
HES: Highly Efficient and Scalable Technique for

Matching Regex Patterns

Mohammad Hashem Haghighat, Zhe Fu

Department of Automation

Tsinghua University

Beijing, China

{l-a16, fu-z13}@mails.tsinghua.edu.cn

Jun Li

Research Institute of Information Technology

Tsinghua University

Beijing, China

junl@mail.tsinghua.edu.cn

Abstract—Several security devices use signature based

detection engine to detect malicious activities through the

internet. The main challenge of this scenario is to keep up with

the increase of line speed. On one hand, regular expression

(regex) patterns allow security analysts to express more

complicated attacks. On the other hand, they make pattern

matching procedure much more costly. Several finite automata

based techniques have been proposed to speed up the matching

procedure. However, they are still impractical in the real

world, due to their high spatial or temporal complexity.

In this paper, a novel technique, called HES, is proposed to

handle tens of thousand regex patterns, with minimum space

limitation. The experimental results over several rule sets

including Snort and Bro, as two leading open source intrusion

detection systems, as well as random regex patterns, reveals us

HES matched patterns significantly faster than DFA, as one of

the fastest state-of-the-art techniques. In addition, the HES

storage requirement is close to NFA, which leads as one of the

most compact method. These results proved that HES can be

used in the real world, as a signature based matching engine,

and gives us the power to use more regex patterns.

Keywords- Signature Matching; Regular Expression Patterns;

Intrusion Detection System; Regex Parsing Rules.

I. INTRODUCTION

Several network security mechanisms like Intrusion
Detection/Prevention Systems1 and Deep Packet Inspections2
use pattern matching techniques in order to detect malicious
traffic. These devices should be highly effective to keep up
with the increasing line speed (e.g. 40Gbps).

As the first and easiest way to match patterns, input
string can be compared with all the patterns one by one,
which is time consuming. Dozens of methods [1-6] have
been proposed to speed up the matching procedure by
creating different data structures.

Although the state-of-the-art techniques handle thousands
of patterns quickly, matching more complex signatures is
still an open problem. Simple malware patterns are usually
explicit text strings (referred as simple patterns in this paper),
like “GetInfo\x0d” which is a signature for a “back-door

1 IDS/IPS

2 DPI

attack'” [7]. However, it is impossible to express signatures
of complex malwares like polymorphic worms in such a
way.

In contrast to simple patterns, Regular Expression 3
pattern is an alternative option to express complex signatures
(e.g. “^Entry/file/[0-9]{71,}//.*\x0Aannotate\x0A”, for
detecting a “Concurrent Versions System 4 ” revision
overflow attack [7]). In the real world, most of security
devices such as Snort, Bro, Linux application protocol
classifier (l7-filter), Cisco’s security system, and matching
accelerator on IBM PowerEN processor, use regex patterns
in their rule set [8–12].

Hopcroft et al. in [13], proposed DFA5 method to match
regex patterns. A DFA consists of a set of finite states, a
transition function (δ) that maps any state and an input
symbol to just one state, and a finite set of input symbols (∑).

In theory, DFA method is a good option for regex
patterns since its matching time is O(1). However, its
required large data structure raised a new concern. In other
words, the DFA data structure for m regex patterns with the
average length of n, needs O(∑nm) space [7], which causes
stage explosion problem and makes the system unpractical.

NFA6 is another well-known method proposed in [13]. It
is similar to DFA except its transition function maps a pair of
state and input symbol, to several states. Although NFA
method solves the state explosion problem that requires
O(nm) storage, its matching time is not reasonable. The NFA
search complexity is O(n2m) [7].

In order to match regex patterns in a reasonable time,
while minimizing the required storage, several variant finite
automata based methods have been proposed [14-24].
Yu et al. in [14] proposed mDFA 7 , based on grouping
patterns and then, creating DFA for each group in a way that
the size of each DFA does not exceed at a threshold.

In [15] Kumar et al. introduced D2FA (Delayed input
DFA), according to the fact that many states have the same
set of outgoing transitions. So they all can be replaced with
one link. As a result, the achieved DFA size will be reduced.

3 Regex
4 CVS

5 Deterministic Finite Automata
6 Non-deterministic Finite Automata

7 multiple DFA

Since redundant transitions mapped to one, D2FA requires
creating a weighted tree based on similar links, which affects
the system matching time.

