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Abstract—Several security devices use signature based 

detection engine to detect malicious activities through the 

internet. The main challenge of this scenario is to keep up with 

the increase of line speed. On one hand, regular expression 

(regex) patterns allow security analysts to express more 

complicated attacks. On the other hand, they make pattern 

matching procedure much more costly. Several finite automata 

based techniques have been proposed to speed up the matching 

procedure. However, they are still impractical in the real 

world, due to their high spatial or temporal complexity. 

In this paper, a novel technique, called HES, is proposed to 

handle tens of thousand regex patterns, with minimum space 

limitation. The experimental results over several rule sets 

including Snort and Bro, as two leading open source intrusion 

detection systems, as well as random regex patterns, reveals us 

HES matched patterns significantly faster than DFA, as one of 

the fastest state-of-the-art techniques. In addition, the HES 

storage requirement is close to NFA, which leads as one of the 

most compact method. These results proved that HES can be 

used in the real world, as a signature based matching engine, 

and gives us the power to use more regex patterns.  

Keywords- Signature Matching; Regular Expression Patterns; 

Intrusion Detection System; Regex Parsing Rules. 

I.  INTRODUCTION  

Several network security mechanisms like Intrusion 
Detection/Prevention Systems1 and Deep Packet Inspections2 
use pattern matching techniques in order to detect malicious 
traffic. These devices should be highly effective to keep up 
with the increasing line speed (e.g. 40Gbps).  

As the first and easiest way to match patterns, input 
string can be compared with all the patterns one by one, 
which is time consuming. Dozens of methods [1-6] have 
been proposed to speed up the matching procedure by 
creating different data structures. 

Although the state-of-the-art techniques handle thousands 
of patterns quickly, matching more complex signatures is 
still an open problem. Simple malware patterns are usually 
explicit text strings (referred as simple patterns in this paper), 
like “GetInfo\x0d” which is a signature for a “back-door 

                                                           
1 IDS/IPS 

2 DPI 

attack'” [7]. However, it is impossible to express signatures 
of complex malwares like polymorphic worms in such a 
way. 

In contrast to simple patterns, Regular Expression 3 
pattern is an alternative option to express complex signatures 
(e.g. “^Entry/file/[0-9]{71,}//.*\x0Aannotate\x0A”, for 
detecting a “Concurrent Versions System 4 ” revision 
overflow attack [7]). In the real world, most of security 
devices such as Snort, Bro, Linux application protocol 
classifier (l7-filter), Cisco’s security system, and matching 
accelerator on IBM PowerEN processor, use regex patterns 
in their rule set [8–12]. 

Hopcroft et al. in [13], proposed DFA5 method to match 
regex patterns. A DFA consists of a set of finite states, a 
transition function (δ) that maps any state and an input 
symbol to just one state, and a finite set of input symbols (∑). 

In theory, DFA method is a good option for regex 
patterns since its matching time is O(1). However, its 
required large data structure raised a new concern. In other 
words, the DFA data structure for m regex patterns with the 
average length of n, needs O(∑nm) space [7], which causes 
stage explosion problem and makes the system unpractical. 

NFA6 is another well-known method proposed in [13]. It 
is similar to DFA except its transition function maps a pair of 
state and input symbol, to several states. Although NFA 
method solves the state explosion problem that requires 
O(nm) storage, its matching time is not reasonable. The NFA 
search complexity is O(n2m) [7]. 

In order to match regex patterns in a reasonable time, 
while minimizing the required storage, several variant finite 
automata based methods have been proposed [14-24].  
Yu et al. in [14] proposed mDFA 7 , based on grouping 
patterns and then, creating DFA for each group in a way that 
the size of each DFA does not exceed at a threshold. 

In [15] Kumar et al. introduced D2FA (Delayed input 
DFA), according to the fact that many states have the same 
set of outgoing transitions. So they all can be replaced with 
one link. As a result, the achieved DFA size will be reduced. 
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Since redundant transitions mapped to one, D2FA requires 
creating a weighted tree based on similar links, which affects 
the system matching time. 

Becchi and Crowley in [16] proposed HFA8. During the 
pre-processing phase, any nodes that would cause state 
explosion will be retain as NFA, while the rest are 
transformed to DFA. As a result, the size of data structure 
will be close to NFA, but the matching time is faster. 

