
FreeRank: Implementing Independent Ranking Service for
Multiplayer Online Games

Li Tang
Tsinghua
University,

Beijing, China
tangli99@tsi
nghua.org.cn

Jun Li
Tsinghua
University,

Beijing, China
junl@tsingh
ua.edu.cn

Jin Zhou
Tsinghua
University,

Beijing, China
zhoujin@g
mail.com

Zhizhi Zhou
Renmin

University,
Beijing, China
zhizhi.zhou

@gmail.com

Hao Wang
Tsinghua
University,

Beijing, China
freizo@

gmail.com

Kai Li
Tsinghua
University,

Beijing, China
likai@datan
gmobile.cn

ABSTRACT
Ranking is necessary for multiplayer online games to provide
players with self-complacence and reference for choosing game
counterparts. Most existing ranking solutions are tightly coupled
with game applications of client-server architectures. In this paper,
a novel scheme named FreeRank is proposed as a ranking service
independent to specific architecture and detailed implementation
of each individual game application. Based on a certificate-based
framework and a reputation-based score-computing algorithm,
FreeRank resolves the challenge of cheating prevention.
Preliminary analysis and simulation results show that FreeRank is
feasible and effective.

Categories and Subject Descriptors
K.8.0 [General]: Games, C.2.1 [Network Architecture and
Design]: Ranking Service.

General Terms
Management, Design, Security

Keywords
Multiplayer Online Games, Ranking Service, FreeRank

1. INTRODUCTION
Ranking is the scheme to calculate (accumulated game) scores
and evaluations of players according to their game histories.
Almost all multiplayer online games (MOGs) require ranking
service to provide players with self-complacence and reference
for choosing game counterparts. Traditional ranking solutions are
designed tightly coupled with or embedded in the client-server
architecture of each individual game application, which suffer
several deficiencies. Firstly, a player community of the same
game is isolated into multiple unrelated parts by different game
service providers. A player cannot combine his or her scores and
histories on several different battle nets. Secondly, existing
ranking solutions are unable to count game results played in local

area networks (LAN). Many popular MOGs, such as Starcraft and
Counter Strike, support game play in LAN, but players complain
that their efforts in LAN do not contribute to their rank or overall
scores on battle nets. Last but not least, existing ranking solutions
work only in the game applications of client-server architectures
but fail to support other application architectures such as peer-to-
peer or hybrid architectures which are proposed in literatures to
improve the scalability and availability, and to reduce investments
of MOGs.

It is noted that MOGs are moving towards a large-scale virtual
world [1] in which interconnected players are expected to be able
to play games anywhere with all sorts of instruments, e.g. PC, X-
BOX, PDA, and mobile phones. As existing ranking solutions are
no longer capable for these situations, an independent ranking
service is desired to take all game results into account for the
evaluation of players, no matter the games are played through a
game server on certain battle net, in LAN, on Internet, or just with
mobile phones using Blue-tooth technology. Obviously, such a
ranking service has potential to significantly improve the
availability and scalability of MOGs.

With these problems in mind, we designed FreeRank, a novel
scheme for a ranking implementation as a platform independent
service for MOGs. The rest of this paper is organized as follows:
Section 2 presents the problem and identifies technical challenges.
Section 3 describes the certificate-based framework to implement
FreeRank. Section 4 details the reputation-based score-computing
algorithm for cheating prevention. Section 5 evaluates FreeRank’s
feasibility and effectiveness by simulation. Section 6 discusses
several application scenarios of FreeRank and other related issues.
Section 7 concludes the paper and presents some future work.

2. PROBLEM STATEMENT
The main focus of this paper is the design and implementation of
FreeRank, an implementation architecture of independent ranking
service for MOGs, which is not involved in or restricted by the
application architecture or detailed implementation of any
individual game application. It works well at the absence of any
trusted arbiter or central authority when games are being played.
It can count all game results played anywhere with various
instruments as long as the players are interconnected with each
other. In existing ranking solutions, there are always game servers
authenticating players and handling ongoing game states. In
contrast, FreeRank does not require central authoritative entities
all the time, which implies more data have to be cached on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NetGames’05, October 10–11, 2005, Hawthorne, New York, USA.
Copyright 2005 ACM 1-59593-157-0/05/0010...$5.00.

player’s game-instrument. The requital is that FreeRank can
improve the availability and scalability of MOGs and provide
uniform rank or overall scores to player communities.