Becchi and Crowley in [16] proposed HFA8. During the
pre-processing phase, any nodes that would cause state
explosion will be retain as NFA, while the rest are
transformed to DFA. As a result, the size of data structure
will be close to NFA, but the matching time is faster.

Smith et al. in [17] proposed a novel method named
XFA9, which tries to remove or at least mitigate ambiguity of
states by adding some variables into DFA. XFA remembers
the progress during the match of regex patterns. It uses some
flags or counters as well as some programs to handle several
regex operators. The main drawback of XFA is that within
merging XFAs, defined variables and programs would be
duplicated, which affects the system matching time.
However, the authors provided some optimization techniques
to remove duplication. XFA showed time complexity near to
DFA, while its required storage is similar or even smaller
than NFA.

In [18, 19] Kai et al. introduced PaCC 10 framework
includes partition, compression, and matching procedures.
The partition phase avoids DFA to be exploded, while the
compression engine compresses the DFA. The authors
argued that PaCC provides smaller data structure compared
to NFA, while its matching time is even faster than DFA.

Based on the results provided by the authors, the finite
automata based techniques can handle limited number of
patterns. Several activated states at the same time are
handled in NFA based solutions; while DFA based methods
have to deal with storage problem. As a result, both types are
not able to handle tens of thousands patterns in the real
world.

As a practical option, we provide a highly efficient and
scalable novel technique, named HES. The main idea behind
HES is to first, extract simple patterns from regex signatures,
then try to compare them with the input string, and finally,
handle the rest of regex patterns. As an example assume
“S = abcd(\w+\s{6,9}|\d+)*efgh” as a regex pattern. The
extracted simple patterns would be “abcd” and “efgh”. As a
result, when the simple patterns are matched with the input
string, “\w+\s{6,9}|\d+)*” condition will be checked as the
next step.

The main contribution of HES is summarized as below.

 Due to mapping regex matching problem to simple
pattern matching, HES can match regex patterns
significantly faster than DFA.

 HES is highly scalable, which means any simple
pattern matching algorithm can be used as its
matching engine.

 HES has minimum storage requirement due to
dealing with simple patterns.

 HES can handle tens of thousands regex patterns at
the same time.

8

9 eXtensible FA
10 Partition, Compression, and Combination

The paper structure is described as follows. At first, in
section II, regex patterns will be explained in more detail. In
addition, regex parsing rules will be provided to generate
parse tree. Then the HES technique including its architecture
as well as pre-processing and matching phases will be
described in section III. After that, HES will be evaluated in
practice in section IV, and finally, in section V, the
conclusion will be provided.

II. REGEX PATTERNS

The aim of this section is to characterize regex patterns.
In general, regex patterns consists of three main attributes as
below.

1) Regex Operators: Regex Operators 11 denote

operation over one (e.g. “(RP1)*”) or two sub-patterns

(e.g. “RP1|RP2”), where “RP1” and “RP2” can be any regex

sub-patterns.

2) Character Sets: Character Sets12 describe the set of

characters such as “\d” as all digits, “\s” as all space

characters, “\w” as all alphanumeric characters, “.” as any

arbitrary character, “[ci-cj]” as a range of characters, and

“[c1c2…ck]” as a set of “k” different characters.

3) Simple Patterns: Simple Patterns13 represent the text

string pattern without regex operator and character set.

In hierarchical view, each regex pattern is parsed by

provided rules, as illustrated in Figure 1, where “<RO>”,
“<CS>”, and “<SP>” denote the regex attributes (ruleset 4).

Figure 1. Regex Pattern Parsing Rules.

11 RO
12 CS
13 SP

According to rule set 1, a regex pattern is parsed
hierarchically as one of “Operator Free14”, “One-operand
Operator15”, or “Two-operands Operator16” Regex Pattern.
The rest of this section defines these categories in more
detail.

A. Operator Free Regex Pattern

OFRP is the first type of regex pattern, which is created
by the combination of both simple patterns and character
sets. As an example “S1[a-z]\s\d.S2\w” is parsed as an OFRP,
where S1 and S2 are two arbitrary simple patterns. Each
OFRP is created by the recursive combination of
<OFRP-CS> and <OFRP-SP> (rule number 2.1), where:

 <OFRP-CS>: denotes an OFRP, which is finished
by a character set (rule number 2.2).

