[13] Qi Y, Wang K, Fong J, Xue Y, Li J, Jiang W, et al. Feacan: front-end acceleration for content-aware network processing. INFOCOM, 2011 proceedings IEEE. IEEE;

2011. p. 2114–22.
[14] Yu X, Becchi M. Exploring different automata representations for efficient regular expression matching on gpus. ACM SIGPLAN notices. 48. ACM; 2013. p. 287–8.
[15] Meiners CR, Patel J, Norige E, Liu AX, Torng E. Fast regular expression matching using small tcam. IEEE/ACM Trans Netw (TON) 2014;22(1):94–109.
[16] Becchi M, Franklin M, Crowley P. A workload for evaluating deep packet inspection architectures. Workload characterization, 2008. IISWC 2008. IEEE inter-

national symposium on. IEEE; 2008. p. 79–89.
[17] L7-filter. http://l7-filter.sourceforge.net.
[18] Goldberg DE, Deb K. A comparative analysis of selection schemes used in genetic algorithms. Found Genet Algorithms 1991;1:69–93.
[19] Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 1994;5(1):96–101.
[20] Stutzle T, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms. IEEE Trans Evol Comput 2002;6(4):358–65.
[21] Regular expression processor. http://regex.wustl.edu.
[22] Ng AY, Jordan MI, Weiss Y. On spectral clustering: analysis and an algorithm. NIPS. 14. 2001. p. 849–56.
[23] Bro. https://www.bro.org.

Zhe Fu is currently a Ph.D. student at Tsinghua University, China. He received the B.S. degree in the Department of Automation from Tsinghua University, in 2013. His
research interests focus on pattern matching and traffic management.

Kai Wang works at Yunshan Networks, Beijing, China. He received the Ph.D. degree in the Department of Automation from Tsinghua University, in 2014. His research
interests focus on high performance regular expression matching.

Liangwei Cai is currently Professor of Shenzhen University, China. He received the M.S. and B.S. degrees in Automation from Tsinghua University. His research
interests focus on intelligent optimizations.

Jun Li is currently Professor of Research Institute of Information Technology, Tsinghua University. He holds a Ph.D. degree in CS from New Jersey Institute of
Technology, and M.S. and B.S. degrees in Automation from Tsinghua University. His research interest is in network security and software-defined networking.

Z. Fu et al. Computers and Electrical Engineering 67 (2018) 223–234

234

http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0001
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0001
https://www.snort.org
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0002
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0002
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0003
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0003
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0004
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0004
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0005
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0005
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0006
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0006
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0007
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0007
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0008
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0009
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0009
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0010
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0010
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0011
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0011
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0012
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0012
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0013
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0014
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0015
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0015
http://l7-filter.sourceforge.net
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0016
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0017
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0018
http://regex.wustl.edu
http://refhub.elsevier.com/S0045-7906(17)31874-8/sbref0019
https://www.bro.org

	Intelligent and efficient grouping algorithms for large-scale regular expressions
	Introduction
	Related work
	Motivation and problem formulation
	Regular expression grouping
	Given the number of groups, minimize the number of DFA states
	Given upper limit of DFA size, minimize the number of groups

	Grouping algorithms
	Why use intelligent algorithms
	Reevo – minimize DFA states under given group number
	Reant – minimize group number under given space limitation

	Optimizations
	Fast DFA states calculating
	Initial solution set improving

	Evaluations
	DFA states approximation
	Grouping results of Reevo
	Grouping results of Reant
	Initial solution and grouping efficiency

	Conclusion
	References