The key challenges to FreeRank design are: (1) avoiding misuse
of the ranking service, and (2) preventing malicious players from
obtaining unfair advantages by cheating. Although this seems
peddling by security experts, it is critical for a specific game to
retain its players. As a malicious player could be powerful enough
to crack and tamper anything stored on his or her computer,
including files, memory, and drivers [2], FreeRank has to be
capable to prevent cheating by impersonation, escaping during
games, and modifying, forging, deleting or reusing local data.
Additionally, FreeRank should also prevent particular cheating
strategies against the ranking service, ensure fairness among
players, and reflect the player’s actual ability measured with his
or her game achievement.

3. CERTIFICATE-BASED FRAMEWORK
FreeRank is based on a certificate-based framework to meet the
challenges. In this section, a high level overview is presented
firstly to introduce the precondition and some main terms used in
the framework. Then pivotal processes are then described in
details. At last, cheating threats and security issues related to the
framework are analyzed.

3.1 Overview of Framework
Fig.1 shows a sketch of the certificate-based framework. It
contains two parts, the global ranking server or FreeRank Server
(F-Server), and the agent at each player’s terminal or FreeRank
Agent (F-Agent).

Every player is identified by a playerID and possesses a pair of
public key and private key. There are two kinds of certificates for
each player, identity certificate and ranking certificate, both
issued by F-Server. The former certifies player’s profile, e.g.
playerID and public key, and the latter certifies player’s game
achievement.
FreeRank can be assimilated to a financial system of MOGs,
where F-Server plays the role of a bank and F-Agents play the
role of players’ accountants. In order to decouple from specific
rules for each game application, FreeRank leaves the task of
judging game results to game applications and separates a bout of
multiple-player game into several two-party deals. For example, if
player A, B, C, D decided to play a game together, each player’s

F-Agent, say A’s F-Agent, will treat the game as three separated
deals with each of the other players, say B, C, and D, respectively.
Whenever some interconnected players want to play a game
together, their F-Agents reveal profiles and achievements of the
other players. If all the players are satisfied, F-Agents help them
to negotiate an agreement confirming the game’s validity. If the
negotiation is successful, each F-Agent notifies its associated
game program residing in the same terminal to start the game.
When the game is over, the game application informs F-Agent
who should pay or be paid how much according to the game
result. F-Agent reckons accounts by signing and collecting bills. If
there were players escaping during the game, others have
privilege to accuse escapers with the agreement as proof. F-Agent
integrates all bills and accusing information of the same game
play into a statement, which will be submitted to F-Server
immediately, or cached locally if communication to F-Server is
unavailable at the time and resubmitted when connection to F-
Server is established later. On receiving the statement, F-Server
processes it and certifies up-to-date ranking certificate for the
submitting player.
The player’s game achievement in his or her ranking certificate is
represented by score, rank and the number of deals in which he or
she was involved, won, lost, ended with a draw, accusing others
and accused by others respectively in tuple format: (total, win,
lose, draw, accusing, accused). While rank represented by a
series of grades, such as junior, senior, and professional, gives a
most general evaluation of the player’s ability, score and tuple
(total, win, lose, draw, accusing, accused) demonstrate the
player’s playing history in statistics. F-Agent provides reference
of another player’s reputation by revealing his or her
accusingRate (accusing

total) and accusedRate (accused
total),

where a high accusingRate implies the player is aggressive and a
high accusedRate implies the player is likely to act shamelessly.
In order to prevent a player from reusing the same bill or
agreement repeatedly, every bill and agreement contains a unique
gameID corresponding to each player. It may be most straight
forward for F-Server to record all ever used gameIDs of every
player, which however is obviously unscalable as the number of
gameIDs keeps growing up. Instead, in FreeRank, every F-Agent
only maintains an AgentIDThreshold of its own largest gameID
the player ever used, and the F-Server also maintains a
ServerIDThreshold for each player recording the largest gameID
of the statements ever counted for the player.