 <OFRP-SP>: denotes an OFRP, which is finished
by a simple pattern (rule number 2.3).

B. One-operand Operator Regex Pattern

OORP is the second type of regex pattern (rule
number 3.1). It starts and ends with “Nullable Regex
Pattern” (NRP) (rule number 3.3). It also has a regex
operator, which acts on a regex sub-pattern. It is important
that the operand is not nullable. “S1(S2)?S3”, “S1\d*”, and
“[b-k]+” are different examples of one-operand operator
regex pattern.

C. Two-operands Operator Regex Pattern

TORP is the third type of regex pattern (rule
number 3.2). Like the previous item, its first and last patterns
are nullable, while both operands are not (e.g “S1(S2|S3)S4”,
“S1(\d|S2[a-k])”, and “(S1|\w)”).

D. Parsing Example

As an example consider “S1(S2.{6}|(S3\d)+)*S4” as a
regex pattern, where S1, S2, S3, and S4 are four simple
patterns. In the first level of hierarchy, the following rule is
satisfied.

<RP> = <NRP>(<RP>)<RO><NRP>
Then:

 The first “<NRP>” leads to “S1”.

 “<RP>” leads to “S2.{6}|(S3\d)+”.

 “<RO>” leads to “*”.

 The last “<NRP>” leads to “S4”.

Similarly, the rest of parsing procedure is carried out.

Figure 2 depicts achieved parse tree of the example.
HES will use the parsing rules of regex patterns in its

pre-processing phase, in which in the next section the whole
procedure will be discussed in detail.

III. HES TECHNIQUE

This section describes HES in terms of its architecture,
and pre-processing and matching phases in details.

14 OFRP
15 OORP
16 TORP

Figure 2. Parse Tree of “S1(S2.{6}|(S3\d)+)*S4”.

A. Model Architecture

The overall procedure of HES is to map regex patterns to
a set of simple patterns accompanying with metadata (details
to be introduced in section III.C), so that the overall required
matching time and storage size will be reduced to that of
handling simple patterns. Figure 3 shows HES architecture.

Figure 3. HES Architecture.

In the pre-processing phase, regex patterns are parsed
using the parsing rules provided in section II to achieve
simple patterns and metadata.

In the matching phase, any simple pattern matching
method can be used as HES matching engine to match
simple patterns. When a match is found, regex handler
module tries to match the rest of regex pattern using
corresponding metadata information.

B. Pre-processing Phase

In the pre-processing phase, all the regex patterns are
parsed in order to extract simple patterns and metadata. This

extracted information is stored into data structure illustrated
in Figure 4.

Figure 4. HES Data Structure Fields.

The HES data structure contains several attributes as
metadata described below.

 Title: Title is a unique identifier of each extracted
simple pattern.

 Quantity: Some simple patterns are seen in different
regex patterns. Hence, the total number of instances
is stored in “Quantity” field. Also for each pattern
instance, the following attributes are preserved.

o Regex Pattern Reference (RPR): Regex
pattern reference is preserved here.

o Instance Identity (II): A unique identifier
of the pattern instance is stored in this
field.

o Not Operator Check (NOC): In regex
patterns, “not” operator is different from
other regex operators, since its
corresponding pattern should not be
matched. As a result, when “NOC”
attribute is set to “True”, the matching
condition will be reversed.

o Previous Simple Patterns (PSP): Refers
to previous instance/s that should be
matched before the current pattern.

o Regex Handler Check (RHC): RHC is a
part of regex pattern including character
sets and regex operators, which placed
between the instance and its PSP.

o Last Simple Pattern (LSP): Determines
the last simple pattern of each regex
pattern.

 Length: Points to the simple pattern length.

 Text: Contains the pattern text.