Smith et al. in [17] proposed a novel method named 
XFA9, which tries to remove or at least mitigate ambiguity of 
states by adding some variables into DFA. XFA remembers 
the progress during the match of regex patterns. It uses some 
flags or counters as well as some programs to handle several 
regex operators. The main drawback of XFA is that within 
merging XFAs, defined variables and programs would be 
duplicated, which affects the system matching time. 
However, the authors provided some optimization techniques 
to remove duplication. XFA showed time complexity near to 
DFA, while its required storage is similar or even smaller 
than NFA. 

In [18, 19] Kai et al. introduced PaCC 10  framework 
includes partition, compression, and matching procedures. 
The partition phase avoids DFA to be exploded, while the 
compression engine compresses the DFA. The authors 
argued that PaCC provides smaller data structure compared 
to NFA, while its matching time is even faster than DFA. 

Based on the results provided by the authors, the finite 
automata based techniques can handle limited number of 
patterns. Several activated states at the same time are 
handled in NFA based solutions; while DFA based methods  
have to deal with storage problem. As a result, both types are 
not able to handle tens of thousands patterns in the real 
world. 

As a practical option, we provide a highly efficient and 
scalable novel technique, named HES. The main idea behind 
HES is to first, extract simple patterns from regex signatures, 
then try to compare them with the input string, and finally, 
handle the rest of regex patterns. As an example assume  
“S = abcd(\w+\s{6,9}|\d+)*efgh” as a regex pattern. The 
extracted simple patterns would be “abcd” and “efgh”. As a 
result, when the simple patterns are matched with the input 
string, “\w+\s{6,9}|\d+)*” condition will be checked as the 
next step. 

The main contribution of HES is summarized as below. 

 Due to mapping regex matching problem to simple 
pattern matching, HES can match regex patterns 
significantly faster than DFA. 

 HES is highly scalable, which means any simple 
pattern matching algorithm can be used as its 
matching engine. 

 HES has minimum storage requirement due to 
dealing with simple patterns. 

 HES can handle tens of thousands regex patterns at 
the same time. 
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The paper structure is described as follows. At first, in 
section II, regex patterns will be explained in more detail. In 
addition, regex parsing rules will be provided to generate 
parse tree. Then the HES technique including its architecture 
as well as pre-processing and matching phases will be 
described in section III. After that, HES will be evaluated in 
practice in section IV, and finally, in section V, the 
conclusion will be provided. 

II. REGEX PATTERNS 

The aim of this section is to characterize regex patterns. 
In general, regex patterns consists of three main attributes as 
below. 

1) Regex Operators: Regex Operators 11  denote 

operation over one (e.g. “(RP1)*”) or two sub-patterns  

(e.g. “RP1|RP2”), where “RP1” and “RP2” can be any regex 

sub-patterns. 

2) Character Sets: Character Sets12 describe the set of 

characters such as “\d” as all digits, “\s” as all space 

characters, “\w” as all alphanumeric characters, “.” as any 

arbitrary character, “[ci-cj]” as a range of characters, and  

“[c1c2…ck]” as a set of “k” different characters.  

3) Simple Patterns: Simple Patterns13 represent the text 

string pattern without regex operator and character set. 
 
In hierarchical view, each regex pattern is parsed by 

provided rules, as illustrated in Figure 1, where “<RO>”, 
“<CS>”, and “<SP>” denote the regex attributes (ruleset 4). 

 

 
Figure 1.  Regex Pattern Parsing Rules. 
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According to rule set 1, a regex pattern is parsed 
hierarchically as one of “Operator Free14”, “One-operand 
Operator15”, or “Two-operands Operator16” Regex Pattern. 
The rest of this section defines these categories in more 
detail. 

A. Operator Free Regex Pattern 

OFRP is the first type of regex pattern, which is created 
by the combination of both simple patterns and character 
sets. As an example “S1[a-z]\s\d.S2\w” is parsed as an OFRP, 
where S1 and S2 are two arbitrary simple patterns. Each 
OFRP is created by the recursive combination of  
<OFRP-CS> and <OFRP-SP> (rule number 2.1), where: 

 <OFRP-CS>: denotes an OFRP, which is finished 
by a character set (rule number 2.2). 

 <OFRP-SP>: denotes an OFRP, which is finished 
by a simple pattern (rule number 2.3). 