Figure 1. FreeRank’s Architecture.

3.2 Agreement Negotiation
To negotiate an agreement, every participant’s F-Agent increases
its AgentIDThreshold and then sends the value to all others as the
player’s gameID to be used in the agreement. When a player’s F-
Agent has received all other participant’s gameIDs, it sorts
(playerID, gameID) tuples in the descending order of playerID
and composes an agreement. Afterwards, every participant’s F-
Agent signs the agreement with its private key and exchanges
signature. Then F-Agents store the signed agreements and notify
the game program to start the game.
It is quite important to keep fairness during the signature
exchange, because a malicious player may swindle another’s
signature but refuse to offer his or her own and then slander
honest players. Despite many fair exchange protocols have been
proposed [10], it is proved that there is no perfect solution without
a trusted third party [4], implying that it is impossible to
completely prevent slandering behavior in FreeRank’s scenario.
To restrain slandering players, two effective mechanisms can be
employed. Firstly, the signatures are exchanged in the descending
order of participant’s accusingRate, where it assumes player’s
behavior possesses some consistent characteristics (those who
seldom accuse others are more likely to behave well during the
exchange). Secondly, we propose a reputation-based score-
computing algorithm to be detailed in the next section.

3.3 Reckoning Accounts
When a game is over, F-Agent is informed of the result by the
game program. Every renter (the benefiting player’s F-Agent)
requires each of its debtors (the losing player’s F-Agent) to sign a
bill confirming the game result. The bill contains the renter’s
playerID, the same gameID as in the agreement, the debt count
(in this paper, it indicates whether the renter wins or has a draw)
and the debtor’s signature. If some dishonest players cheated,
escaped during the game or refused to sign their bills, it is exactly
the agreement that the offended players can use to accuse
dishonest players. F-Agent composes bills and accusing
information of the same game into a final statement and signs
with its private key. Then F-Agent attempts to submit all cached
statements to F-Server. Note that a malicious player will get no
advantage by deleting his or her locally cached statements before
submitting them to F-Server, because statements are cached by
renters who are going to be benefited.

3.4 Issuing Ranking Certificate
Besides after each game, F-Agent also periodically attempts to
submit cached statements to F-Server and requests the latest
ranking certificate for the player. The cached statements must be
submitted in the same order as they are created. On receiving the
batch of statements, F-Server first checks the submitter’s
signature to prevent malicious players impersonating others; then
it checks the signatures in bills and agreement to avoid forged
statements; at last, F-Server checks whether the submitter’s
gameID in the statement is larger than his or her
ServerIDThreshold to prevent repeated counting. After
verification procedures, valid statements are passed to F-Server’s
score computing engine, which afterwards updates achievements
of the players referred to in the statements. The score computing
engine also computes the submitter’s latest score and updates his
or her ServerIDThreshold. Finally, F-Server signs a new ranking
certificate and sends it along with a confirming message back to

the submitter’s F-Agent, which then replaces old ranking
certificate and removes cached statements that matches the
confirming message.

3.5 Cheating Threats and Security Analysis
So far, the certificate-based framework has carefully considered
mechanisms to prevent the malicious players impersonating
others or obtaining unfair advantages by modifying, forging,
deleting or reusing locally cached data. Compared with existing
ranking solutions, however, the most difficult problem of
FreeRank is how to prevent the escaping behavior without a
trusted entity during the game.
Despite the proposed the accusing mechanism punishes escapers,
it, on the other hand, is likely to be misused by malicious players
to slander others and leads to a rather unexpected aftermath. To
slander other players, a malicious player pretends to negotiate an
agreement with those players, but accuses them maliciously as
soon as he or she gets their signatures, though the defendant
players did nothing wrong. Although slandering behavior is
restricted by the signature exchange regulation proposed earlier in
this paper, it is not a perfect solution. Imagine the scenario where
two malicious players, say P and Q, are playing games and
assume P’s accusingRate is lower. Unfortunately, Q can hardly be
alerted of being slandered by P due to confusion of other cached
statements or temporarily unable to connect to F-Server. In this
case, P is able to slander Q until their accusingRates become
equal. Afterwards, P stops playing with Q, finds another player R
whose accusingRate is higher and continues to slander R in the
same way. As long as P can find another player whose
accusingRate is higher, he or she can get unfair advantages by
slandering. Theoretically, this problem may lead to an unpleasant
situation where every player possesses a rather high accusingRate
and keeps looking for chances to slander others. In worse case,
when accusingRate is near to 100%, it increases slower and
slower as accusing time increases. The situation will misguide
behavior of the whole player community. To solve the problem,
we propose a reputation-based score-computing algorithm in the
next section to restrict and discourage escaping and slandering
behaviors and lead the player community towards favorable
behaviors.