Definition 1. Let “RP”, “RO”, “SP”, and “CS”, be the
regex pattern, regex operator, simple pattern, and character
set, respectively. findPSP and findRHC functions are defined to
find the PSP and RHC of each simple pattern instance, using
firstSP, lastSP, firstRHC, and lastRHC.

 findPSP(SP,RO)⟶ {SP}: Returns the previous simple
pattern of given SP based on RO.

 findRHC(SP,RO)⟶ {CS × RO}: Returns the regex
handler check of given SP based on RO.

 firstSP(RP)⟶ {SP}: Returns the first simple pattern
of given RP.

 lastSP(RP)⟶ {SP}: Returns the last simple pattern of
given RP.

 firstRHC(RP)⟶ {CS × RO}: Returns the first RHC of
given RP.

 lastRHC(RP)⟶ {CS}: Returns the last RHC of given
RP.

Appendix A defines each function in detail. The HES
pre-processing phase is expressed in Algorithm 1.

As described in Algorithm 1, the first step to
hierarchically parse regex patterns is finding the pattern type.
Then, the corresponding simple patterns are extracted, and
finally, the HES metadata fields are computed. Algorithm 2
expresses setting the metadata fields of given simple pattern
and regex operator.

As an example, consider “abcd(cmd|tty)*efgh” and

“ijklm\d+(abcd)*xyz” as two different regex patterns. At
first, these two patterns are parsed as depicted in Figure 5.

The next step is to traverse the trees in order to fill the
HES data structure fields. At first, suppose traversing of the
first regex pattern. As illustrated in Figure 5a, in the top most
level of hierarchy, the pattern was parsed as a one-operand
operator regex pattern, which includes three regex sub-
patterns and a one-operand operator (see section II.B).

According to Algorithms 1 and 2, the following steps are
taken.

1) Call “firstSP(NRP3)” function to find the first simple

pattern of NRP3, in which the result is “efgh”.

2) It is the first instance of this simple pattern, so it is

added to simple patterns metadata and the title, quantity,

text, length, II, NOC, and RPR fields are set to their

corresponding values.

3) Call “findPSP(efgh, *)” function to find the PSP of

“efgh”. According to equation 9 defined in Appendix A, the

result is both “lastSP(NRP1)” and “lastSP(RP2)” together, due

to regex operator “*”.

a) As illustrated in Figure 5a, “NRP1” is an operator

free regex pattern. As a result “lastSP(NRP1)” is computed

according to equation 5, and its result is “abcd”.

b) “RP2” is a two-operands operator regex pattern.

Therefore, “lastSP(RP2)” is computed according to

equation 25, which results is both “cmd” and “tty”.

Figure 5. An example of the pre-processing phase.

Thus, findPSP(efgh, *) = {abcd, cmd, tty}.

4) Call “findRHC(efgh, *)” function to find the RHC of

“efgh”. According to equation 11, the result has two options

as below:

a) “lastRHC(NRP1)firstRHC(NRP3)”, if “RP2” is not

matched in the matching phase.

Both “NRP1” and “NRP3” are operator free regex

patterns, which “lastRHC(NRP1)” and “firstRHC(NRP3)”

equal to “⊥” according to equations 7 and 6,

respectively. So their concatenation will be “⊥”.

b) “lastRHC(RP2)firstRHC(NRP3)”, if “RP2” is matched in

the matching phase.

As mentioned above, firstRHC(NRP3) = ⊥. But “RP2” is

a two-operands operator regex pattern, hence,

lastRHC(RP2) is computed based on equation 27 as

follows.

 “lastRHC(RP22)NRP24”, if “RP22” is matched in

the matching phase.

 “lastRHC(RP23)NRP24”, otherwise.

Based on Figure 5a, “NRP24” equals to “⊥”. In addition,

according to equation 7 both “lastRHC(RP22)” and

“lastRHC(RP23)” equal to “⊥”. Therefore, the result of

“lastRHC(RP2)” in either cases is “⊥”.

As a result, findRHC(efgh, *) = ⊥.

5) The rest of the pre-processing phase is carried out

accordingly.

After finishing the pre-processing phase, the HES data

structure is filled as shown in Table 1. It is important to note
that the RHC value of simple pattern “xyz” is “{⊥, \d+}”, as
according to equation 11, when “abcd” is matched, the
“RHC” value is “⊥”, and in case of matching “ijklm”, “RHC”
is “\d”.

TABLE I. HES DATA STRUCTURE OF “abcd(cmd|tty)*efgh” AND

“ijklm\d+(abcd)*xyz”.