B. One-operand Operator Regex Pattern 

OORP is the second type of regex pattern (rule  
number 3.1). It starts and ends with “Nullable Regex 
Pattern” (NRP) (rule number 3.3). It also has a regex 
operator, which acts on a regex sub-pattern. It is important 
that the operand is not nullable. “S1(S2)?S3”, “S1\d*”, and 
“[b-k]+” are different examples of one-operand operator 
regex pattern. 

C. Two-operands Operator Regex Pattern 

TORP is the third type of regex pattern (rule  
number 3.2). Like the previous item, its first and last patterns 
are nullable, while both operands are not (e.g “S1(S2|S3)S4”, 
“S1(\d|S2[a-k])”, and “(S1|\w)”). 

D. Parsing Example 

As an example consider “S1(S2.{6}|(S3\d)+)*S4” as a 
regex pattern, where S1, S2, S3, and S4 are four simple 
patterns. In the first level of hierarchy, the following rule is 
satisfied. 

<RP> = <NRP>(<RP>)<RO><NRP> 
Then: 

 The first “<NRP>” leads to “S1”. 

 “<RP>” leads to “S2.{6}|(S3\d)+”. 

 “<RO>” leads to “*”. 

 The last “<NRP>” leads to “S4”. 
 
Similarly, the rest of parsing procedure is carried out. 

Figure 2 depicts achieved parse tree of the example. 
HES will use the parsing rules of regex patterns in its 

pre-processing phase, in which in the next section the whole 
procedure will be discussed in detail. 

III. HES TECHNIQUE 

This section describes HES in terms of its architecture, 
and pre-processing and matching phases in details. 
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Figure 2.  Parse Tree of “S1(S2.{6}|(S3\d)+)*S4”. 

A. Model Architecture 

The overall procedure of HES is to map regex patterns to 
a set of simple patterns accompanying with metadata (details 
to be introduced in section III.C), so that the overall required 
matching time and storage size will be reduced to that of 
handling simple patterns. Figure 3 shows HES architecture. 

 

 
Figure 3.  HES Architecture. 

In the pre-processing phase, regex patterns are parsed 
using the parsing rules provided in section II to achieve 
simple patterns and metadata. 

In the matching phase, any simple pattern matching 
method can be used as HES matching engine to match 
simple patterns. When a match is found, regex handler 
module tries to match the rest of regex pattern using 
corresponding metadata information. 

B. Pre-processing Phase 

In the pre-processing phase, all the regex patterns are 
parsed in order to extract simple patterns and metadata. This 



extracted information is stored into data structure illustrated 
in Figure 4. 

 

 
Figure 4.  HES Data Structure Fields. 

The HES data structure contains several attributes as 
metadata described below. 

 Title: Title is a unique identifier of each extracted 
simple pattern. 

 Quantity: Some simple patterns are seen in different 
regex patterns. Hence, the total number of instances 
is stored in “Quantity” field. Also for each pattern 
instance, the following attributes are preserved. 

o Regex Pattern Reference (RPR): Regex 
pattern reference is preserved here. 

o Instance Identity (II): A unique identifier 
of the pattern instance is stored in this 
field.  

o Not Operator Check (NOC): In regex 
patterns, “not” operator is different from 
other regex operators, since its 
corresponding pattern should not be 
matched. As a result, when “NOC” 
attribute is set to “True”, the matching 
condition will be reversed.  

o Previous Simple Patterns (PSP): Refers 
to previous instance/s that should be 
matched before the current pattern.  

o Regex Handler Check (RHC): RHC is a 
part of regex pattern including character 
sets and regex operators, which placed 
between the instance and its PSP. 

o Last Simple Pattern (LSP): Determines 
the last simple pattern of each regex 
pattern. 

 Length: Points to the simple pattern length. 

 Text: Contains the pattern text. 
 

Definition 1. Let “RP”, “RO”, “SP”, and “CS”, be the 
regex pattern, regex operator, simple pattern, and character 
set, respectively. findPSP and findRHC functions are defined to 
find the PSP and RHC of each simple pattern instance, using 
firstSP, lastSP, firstRHC, and lastRHC. 

 findPSP(SP,RO)⟶ {SP}: Returns the previous simple 
pattern of given SP based on RO. 

 findRHC(SP,RO)⟶ {CS × RO}: Returns the regex 
handler check of given SP based on RO. 

 firstSP(RP)⟶ {SP}: Returns the first simple pattern 
of given RP. 

 lastSP(RP)⟶ {SP}: Returns the last simple pattern of 
given RP. 

 firstRHC(RP)⟶ {CS × RO}: Returns the first RHC of 
given RP. 

 lastRHC(RP)⟶ {CS}: Returns the last RHC of given 
RP. 

Appendix A defines each function in detail. The HES 
pre-processing phase is expressed in Algorithm 1. 

 

 



As described in Algorithm 1, the first step to 
hierarchically parse regex patterns is finding the pattern type. 
Then, the corresponding simple patterns are extracted, and 
finally, the HES metadata fields are computed. Algorithm 2 
expresses setting the metadata fields of given simple pattern 
and regex operator. 

 

 
 
As an example, consider “abcd(cmd|tty)*efgh” and 

“ijklm\d+(abcd)*xyz” as two different regex patterns. At 
first, these two patterns are parsed as depicted in Figure 5. 

The next step is to traverse the trees in order to fill the 
HES data structure fields. At first, suppose traversing of the 
first regex pattern. As illustrated in Figure 5a, in the top most 
level of hierarchy, the pattern was parsed as a one-operand 
operator regex pattern, which includes three regex sub-
patterns and a one-operand operator (see section II.B). 

According to Algorithms 1 and 2, the following steps are 
taken. 

1) Call “firstSP(NRP3)” function to find the first simple 

pattern of NRP3, in which the result is “efgh”. 

2) It is the first instance of this simple pattern, so it is 

added to simple patterns metadata and the title, quantity, 

text, length, II, NOC, and RPR fields are set to their 

corresponding values.  

3) Call “findPSP(efgh, *)” function to find the PSP of 

“efgh”. According to equation 9 defined in Appendix A, the 

result is both “lastSP(NRP1)” and “lastSP(RP2)” together, due 

to regex operator “*”. 

a) As illustrated in Figure 5a, “NRP1” is an operator 

free regex pattern. As a result “lastSP(NRP1)” is computed 

according to equation 5, and its result is “abcd”. 

b) “RP2” is a two-operands operator regex pattern. 

Therefore, “lastSP(RP2)” is computed according to  

equation 25, which results is both “cmd” and “tty”. 

 

Figure 5.  An example of the pre-processing phase. 

Thus, findPSP(efgh, *) = {abcd, cmd, tty}. 

4) Call “findRHC(efgh, *)” function to find the RHC of 

“efgh”. According to equation 11, the result has two options 

as below: 

a) “lastRHC(NRP1)firstRHC(NRP3)”, if “RP2” is not 

matched in the matching phase. 

Both “NRP1” and “NRP3” are operator free regex 

patterns, which “lastRHC(NRP1)” and “firstRHC(NRP3)” 

equal to “⊥” according to equations 7 and 6, 

respectively. So their concatenation will be “⊥”. 

b) “lastRHC(RP2)firstRHC(NRP3)”, if “RP2” is matched in 

the matching phase. 



As mentioned above, firstRHC(NRP3) = ⊥. But “RP2” is 

a two-operands operator regex pattern, hence, 

lastRHC(RP2) is computed based on equation 27 as 

follows. 

 “lastRHC(RP22)NRP24”, if “RP22” is matched in 

the matching phase. 

 “lastRHC(RP23)NRP24”, otherwise. 

Based on Figure 5a, “NRP24” equals to “⊥”. In addition, 

according to equation 7 both “lastRHC(RP22)” and 

“lastRHC(RP23)” equal to “⊥”. Therefore, the result of 

“lastRHC(RP2)” in either cases is “⊥”. 

As a result, findRHC(efgh, *) = ⊥. 

5) The rest of the pre-processing phase is carried out 

accordingly. 

 
After finishing the pre-processing phase, the HES data 

structure is filled as shown in Table 1. It is important to note 
that the RHC value of simple pattern “xyz” is “{⊥, \d+}”, as 
according to equation 11, when “abcd” is matched, the 
“RHC” value is “⊥”, and in case of matching “ijklm”, “RHC” 
is “\d”. 

TABLE I.  HES DATA STRUCTURE OF “abcd(cmd|tty)*efgh” AND 

“ijklm\d+(abcd)*xyz”. 

Title 1_1,2_2 1_2 1_3 1_4 2_1 2_3 

Quantity 2 1 1 1 1 1 

RPR* 1 2 1 1 1 2 2 

II§ 1 2 2 3 4 1 3 

NOC¶ F F F F F F F 

PSP£ ⊥ 1 1 1 {1,2,3} ⊥ {1,2} 

RHC¥ ⊥ \d+ ⊥ ⊥ ⊥ ⊥ {⊥ , \d+} 

LSP£ F F F F T F T 

Length 4 3 3 4 5 3 

Text abcd cmd tty efgh ijklm Xyz 
 

  *  Regex Pattern Reference 
  §  Instance Identity 
  ¶  Not Operator Check 
  £  Previous Simple Pattern 
  ¥  Regex Handler Check 
  £  Last Simple Pattern 

 

C. Matching Phase 

After the pre-processing phase, the generated HES data 
structure is used to match the patterns. Any arbitrary simple 
pattern matching method such as [1-6] can be utilized to 
match simple patterns. In case of finding a match, its 
corresponding “PSP” and “RHC” values are considered to 
handle the rest of the regex pattern. The detailed procedure is 
described as below. 

1) Consider an empty set named candidate, to store the 

matching regex patterns candidates during the matching 

phase. 

2) Read the input string and call a simple pattern 

matching method. 

3) In case of finding a match, (due to the fact that a 

simple pattern can be seen in several regex patterns) do the 

following procedure for all its instances. 

a) Check the instance's “PSP”. If it is set to “NULL”, 

means the instance is the first simple pattern of its 

corresponding regex. As a result it is added to the candidate 

set, if it satisfies the conditions provided by “RHC” and 

“NOC” attributes. 

b) If the “PSP” value is not “NULL”, means the 

previous pattern is matched before. Then check the 

candidate set, find the corresponding entry, and check 

“RHC” and “NOC”. 

 If the checks are passed, the instance is added 

to candidate set. 

 Otherwise, the item referred by “PSP” is 

removed from the candidate set. 

Algorithm 3 shows the whole procedure of the matching 
phase. 

 

 
While the procedure of satisfying RHC is explained in 

Algorithm 4. 
 

 



 
As an example, consider the following regex patterns, 
 

RP1 = abcd(cmd|tty)*efgh 
RP2 = ijklm\d+(abcd)*xyz 

 

which their HES data structure is provided by Table 1. Now 
let assume that below input string is given to the system. 
 

input = h53abcd fs efgh5ijklm23abcdabcdxyz 
 

By reading the input, the following simple patterns are 
matched. 

 

 
 

The HES matching phase will be run as follows. 
 

 

 

IV. EXPERIMENTAL EVALUATION 

The aim of this section is to evaluate HES with the help 
of experimental tests. HES will be compared with previously 
proposed finite automata based methods including DFA, 
NFA, and HFA [16], in terms of matching speed as well as 
their storage costs. The source code of HFA is available  
in [25]. The overhead of “regex handler module” will also be 
investigated in detail. AC algorithm [1] was used as the HES 
matching module. 

The evaluation setup is first discussed in section IV.A. 
Then the comparison between HES and other finite automata 
based methods in terms of their time and spatial performance 
are explained in sections IV.B and IV.C, respectively. As the 
final experiment, in section IV.D, the overhead of “regex 
handler module” is analyzed. 

A. Evaluation Setup 

In order to conduct a complete experimental analysis, we 
used two different pattern sets. 

1) Regex patterns provided by Snort [8] and Bro [9] 

Intrusion Detection Systems. 

2) 10000 random regex patterns with different length, 

generated from public regex processor available in [25]. 
Several 1GB input data sets are generated, with different 

matching probability. The test system had 32GB Memory 



and its CPU was Core i7-6700HQ. The rest of this section 
explains about the evaluation results. 

B. Matching Time 

At first, HES was compared with the state of the art finite 
automata based methods including DFA, NFA, and HFA in 
terms of their matching time. 

As discussed in section I, DFA and NFA provided the 
lowest and highest matching time in theory, while HFA took 
the advantages of both methods, in which its matching time 
was placed in between. Figure 6 shows the matching time of 
HES and the state-of-the-art techniques using Snort and Bro 
rules, while 10 percent of input data were matched by the 
patterns. 

 

 
Figure 6.  The comparison between HES versus DFA, NFA, and HFA 

methods in terms of their matching time. 

As illustrated in Figure 6, increasing the input size, 
results in boosting the matching time. However, HES 
provides the best result compared to the state-of-the-art 
techniques. 

It is important to note that the test was conducted over a 
limited number of regex patterns. DFA method suffers from 
state explosion problem, which forced us to use a limited 
number of patterns. Moreover, using more patterns affects 
the NFA and HFA matching time significantly, due to more 
states were activated at the same time. 

Figure 7 illustrates increasing the matching time of DFA 
method in terms of growing the number of patterns, while 
HES matching time remained the same (around two 
seconds). In other words, due to state explosion problem, 

several page switches between disk and memory occurred in 
DFA method, that affected the matching time significantly. 

 

 
Figure 7.  HES and DFA matching time during increasing the number of 

patterns. 

It is noteworthy that the generated random patterns were 
more complicated than Snort and Bro rule sets, containing 
more regex operators. As a result both NFA and HFA 
methods did not respond any result in reasonable time. Thus, 
the test provided by Figure 7 was conducted over DFA and 
HES techniques. 

C. Memory Consumption 

Storage requirement plays an important role in any 
pattern matching system. Nowadays IDSes utilize tens of 
thousands patterns. As a result, we need an effective method 
to handle all of them. As described earlier, NFA provides 
one of the most compact data structures compared to other 
methods. The goal of this section is to make a comparison 
between NFA and HES in terms of spatial requirement. 

 

 
Figure 8.  Spatial Requirements of HES and NFA. 

As illustrated in Figure 8, the required storage of HES 
was close to NFA, since only simple patterns were used in 
the matching module. However, NFA was a bit smaller, 
because the HES regex handler module needed a small 
storage to handle the rest of the patterns. 



D. Regex Handler Module Overhead 

As previously mentioned, the main novelty of HES, is to 
map regex patterns to several simple ones. Then try to match 
simple patterns, and finally handling the regular part. In this 
section, we want to examine the regex handler module 
overhead. 

In fact, when no simple pattern is matched, the matching 
time is the same as its used simple pattern matching method. 
In this situation, HES provides the best running time. On the 
other side, simpler pattern matches, leads to longer HES 
matching time. Figure 9 shows HES throughput for different 
hit percentage. 

 

 
Figure 9.  HES throughput for different hit percentage. 

As depicted in Figure 9, increasing the match percentage 
resulted in decreasing the HES throughput. In other words, 
the worst case occurred when all input characters were 
matched with the patterns. 

HES achieved around 1.7Gbps for 10000 patterns, which 
was considerable. It is important to note that in the real 
situation, the matching percentage should be a very small 
number. However, in the worst case, it achieved more than 
300Mbps. 

V. CONCLUSIONS 

In this paper, we presented a highly scalable and efficient 
novel technique, called HES, for matching regex patterns. 
While the state-of-the-art techniques were suitable for 
limited number of patterns, the main contribution of HES is 
the ability to handle tens of thousands regex patterns with 
minimum storage requirements. In addition, HES is scalable 
in which, any simple pattern matching method can be used as 
its matching engine. Experimental results showed that HES 
matched patterns significantly faster than DFA, while its 
memory consumption was still comparable to NFA. 

However, there is an exception to the HES technique. 
Consider a signature contains no simple pattern (for example 
“\d+\s.*[t-w]”, which composed by character sets and regex 
operators). The main contribution of HES is to extract simple 
patterns and try to match them. After finding a match, handle 

the rest of the pattern. So, what should be done for this kind 
of patterns? In the future, we will address this situation. 

In addition, more complicated regex operators that give 
security analysts to detect more attacks, like “Back-reference 
Operator”, is another consideration for future study. 
Moreover, running the HES algorithm leverages parallel 
processing platforms, as FPGA will provide us higher 
throughout, which is another working area in the future. 
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APPENDIX 

 

A. HES Pre-Processing Phase Relations 

 

1) Operator Free Regex Pattern Relations 
Definition A1. Let “RP” be an operator free regex 

pattern, which is described by equation 1. 
 

 
where {CSi} = {CSi1CSi2 … CSini} for (ni ≥ 1), then: 
 

 
 

2) One-operand Operator Regex Pattern Relations 
Definition A2. Let “RP” be a one-operand operator regex 

pattern, which is described by equation 8. 
 

 
then: 
 

 

 



 
 

3) Two-operands Operator Regex Pattern Relations 
Definition A3. Let “RP” be a two-operand operator 

regex pattern, which is described by equation 17. 
 

 
then: 

 
 

 

 
 



 

 