4. SCORE-COMPUTING ALGORITHM
A player’s score in ranking certificate is calculated in our
algorithm according to his or her achievement tuple (total, win,
lose, draw, accusing, accused) with the following equation:

score W win L lose D draw L Punish W Compen= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ (1)

where W, L and D denote the mark of each game won, lost, or
ended with a draw respectively, Punish is punishment due to
being accused by others, and Compen is the player’s
compensation to the player due to accusing others. W, L and D are
configured by the game operators according to the game’s
specific rules, and they usually hold 0W D L> ≥ ≥ .

Existing ranking solutions usually just contain the first three
factors (win, lose, and draw), because game servers are able to
judge and punish escaping players explicitly. However, as there is
no trusted arbiter like game servers in FreeRank, the last two
factors (Punish and Compen) are necessary to discourage
escaping behavior and compensate offended players. Punish and
Compen should be carefully defined according to the following

principles of the score-computing algorithm. Firstly, behavior of
the whole player community should be controllable towards
pleasant trend; Secondly, those who are frequently accused should
be punished harder to discourage escaping behavior; Thirdly,
malicious players cannot get persistent advantages by slandering
others; Fourthly, results should be proportion to the game
numbers, e.g., if the number of games player P has played is
twice than that of player Q, and they have the same accusingRate,
P’s compensation should be twice than Q’s. According to these
principles, Punish and Compen can be defined as follows.
Given a player P possesses his or her current achievement tuple as
(Pt, Pw, Pl, Pd, Pag, Pad), we define player P’s Punish denoted
by Ppn in equation (2):

 () ,
,

SPad
Pt TPad Pad Pt T

Pad

if
Ppn

otherwise
⋅ < ⋅⎧ ⋅

= ⎨
⎩

 (2)

where S (S>0, usually selected as a natural number) and T (0<T<1)
are constant parameters. It is understandable that equation (2)
alleviates punishment against those who are seldom accused and
possess smaller accusedRates than T.
To make behavior of the whole player community controllable,
we introduce two parameters that can be configured and adjusted
by the game operator according to characteristics of particular
game rules and the practical situation, namely, E denoting
expected accusingRate of player community, and U denoting
upper limit of accusingRate, which means any player whose
accusingRate is larger than U would be taken as completely
slandering player thus denied from obtaining any compensation.
Given a recent time window, let Av denote average accusingRate
of all players, M denote an intervenient value between E and Av
which may be calculated with certain interpolating splines, e.g.
median of E and Av used in this paper, we define the player P’s
Compen, denoted by Pcp in equation (3), where K (K >0, usually
being a natural number) is a constant.

It is easy to find that given player P’s accusingRate is determined,
his or her Compen defined in equation (3) i.e. Pcp, is proportion
to the number of games he or she has played, thus the fourth
principle proposed above is satisfied. Assume player P is going to
explore advantages by keeping slandering others, and the value of
(Pt-Pag) is kept constant. Because Av, the average accusingRate
of all players, changes little as P continuously accuses against
others, we can ignore the effect on variation of M caused by Pag
increasing and treat M as a constant. Fig.2 shows the variation
process of Pcp as P’s accusingRate increases.

When player P’s accusingRate is no larger than M i.e.