Title 1_1,2_2 1_2 1_3 1_4 2_1 2_3

Quantity 2 1 1 1 1 1

RPR* 1 2 1 1 1 2 2

II§ 1 2 2 3 4 1 3

NOC¶ F F F F F F F

PSP£ ⊥ 1 1 1 {1,2,3} ⊥ {1,2}

RHC¥ ⊥ \d+ ⊥ ⊥ ⊥ ⊥ {⊥ , \d+}

LSP£ F F F F T F T

Length 4 3 3 4 5 3

Text abcd cmd tty efgh ijklm Xyz

 * Regex Pattern Reference
 § Instance Identity
 ¶ Not Operator Check
 £ Previous Simple Pattern
 ¥ Regex Handler Check
 £ Last Simple Pattern

C. Matching Phase

After the pre-processing phase, the generated HES data
structure is used to match the patterns. Any arbitrary simple
pattern matching method such as [1-6] can be utilized to
match simple patterns. In case of finding a match, its
corresponding “PSP” and “RHC” values are considered to
handle the rest of the regex pattern. The detailed procedure is
described as below.

1) Consider an empty set named candidate, to store the

matching regex patterns candidates during the matching

phase.

2) Read the input string and call a simple pattern

matching method.

3) In case of finding a match, (due to the fact that a

simple pattern can be seen in several regex patterns) do the

following procedure for all its instances.

a) Check the instance's “PSP”. If it is set to “NULL”,

means the instance is the first simple pattern of its

corresponding regex. As a result it is added to the candidate

set, if it satisfies the conditions provided by “RHC” and

“NOC” attributes.

b) If the “PSP” value is not “NULL”, means the

previous pattern is matched before. Then check the

candidate set, find the corresponding entry, and check

“RHC” and “NOC”.

 If the checks are passed, the instance is added

to candidate set.

 Otherwise, the item referred by “PSP” is

removed from the candidate set.

Algorithm 3 shows the whole procedure of the matching
phase.

While the procedure of satisfying RHC is explained in

Algorithm 4.

As an example, consider the following regex patterns,

RP1 = abcd(cmd|tty)*efgh
RP2 = ijklm\d+(abcd)*xyz

which their HES data structure is provided by Table 1. Now
let assume that below input string is given to the system.

input = h53abcd fs efgh5ijklm23abcdabcdxyz

By reading the input, the following simple patterns are
matched.

The HES matching phase will be run as follows.

IV. EXPERIMENTAL EVALUATION

The aim of this section is to evaluate HES with the help
of experimental tests. HES will be compared with previously
proposed finite automata based methods including DFA,
NFA, and HFA [16], in terms of matching speed as well as
their storage costs. The source code of HFA is available
in [25]. The overhead of “regex handler module” will also be
investigated in detail. AC algorithm [1] was used as the HES
matching module.

The evaluation setup is first discussed in section IV.A.
Then the comparison between HES and other finite automata
based methods in terms of their time and spatial performance
are explained in sections IV.B and IV.C, respectively. As the
final experiment, in section IV.D, the overhead of “regex
handler module” is analyzed.

A. Evaluation Setup

In order to conduct a complete experimental analysis, we
used two different pattern sets.

1) Regex patterns provided by Snort [8] and Bro [9]

Intrusion Detection Systems.

2) 10000 random regex patterns with different length,

generated from public regex processor available in [25].
Several 1GB input data sets are generated, with different

matching probability. The test system had 32GB Memory

and its CPU was Core i7-6700HQ. The rest of this section
explains about the evaluation results.

B. Matching Time

At first, HES was compared with the state of the art finite
automata based methods including DFA, NFA, and HFA in
terms of their matching time.

As discussed in section I, DFA and NFA provided the
lowest and highest matching time in theory, while HFA took
the advantages of both methods, in which its matching time
was placed in between. Figure 6 shows the matching time of
HES and the state-of-the-art techniques using Snort and Bro
rules, while 10 percent of input data were matched by the
patterns.

Figure 6. The comparison between HES versus DFA, NFA, and HFA

methods in terms of their matching time.

As illustrated in Figure 6, increasing the input size,
results in boosting the matching time. However, HES
provides the best result compared to the state-of-the-art
techniques.

