
SEAL: Hybrid Resource Distribution for
Multi-tenant Data Centers

Yang Gao∗†, Lu Li∗, Jingjie Jiang∗, Baohua Yang∗†, Yibo Xue†‡ and Jun Li†‡
∗Department of Automation, Tsinghua University, Beijing, China

†Research Institute of Information Technology, Tsinghua University, Beijing, China
‡Tsinghua National Lab for Information Science and Technology, Beijing, China

{gaoyang11, lilu08, jjx08, ybh07}@mails.tsinghua.edu.cn, {yiboxue, junl}@tsinghua.edu.cn

Abstract—This paper presents SEAL, a hybrid resource distri-
bution algorithm for data centers. SEAL is designed based on two
well-known algorithms: the Best-Fit algorithm and the Next-Fit
algorithm. With a dynamic hybrid mechanism, SEAL guarantees
good performance in four important aspects simultaneously:
Scalability, Efficiency, Agility and Low-Fragment. Experimental
results show that the efficiency of the SEAL algorithm is almost
as good as the Best-Fit algorithm, while keeping faster querying
speed (about two to four times of the Best-Fit algorithm).

Index Terms—resource distribution, data center, algorithm

I. Introduction

The distribution of resources, e.g., storage, bandwidth and
CPUs has been a fundamental problem in modern data centers
[1]. Today’s data centers are required to provide QoS (Quality
of Service) guarantee for the dynamic resource requests among
multiple tenants [2]. For example, a tenant might need certain
number of virtual machines (VMs) to finish a task, while
demanding both high bandwidth and low latency among all
running VMs.

With the growing scale of data centers, one controller
may have to distribute switch ports and deal with more than
thousands of VMs [3]. Therefore, the distribution of switch
ports is vital to data centers.

The requirement of resource distribution is increasingly
complicated today. Most of these requirements focus on the
following aspects:
• Scalability. An algorithm should maintain its performance

of resource distribution with the growing scale of the data
centers.

• Efficiency. The efficiency means the ability of satisfying
as many requests as possible, with only limited resources.

• Agility. Agility is also an essential factor. A good al-
gorithm should be agile enough to achieve the resource
request with acceptable latency.

• Low-Fragment. Fragments are the resource blocks that are
too small to be utilized temporarily or permanently, thus
large numbers of fragments is unfavorable. A desirable
algorithm must consider avoiding the fragmentation.

In the paper, our focus is on the optimization of switch port
distribution. Usually, a switch port is connected to a physical
server with tens of VMs. To meet all those requirements above,
we propose a hybrid algorithm named SEAL (Scalability, Ef-
ficiency, Agility and Low-fragment), which is designed based

on ideas from two classical memory allocation algorithms: the
Best-Fit (BF) algorithm and the Next-Fit (NF) algorithm [4].
The BF algorithm, demanding sorting and comparing process,
is efficient but not agile, while the NF algorithm is inefficient
despite agility. The SEAL algorithm achieves near-optimal
efficiency and fast speed with a smart hybrid scheme.

Experimental results show that SEAL algorithm is almost as
efficient as the BF algorithm and as fast as the NF algorithm.

The following part of the paper is structured as follows.
In Section II, problem statement and the design of SEAL are
presented. Section III shows the evaluation results. Related
work is summarized in Section IV, and the last section
concludes the paper with discussion of future work.

II. Problem Statement and Algorithm Design

Port distribution is critical to resource efficiency and overall
performance in data centers. A good algorithm design must
be based on in depth analysis of the problem and features
advantages towards the optimization objectives.

A. Problem Analysis

The problem of port distribution in data centers can be
described as: suppose there are N AS switches (Access
Switches)1 in the data center network, as {W1,W2, . . . ,WN},
and each switch has M connection ports. Usually, each switch
port can only connect to one physical host. Suppose each
physical host only has C VMs running on it. Generally, C
is a constant. Thus a physical host or AS switch port can be
taken as a basic distribution unit for scalability reason. The
task of port distribution is usually conducted by an out-of-
bound management node, such as a controller or one of the
similar mechanisms most of today’s data centers already have
[5], [6].