1
Pag M

Pt Pag M− −< , it implies that P has behaved well so far, his or

her current accusing will be trusted and adds to Compen. As
player P keeps on accusing others, Pag and P’s accusingRate
grow up, and the increasing speed of Pcp slows down gradually
till stopping when his or her accusingRate equals to M i.e.

1
Pag M

Pt Pag M− −= . If player P continues to accuse others, his or

her Compen decreases on the contrary because he or she is
considered to be slandering. In this case, even if player P is a
malicious player, he or she has to stop slandering as we expected
in the third principle. At last, because every player tends to adapt
his or her accusingRate towards M to make Compen reach the
peak, the average accusingRate of the whole player community
Av would also tend to reach M. Additionally, M is the intervenient
value between E and Av, thus Av tends to reach E. It is exactly

what is expected according to the first principle that we expect. In
fact, if E is set to be a little less than Av (e.g. 0.9 Av), the
algorithm becomes self-adaptable.

5. SIMULATION EVALUATION
We performed preliminary simulation experiments, and the results
demonstrated the feasibility, effectiveness and capacity of our
approaches.

()

()2

2

2
1

2 1 2 (1) 1

2(1) (1)
1 2 (1) 1 12 ()

()1 ()

() ,

, (3)

0,

Pag PagM M M M
M Pt Pag M M Pt Pag M

U M M Pag Pag UM M M
Pt Pag M M M Pt Pag UU MPag M Pt K

M Pt Pag

Pt Pag

Pt Pag if

Pcp if

otherwise

−
⋅ − − ⋅ − − −

− ⋅ ⋅ −
− − ⋅ − − − −⋅ −− ⋅

⋅ −

−

+

−⎧ ⎡ ⎤⋅ − + ≤⎪ ⎢ ⎥⎣ ⎦
⎪⎪ ⎡ ⎤= ⋅ − + < <⎨ ⎢ ⎥⎣ ⎦

⎩

⎪
⎪
⎪

Figure 2. Variation of Compen.

5.1 Simulation Setup
We categorize all players into G grades, with each grade
containing S players, of whom Ks percent are slandering players
and Ke percent are escaping players; every player is randomly
designated an accusing probability and an escaping probability;
the two probabilities of common players follow normal
distribution N(0.05, 0.1) and N(0.1, 0.2) respectively but limited
in [0, 1] range, while those of slandering and escaping players
follow uniform distribution in [0.6, 1]. N games are randomly
played among players. As FreeRank takes a bout of game as
several two-party deals, every game in simulation just contains
two players.

Table 1. Simulation Parameters

Symbol Description Value

G # of grades 5
R # of players in each grade 200

N # of games played 100000
Ks % of slandering players 10%
Ke % of escaping players 10%

W, L, D win, lost, draw mark/game 3, -1, 1
T, S constants of Punish in Eq.(2) 0.15, 3

E, U, K parameters of Compen in Eq.(3) 0.9Av, 0.99, 3
Rg # of games in each round 10

Table 1 shows parameter values used in the simulation, and the
playing procedure is designed as follows.
1) For each game, randomly selecting two players, say player

P and player Q;
2) The player with lower accusingRate say P attempts to

slander the other one say Q according to his or her accusing
probability; if P determines not to slander Q, Q attempts to
slander P according to his or her accusing probability on the
contrary; if both P and Q determine not to slander, the game
is played;

3) The game ends with a draw in certain probability (0.05 in
our experiment). Otherwise, P or Q wins the game in
proportion to their grades; the loser determines whether to
escape or not according to his or her escaping probability; if
the loser escapes, he or she is surely accused by the winner,
and the loser slanders the winner according to his or her
accusing probability; otherwise, the loser pays the bill to the
winner;

4) After N games have been randomly played among players,
every one possesses his or her game achievement. Then,
every player starts to take turns to play games with others
and plays Rg games in each round. At the beginning of each
round, the player attempts to slander others, he or she keeps
slandering until cannot get benefits any longer, and then the
rest of the games in that round are played honestly.

5.2 Experimental Results
5.2.1 Feasibility to Reflect Player’s Actual Ability
To evaluate feasibility of FreeRank to reflect player’s actual
ability with his or her ranking certificate, we plot score
distribution of all players and average score of each grade in Fig.3.

It shows that players of higher grade have obtained higher score,
and the average score grows up as the grade increases. We
arrange players of the same grade in the ascending order of their
accusing probabilities, and find that malicious players get much
lower scores than common players of the same grade (see the tail
of each cluster). This is mainly because of the following reasons.
Firstly, as malicious players frequently attempt to swindle other’s
agreement for slandering, they waste most of their chances to win
than common players, especially for those of high grades, which
is similar in real life where malicious players with high
accusingRate are more likely to be refused by others. The second
reason is because Compen equation defined in equation (3)
notably eliminates the compensation to malicious players.

5.2.2 Effectiveness to Distinguish Malicious Players
Fig.4 shows the proportions of average compensation to common
players (Cc) and slandering players (Cs), as well as average

Figure 3. Score distribution of players.

Figure 4. Proportion of compensation and

punishment to common players (Pc) and escaping players (Pe) on
average. It demonstrates that our reputation-based algorithm with
the definitions of Punish in Eq.(2) and Compen in Eq.(3) is
effective to punish escaping players and reduce compensation to
slandering players.

5.2.3 Capacity to Lead Player Community towards
Favorable Behavior
We show the evolvements of player’s personal accusingRate and
community’s average accusingRate in Fig.5. The result proves
capacity of the score-computing algorithm to lead the whole
player community towards favorable behaviors. Despite we
assume all players attempt to explore strategies to obtain
advantages in FreeRank, their accusingRates rapidly converge to
a rather low value, which indicates all including common players
as well as malicious players tend to seldom misuse accusing
mechanism and seldom slander others maliciously. It is worthy
pointing that the experiment also proves self-adaptability of the
score-computing algorithm, because we have set the expected
accusing rate of player community E to be 0.9Av, and the result
shows the average accusingRate of player community converges
to a favorable value as expected gradually.

6. DISCUSSION
There has been considerable work on adapting MOGs to a large-
scale and highly available virtual world. Some researchers
improved existing implementation or server distribution by
analyzing performance and traffic features of MOGs [5,6,7], and
others proposed alternative computing and communication
architectures [8,9]. FreeRank proposed in this paper can be used
to improve MOGs in but not limited to the following scenarios.
Firstly, it can complement existing ranking solutions to account
game results played in isolated environment hosted by different
service providers. Secondly, FreeRank can cooperate with non-
client-server game architectures to improve scalability and
availability and reduce investments of MOGs. Moreover,
FreeRank makes it possible for game producers developing
cabinet games, e.g. funny desktop games, to easily build online
player communities.

Compared to existing ranking solutions, security mechanisms
proposed in this paper are necessary to FreeRank to prevent
cheating strategies and misbehaviors. Although one may argue
that most players are honest, we believe every player desires a
higher evaluation and has incentive to explore shortcuts, and it is
more straightforward for players to cheat against ranking service
than to utilize complicated methods [3] against game applications.
It is important to note that we are not claiming FreeRank is
resistant to all cheating methods. In fact, FreeRank suffers some
of the same cheating threats as existing ranking solutions such as
cheating by collusion. The security efforts in this paper just aim to
enable FreeRank to provide an independent ranking service as fair
as existing ranking solutions. Actually, FreeRank allows a player
to evaluate his or her opponent in personal opinion, which implies
that a player’s score reflects the reputation on playing games to
some extent. In this case, FreeRank can also be used as a
reputation-based player evaluation system for some emerging
massively multiplayer online role play games (MMORPG) using
peer-to-peer architectures [11,12].
Moreover, F-Server will not become a performance bottleneck
like MOG servers in existing ranking solutions. F-Server only
calculates scores and stores player profiles, which requires much
less computing capacity and bandwidth than MOG servers that
are used to handle ongoing game states. Besides, F-Server is not
involved when players are playing games, while MOG servers are
necessary all the time to existing ranking solutions. Even if F-
Server is unavailable sometimes, FreeRank continues to work
because game results can be cached locally and submitted later.
Furthermore, the certificate-based framework and score-
computing algorithm are carefully designed to require no much
computing and storage.
When a large number of players play the same bout of game
simultaneously, FreeRank’s signature exchange in the agreement
negotiation procedure may cause a scalable problem. Designing
more efficient exchange protocols and standard APIs between F-
Agent and game applications are some interesting directions for
future work.

7. CONCLUSION
To the best of our knowledge, FreeRank is among the earliest
efforts towards implementing an independent ranking service,
which possesses better availability and scalability than existing
ranking solutions of MOGs. We identified the challenges of such
a ranking service and propose a certificate-based framework to
achieve it. We analyzed specific cheating threats against
FreeRank and proposed a reputation-based score-computing
algorithm to prevent misbehaviors. We also performed initial
simulation experiments, demonstrating feasibility, effectiveness
and capacity of our approaches. Finally, we discussed several
scenarios in which FreeRank can be used to improve or
complement existing ranking solutions and some related issues.
We are making efforts on incorporating FreeRank into Freegame
[13, 14], a project intending to build a generic network platform
based on peer-to-peer technologies for various desktop games and
providing ranking, auditing and chatting services. We will attempt
to verify effectiveness of FreeRank against more complicated
cheating methods in practice.

Figure 5. Evolvement of layer’s accusingRate

8. ACKNOWLEDGMENTS
This work was supported by a research grant from NEC
Laboratories China. The authors are grateful to all reviewers who
provide many valuable suggestions to improve this paper.

9. REFERENCES
[1] What’s This World Coming To? The Future of Massively

Multiplayer Games. Game Developers Conference 2002.
http://archive.gamespy.com/gdc2002/mmog/. March, 2002.

[2] Matt Pritchard. How to Hurt the Hackers: The Scoop on
Internet Cheating and How You Can Combat It.
http://www.gamasutra.com/features/20000724/pritchard_pfv.
htm. July, 2000.

[3] Jeff Yan et al. A Systematic Classification of Cheating in
Online Games.
http://www.cse.cuhk.edu.hk/~cslui/STUDY_GROUP/howga
me.pdf. June, 2004.

[4] Even, S. and Yacobi, Y. Relations among public key
signature systems. Tech. Rep. 175, Computer Science
Department, Technicon, Haifa, Israel, 1980.

[5] Wu-chang Feng, Francis Chang, Wu-chi Feng, and Jonathan
Walpole. Provisioning On-line Games: A Traffic Analysis of
a Busy Counter-Strike Server.In ACM SIGCOMM Computer
Communication Review. July, 2002.

[6] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos.
Behavior and Performance of Interactive Mult-player Game
Servers. In Proceedings of 2001 IEEE International

Symposium on Performance Analysis of Systems and
Software. November, 2001.

[7] Wu-chang Feng and Wu-chi Feng. On the Geographic
Distribution of On-line Game Servers and Players. In
Proceedings of Second Workshop on Network and System
Support for Games. May, 2003.

[8] Knutsson B., Lu H., Xu W., and Hopkins B. Peer-to-Peer
Support for Massively Multiplayer Games. In Proceedings of
IEEE Infocom 2004 Conference. March, 2004.

[9] Sean Rooney, Daniel Bauer and Paolo Scotton. Building
Infrastructures for Very Large Multi-Player Games.
Research Report, IBM Zurich Research Lab. December,
2002.

[10] Henning Pagnia, Holger Vogt, and Felix C. Gartner. Fair
Exchange. In Computer Journal, volume 46, number 1,
Oxford University Press. January, 2003.

[11] Solipsis. http://solipsis.netofpeers.net/wiki/HomePage.
[12] Second Life. http://secondlife.com/.
[13] Jin Zhou, Li Tang, Kai Li, Hao Wang, and Zhizhi Zhou. A

Low-Latency Peer-to-Peer Approach for Massively
Multiplayer Games. In Proceedings of Fourth International
Workshop on Agents and Peer-to-Peer Computing. July,
2005.

[14] Jin Zhou, Li Tang, Kai Li, and Zhizhi Zhou. FreeGame: A
Testbed for Peer-to-peer Techniques in Massive Multiplayer
Online Games. Research Report, NEC Laboratories China.
November, 2004.