It is important to note that the test was conducted over a
limited number of regex patterns. DFA method suffers from
state explosion problem, which forced us to use a limited
number of patterns. Moreover, using more patterns affects
the NFA and HFA matching time significantly, due to more
states were activated at the same time.

Figure 7 illustrates increasing the matching time of DFA
method in terms of growing the number of patterns, while
HES matching time remained the same (around two
seconds). In other words, due to state explosion problem,

several page switches between disk and memory occurred in
DFA method, that affected the matching time significantly.

Figure 7. HES and DFA matching time during increasing the number of

patterns.

It is noteworthy that the generated random patterns were
more complicated than Snort and Bro rule sets, containing
more regex operators. As a result both NFA and HFA
methods did not respond any result in reasonable time. Thus,
the test provided by Figure 7 was conducted over DFA and
HES techniques.

C. Memory Consumption

Storage requirement plays an important role in any
pattern matching system. Nowadays IDSes utilize tens of
thousands patterns. As a result, we need an effective method
to handle all of them. As described earlier, NFA provides
one of the most compact data structures compared to other
methods. The goal of this section is to make a comparison
between NFA and HES in terms of spatial requirement.

Figure 8. Spatial Requirements of HES and NFA.

As illustrated in Figure 8, the required storage of HES
was close to NFA, since only simple patterns were used in
the matching module. However, NFA was a bit smaller,
because the HES regex handler module needed a small
storage to handle the rest of the patterns.

D. Regex Handler Module Overhead

As previously mentioned, the main novelty of HES, is to
map regex patterns to several simple ones. Then try to match
simple patterns, and finally handling the regular part. In this
section, we want to examine the regex handler module
overhead.

In fact, when no simple pattern is matched, the matching
time is the same as its used simple pattern matching method.
In this situation, HES provides the best running time. On the
other side, simpler pattern matches, leads to longer HES
matching time. Figure 9 shows HES throughput for different
hit percentage.

Figure 9. HES throughput for different hit percentage.

As depicted in Figure 9, increasing the match percentage
resulted in decreasing the HES throughput. In other words,
the worst case occurred when all input characters were
matched with the patterns.

HES achieved around 1.7Gbps for 10000 patterns, which
was considerable. It is important to note that in the real
situation, the matching percentage should be a very small
number. However, in the worst case, it achieved more than
300Mbps.

V. CONCLUSIONS

In this paper, we presented a highly scalable and efficient
novel technique, called HES, for matching regex patterns.
While the state-of-the-art techniques were suitable for
limited number of patterns, the main contribution of HES is
the ability to handle tens of thousands regex patterns with
minimum storage requirements. In addition, HES is scalable
in which, any simple pattern matching method can be used as
its matching engine. Experimental results showed that HES
matched patterns significantly faster than DFA, while its
memory consumption was still comparable to NFA.

However, there is an exception to the HES technique.
Consider a signature contains no simple pattern (for example
“\d+\s.*[t-w]”, which composed by character sets and regex
operators). The main contribution of HES is to extract simple
patterns and try to match them. After finding a match, handle

the rest of the pattern. So, what should be done for this kind
of patterns? In the future, we will address this situation.

In addition, more complicated regex operators that give
security analysts to detect more attacks, like “Back-reference
Operator”, is another consideration for future study.
Moreover, running the HES algorithm leverages parallel
processing platforms, as FPGA will provide us higher
throughout, which is another working area in the future.

ACKNOWLEDGMENT

This work was supported by the National Key
Technology R&D Program of China under Grant No.
2015BAK34B00 and the National Key Research and
Development Program of China under Grant No.
2016YFB1000102.

REFERENCES

[1] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6,
pp. 333–340, 1975.

[2] M. Aldwairi and K. Al-Khamaiseh, “Exhaust: optimizing wu-manber
pattern matching for intrusion detection using bloom filters,” in Web
Applications and Networking (WSWAN), 2015 2nd World
Symposium on. IEEE, 2015, pp. 1–6.

[3] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[4] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han, “Dfc:
Accelerating string pattern matching for network applications.” in
NSDI, 2016, pp. 551–565.

[5] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching
in strings,” SIAM journal on computing, vol. 6, no. 2, pp. 323–350,
1977.