The tenants’ requests, as R = {R1,R2, . . .}, is a discrete
series in time domain. Each request involves Numi of hosts.
Here we assume that Numi is always smaller than or equal
to the switch port number so that each request can fit into
a single AS switch, because data exchange between ports on
the same AS switch is much faster and therefore provides high
bandwidth and low latency connections among the VMs of the
same tenant[7]. We define available ports on the same AS as

1Access Switch is a switch that connects physical hosts directly. It provides
connections between the end-hosts and the upper network.



a resource block and use the Block Information Base (BIB)
to record the state of the AS switches.

When a request is received, the controller will check the BIB
and executes the resource distribution algorithm, to find which
switch should respond this request. After the distribution, the
controller updates the BIB and continues to wait for the next
request.

B. Algorithm Design

1) Observation: We observe that the algorithm of resource
distribution in data centers has three similarities with the tra-
ditional memory allocation algorithm. First, both of them are
request-driven. Second, they are both required to dynamically
locate an available resource block with sufficient size. Finally,
they have similar metrics: scalability, efficiency, agility and
fragmentation.

Nevertheless, the memory allocation algorithm cannot be
directly applied to port distribution, due to the following rea-
son. Unlike memory segmentation which introduces discrete
fragments for memory blocks, there are no discrete fragments
in port distribution, as ports of an AS switch is connected to-
gether inherently as a whole resource block. Consequently, the
most widely deployed memory allocation technique, Buddy
Algorithm [8] is unsuitable for port distribution. Also, the
classical memory allocation algorithms, BF and NF, have their
respective weaknesses: the BF algorithm has good efficiency
at the cost of low agility and high-fragment; the NF algorithm
responses quickly but its efficiency is undesirable.

2) SEAL Overview: Based on the observations above, ma-
ture solutions to memory allocation can help tackle the port
distribution problem, but the classical algorithms each has
some weaknesses in solving the problem. In order to take
advantages of both BF and NF smartly, we propose the SEAL
algorithm as a hybrid scheme.

In SEAL, we configure an optimization threshold opt to
divide requests into two categories according to their size:
small requests and large requests, and apply BF and NF
respectively to achieve scalability, efficiency, agility and low-
fragment at the same time.

3) Procedure of SEAL: SEAL consists of two vital steps to
fulfill the task of distributing resources:
• Request Classification. We use opt to determine the type

of a request and apply different algorithms accordingly.
Thus, the selection of opt is critical to SEAL’s per-
formance. Classification criteria include the number of
available resource blocks, the ratio of average request
size to average resource block size and the frequency of
relatively large requests compared with average requests
[9]. Since all the three factors change from time to time,
opt should be also selected dynamically to optimize the
classification.

• Distribution Strategy. Once requests are classified, an ap-
propriate algorithm should be used to distribute resources.
For small requests, the BF algorithm can locate the most
suitable resource block at an acceptable speed since it
probably ranks top in the BIB. Meanwhile, applying

BF algorithm here can achieve high efficiency. However,
responding large requests with BF will reduce the agility
considerably. Thus, we apply NF instead for its fast
response. Besides, since saving large free blocks are
meant to satisfy large requests, using NF here will not
render degradation of efficiency.

To sum up, the procedure of SEAL is as follows: Based on
a given opt, the category of an incoming request is decided.
If it is a large request, we attempt to distribute resources in
a NF-like way. We use a pointer reference to record where
the search should begin and start to search till finding the first
suitable resource block. After the distribution succeeds, the
location of the current block is recorded and assigned to the
pointer reference and the state table is updated. Otherwise,
if the request is small, we apply a BF-like method. Before
searching, the BF algorithm is designed to sort all available
resource blocks from the least to the largest and generates
the BIB. Then the system starts searching and compares the
request size with the size of each free resource block from
the least to the largest. Once a block’s free size is larger than
the request size, the system will distribute this most suitable
block to the requesting tenant and then update the BIB.

SEAL makes a good trade-off among the four basic metrics:
scalability, efficiency, agility and low-fragment. For a series
of sorted resources, a small request is more possible to be
satisfied at the first few resource blocks, whereas a large re-
quest will always take more steps of searching and comparing.
We utilize the NF algorithm to tackle the large request. Thus
fewer steps are required to finish searching, which augments
agility. On the other hand, to solve the problem of efficiency
degradation brought by NF, BF is used to guarantee that the
small requests utilize the small free blocks and therefore large
free blocks are saved for future requests.

C. Discussion

Here we discuss two aspects of SEAL. One is sorting
expenditure. Using the BF algorithm, we have to maintain the
BIB and run sorting and comparing on all resource blocks each
time before searching. In SEAL, we only have to record and
update the BIB of resource blocks which have smaller size
than opt. The storage cost of the BIB is therefore reduced
significantly and the response time is cut down.

The other is the selection of opt, which will affect the
performance of SEAL significantly. If opt is too large, more
requests will be defined as small requests and proceeded by
BF. Consequently, the responding time will increase. On the
contrary, if opt is too small, more requests are defined as
large requests, which causes over-utilization of NF, leading to
degradation of efficiency. The value of opt also need to change
dynamically. With many resource blocks being distributed,
run-time response of all the algorithms will reduce, since
it need more time to search for a suitable block. Then opt
should be adjusted to a smaller value since the agility of BF
will become unacceptable. In an opposite process, some VMs
will be migrated or relieved and thus the number of available



Fig. 1. Comparison on scalability between BF, NF and SEAL algorithm

Fig. 2. Comparison on efficiency among BF, NF and SEAL Algorithm

blocks will increase. Then we could select a larger opt to
achieve better efficiency.

III. Evaluation

SEAL is evaluated in comparison of BF and NF with the
four metrics: scalability, efficiency, agility and low-fragment.

A. Scalability

In this section we use these algorithms to execute the
distribution with seven different switch numbers. The switch
number rises from 50 to 5000 and the request series is a normal
random series. To test the normal situation, we fixate opc
to the average between requests of maximum and minimum.
The increase of request capacity reflects the scalability of
different algorithms. Fig.1 shows the ability of the three
algorithms to handle different resource scales. We can see all
the three algorithms’ request capacity increases at almost the
same rate. And when the switch number becomes larger, the
NF algorithm’s capacity is much smaller than the other two
algorithms. But the BF algorithm and the SEAL algorithm’s
capacity are still very close.

B. Efficiency

Here we use these algorithms to execute the distribution
for seven different request series with different request trend.

Fig. 3. Comparison on fragment number among BF, NF and SEAL algorithm

Request numbers have a larger probability to appear around
the number below the column. To simulate the network envi-
ronment of data centers, we set up 50 switches, each of which
has 48 free ports on it and fixate opc to the average between
requests of maximum and minimum. Each test of the three
algorithms stops when all the switches’ free port number is not
large enough for distribution, and therefore the largest request
number can reflect the efficiency. Fig.2 shows the results of
the experiments. We can see the BF algorithm and the SEAL
algorithm satisfy almost the same number of requests dealing
with different types of request series, but the NF algorithm is
much worse. This shows that our SEAL algorithm’s efficiency
is nearly as good as the BF algorithm.

C. Low-Fragment

The data of this part is collected from the experiments of
the efficiency and is used to analyze the fragment of three
algorithms. As mentioned above, we define fragments as the
resources that cannot be used. In the simulation, the minimum
of a request size is defined as 4. Thus, if free ports of one
block are fewer than the minimum, this block would become
a fragment and cannot be employed for resource distribution.
We evaluate the fragment by the number of switches that
have fragments and cannot be used. In Fig.3 we can see that
the BF algorithm has the maximum fragment number, the
NF algorithm has the minimum and the fragment number of
the SEAL algorithm is moderate. Through calculating we can
see that the BF algorithm and the NF algorithm both have a
standard deviation of about 1.56 while the SEAL algorithm’s
standard deviation is about 0.95. This indicates the stability of
the SEAL algorithm in fragmentation.

D. Agility

In this part we use the request series of the same trend to
perform the test, but the number of request series is limited
to 50, making sure all the three algorithms will not reach
saturation. We calculate the overall querying latency for each
algorithm to evaluate the cost of time (We suppose the system
takes 1 ms per querying action). From Fig.4 we can see the
test result. The querying latency of the NF algorithm is surely



Fig. 4. Comparison on agility among BF, NF and SEAL algorithm

the least because if we still have unused free blocks, the
algorithm won’t take more than two querying actions to finish
the distribution. On the contrary, the BF algorithm’s latency
is more than 10 times of the NF algorithm’s because every
time its querying action begins at the smallest free block. The
SEAL algorithm’s agility is just in-between: compared with
the BF algorithm, its querying latency is averagely reduced
by half.

IV. Related work

The increasing prominence of multi-tenant data centers has
caused the network resource distribution problem. As men-
tioned above, this problem can be tackled by analogy with tra-
ditional memory allocation algorithm. Nevertheless, memory
allocation algorithm cannot be directly utilized in network re-
source distribution scene. Thus, network resource distribution
demands research of some new or improved algorithms. There
have been some studies on this issue. Researchers mainly
concentrate on presenting some communication models for
network architecture of data centers. [7] abstracts two virtual
network models exploring the trade-off between tenant cost
and provider revenue. Concrete models such as VL2[5] and
FatTree[10] are implemented to meet some particular goals.

The network bandwidth distribution has also arisen in-
terest of researchers. Seawall[11] and NetShare[12] imple-
ment network weights to share the bandwidth among tenants.
Hedera[13] describes a flowing scheduling system scheme
to efficiently utilize aggregate network resources. SPAIN[14]
constructs multiple path forwarding over the underlying phys-
ical component and allows end-hosts to specify the path to use
for their packets.

The focus of the research above is quite different from
what we are studying. But if available, these technologies
and studying can be implemented together to enforce network
distribution of data centers.

V. Conclusion and future work

In this paper, we proposed SEAL, a novel resource distri-
bution algorithm for data centers. SEAL is designed based on
two classical resource distribution algorithms BF and NF. All

experimental results show that the SEAL algorithm can make
a balance at the scalability and efficiency which BF algorithm
achieves well and the agility which NF algorithm achieves well
to meet our requirements and solve our resource distribution
problems in data center network.

Our algorithm behaves well in terms of scalability, efficiency
and agility when distributing switch ports. But more realistic
simulations are still demanded to verify the performance
of SEAL. Also, we consider implementing SEAL in other
resource distribution of data centers. Moreover, there are still
many interesting issues to touch in future. For example, if the
number of requested hosts is more than the ports on a single
AS switch, or fragment blocks across AS switches are used to
satisfy a request, the situation will become more complicated
as higher level switches would be involved. Our future work
will focus on further developing novel algorithms for various
resource requirements in more real-life data centers.

References
[1] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and

I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” 8th Networked Systems Design & Implementation, pp.
323–336, 2011.

[2] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“Netlord: A scalable multi-tenant network architecture for virtualized
datacenters,” in ACM SIGCOMM, 2011.

[3] Amazon ec2. [Online]. Available: http://aws.amazon.com/ec2/
[4] P. Wilson, M. Johnstone, M. Neely, and D. Boles, “Dynamic storage

allocation: A survey and critical review,” Lecture Notes in Computer
Science, pp. 1–1, 1995.

[5] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible data
center network,” ACM SIGCOMM Computer Communication Review,
vol. 39, no. 4, pp. 51–62, 2009.

[6] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A scalable
fault-tolerant layer 2 data center network fabric,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4, pp. 39–50, 2009.

[7] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” Technical Report MSR-TR-2011-72,
Microsoft Research, Tech. Rep., 2011.

[8] K. Knowlton, “A fast storage allocator,” Communications of the ACM,
vol. 8, no. 10, pp. 623–624, 1965.

[9] J. Shore, “On the external storage fragmentation produced by first-fit
and best-fit allocation strategies,” Communications of the ACM, vol. 18,
no. 8, pp. 433–440, 1975.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM
2008 conference on Data communication. ACM, 2008, pp. 63–74.

[11] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI). USENIX, 2011.

[12] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese, “Netshare: Vir-
tualizing data center networks across services,” University of California,
San Deigo, Tech. Rep. CS2010-0957, 2010.

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Pro-
ceedings of the 7th USENIX conference on Networked systems design
and implementation. USENIX Association, 2010, pp. 19–19.

[14] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. Mogul, “Spain:
Cots data-center ethernet for multipathing over arbitrary topologies,”
in Proceedings of the 7th USENIX conference on Networked systems
design and implementation. USENIX Association, 2010, pp. 18–18.