[6] C.-H. Lin, J.-C. Li, C.-H. Liu, and S.-C. Chang, “Perfect hashing
based parallel algorithms for multiple string matching on graphic
processing units,” IEEE Transactions on Parallel and Distributed
Systems, 2017.

[7] F. Yu, Y. Diao, R. H. Katz, and T. Lakshman, “Fast packet
patternmatching algorithms,” in Algorithms for Next Generation
Networks. Springer, 2010, pp. 219–238.

[8] SNORT, “Snort: Network intrusion detection and prevention system,”
https://www.snort.org/downloads#rules, 2017.

[9] Bro, “The bro network security monitor,”
https://www.bro.org/download/index.html, 2017.

[10] l7 filter, “Application layer packet classifier for linux,” http://l7-
filter.sourceforge.net/, 2009.

[11] Cisco, “Cisco ios ips deployment guide,” https://www.cisco.com,
2015.

[12] IBM, “Poweren pme public pattern sets,”
https://www.ibm.com/developerworks/community/wikis/home?lang
=en#!/wiki/PowerEN+PME+Public+Pattern+Sets, 2012.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to
automata theory, languages, and computation,” ACM SIGACT News,
vol. 32, no. 1, pp. 60–65, 2001.

[14] F. Yu, Z. Chen, Y. Diao, T. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet
inspection,” in Proceedings of the 2006 ACM/IEEE symposium on
Architecture for networking and communications systems. ACM,
2006, pp. 93–102.

[15] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,
“Algorithms to accelerate multiple regular expressions matching for
deep packet inspection,” in ACM SIGCOMM Computer
Communication Review, vol. 36, no. 4. ACM, 2006, pp. 339–350.

[16] M. Becchi and P. Crowley, “A hybrid finite automaton for practical
deep packet inspection,” in Proceedings of the 2007 ACM CoNEXT
conference. ACM, 2007, p. 1.

[17] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: fast
and scalable deep packet inspection with extended finite automata,”
in ACM SIGCOMM Computer Communication Review, vol. 38, no.
4. ACM, 2008, pp. 207–218.

[18] K. Wang, Z. Fu, X. Hu, and J. Li, “Practical regular expression
matching free of scalability and performance barriers,” Computer
Communications, vol. 54, pp. 97–119, 2014.

[19] K. Wang and J. Li, “Freme: A pattern partition based engine for fast
and scalable regular expression matching in practice,” Journal of
Network and Computer Applications, vol. 55, pp. 154–169, 2015.

[20] Y.-K. Chang and C.-H. Shih, “A memory efficient pattern matching
scheme for regular expressions,” Procedia Computer Science, vol.
110, pp. 250–257, 2017.

[21] J. van Lunteren, “Scalable dfa compilation for high-performance
regular-expression matching,” in Proceedings of the 19th
International Workshop on Software and Compilers for Embedded
Systems. ACM, 2016, pp. 10–19.

[22] X. Chen, B. Jones, M. Becchi, and T. Wolf, “Picking pesky
parameters: Optimizing regular expression matching in practice,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no.
5, pp. 1430–1442, 2016.

[23] M. Najam, U. Younis, and R. ur Rasool, “Speculative parallel pattern
matching using stride-k dfa for deep packet inspection,” Journal of
Network and Computer Applications, vol. 54, pp. 78–87, 2015.

[24] M. Becchi and P. Crowley, “A-dfa: A time-and space-efficient dfa
compression algorithm for fast regular expression evaluation,” ACM
Transactions on Architecture and Code Optimization (TACO), vol.
10, no. 1, p. 4, 2013.

[25] M. Becchi, “Regular expression processor,”
http://regex.wustl.edu/index.php/Main_Page, 2011.

APPENDIX

A. HES Pre-Processing Phase Relations

1) Operator Free Regex Pattern Relations
Definition A1. Let “RP” be an operator free regex

pattern, which is described by equation 1.

where {CSi} = {CSi1CSi2 … CSini} for (ni ≥ 1), then:

2) One-operand Operator Regex Pattern Relations
Definition A2. Let “RP” be a one-operand operator regex

pattern, which is described by equation 8.

then:

3) Two-operands Operator Regex Pattern Relations
Definition A3. Let “RP” be a two-operand operator

regex pattern, which is described by equation 17.

then:

