
 1

Abstract – Packet classification on multiple header fields is one
of the basic techniques used in network devices such as routers
and firewalls, and usually the most computation intensive task
among others. To determine what action needs to be taken to a
packet, a network device responsible for packet classification
must identify the packet’s property, such as associated packet
flow, based on multiple fields of its header. Fast packet
classification on multiple fields is known to be difficult
mathematically and expensive practically. In this paper, we
describe and discuss a fast packet classification algorithm
using a multiple stage reduction scheme similar to the
previously well-know algorithm RFC. This hierarchical space
mapping (HSM) algorithm requires much less memory usage
than RFC while keeps average search time on the same order.
HSM has been proved to be very effective with commercial
products in real networks.

Index terms—packet classification, access control, security
policy, packet filtering, range segmentation, space mapping.

I. INTRODUCTION
There are many network services that require header based
packet classification, especially in policy enforcement by
packet filtering. Layer 3 routers make their routing decision
as where to forward an arriving packet by checking its
destination address in its header against a set of forwarding
rules. The rules classify network traffic into flows and
predefine the next hops for packets matching the rules.
Firewalls take actions to a received packet by searching
almost all fields of its header against security policies (also
called ACL or access control list in edge routers). Services
such as bandwidth management, traffic provisioning, and
utilization profiling also depend on packet classification.
Action taken to a packet is usually based on the result of
classification that is in turn based on a set of filters. In this
paper, we use the term “policy” and “action” to describe
filters or rules and their associated directives. We also call
the collection of policies and policy search as “policy table”
and “policy table lookup” rather than the terminology of
classifier, and rule search or filter matching.

Multiple field packet classification has two distinct
characteristics that make it a classification problem hard to
be solved efficiently: the policy table cannot be sorted or
cached since the policies in the table are ordered and may
have overlapped field values. When a packet arrives to the
interface of a network device, there could be multiple

 Dongyi Jiang and Jun Li worked for ServGate Technologies, Inc. when
the initial research and implementation was conducted.

policies that match the specified packet header fields, and
only the action associated to the policy with the top priority
is taken. Policy priority can be calculated based on a
defined cost function. In this paper, we assume the priority
of each policy is the order it resides in the policy table, a
multiple dimension lookup table. Therefore, the first policy
in the policy table has the highest priority.

Network environment is very dynamic. Network
configuration varies as employee assignments, organization
structure, and business relationship changes constantly.
Interaction between network services or functional blocks,
and intelligence built-in network devices also bring
dynamic updates into packet classification consideration.
For example, during product and service price information
update of a sales database, system administrator may want
to set a temporary policy to block all access from business
partners to the related database servers. The policy to deny
access to the servers will be added on the top of the policy
table, as usually table lookup is done top down and for
security reason there is always a default policy at the
bottom to deny all traffic. Obviously, the table cannot be
sorted. For example, it we sort the policy table by
destination addresses, individual policies that allow each
server to be accessible may get on top of the temporary
policy and the blocking will then fail in this case.

The policies can have overlaps in one or more fields, and
thus the relationship among the classification tasks can be a
graph with cycle, not necessarily a tree. Therefore, the
execution order of the classification tasks strictly
determines the actions to be taken to the packet. This is why
the tasks, and in turn the policies, cannot be cached. For
example, all employees working in engineering group E are
allowed to access a source code server C, excluding
hardware contractor A. However, the access should have
lower priority than VoIP traffic and overall traffic load
should not exceed a certain bandwidth limit, except release
engineer R who has highest priority and best available
bandwidth to C. In terms of security policy, the requirement
described above can be presented as the following:

a) A’s access to C should be denied;
b) R’s access to C should be allowed with highest
priority and maximum available bandwidth;
c) E’s access to C should be allowed with
bandwidth limitation.

If c) is cached, a packet stream for A to access C can be
passed as it satisfies c), although it will be denied by a) if c)
is not cached. The same applies to b) in this example.

Bo Xu, Research Institute of Information Technology (RIIT), Tsinghua University
Dongyi Jiang, Juniper Networks, Inc.

Jun Li, Research Institute of Information Technology (RIIT), Tsinghua University

HSM: A Fast Packet Classification Algorithm

 2

For IPv4, its packet header syntax that is related to
classification can be specified as up to 8 fields: 32-bit
source and destination network layer (layer 3 or L3) IP
addresses, 16-bit source and destination transport layer
(layer 4 or L4) TCP or UDP port numbers, 8-bit type-of-
service (TOS) field, 8-bit L3 IP protocol field, and 8-bit L4
TCP or UDP protocol flags. If we consider tunneling
protocols, there could be more fields such as VLAN tag, etc.
In IPv6, its header has similar structure with larger IP
address range (128-bit source and destination IP addresses).

Mathematically, the multiple field classification is a point
location problem in multi-dimensional space. In
computational geometry, this means finding the object that
contains of a query point, given a set of geometric objects.
It has been claimed that if the objects are none-overlapping
(also called non-intersecting or disjoint) fat objects, the best
known the computational complexity bounds for n objects
(policies in our case) and k dimensions (fields in our case)
measures, for k > 2, are O(logn) in time with O(nk) in space,
or O(logk-1n) in time with O(n) in space [1]. This is
impractical as many papers pointed out. For the case of
1,000 firewall packet filtering policies that inspect 4 header
fields (source and destination addresses and ports), thus
n=1,000 and k = 4, nk means 12TB for IPv4, while logk-1n
means almost 1,000 times memory accesses.

Multiple field classification problems have attracted great
attention in recent years due to increased demand of high-
end packet forwarding and filtering network devices. The
most significant applications are Gbps and faster firewalls.
It requires packet filtering capability better than 4 million
packets per seconds each direction in full duplex mode.
Consider commercial network services should guarantee
minimum bandwidth provided to customers rather than
promising an average bandwidth that could be choky at
times, all discussion in this paper considers the worst case
as well as average case. The goal of the study is to find an
algorithm that classifies packet at high packet rate with
modest storage requirement.

II. PREVIOUS WORK
The design of packet classification algorithms is
encumbered by worst-case bounds on search time and
memory requirements that are so onerous as to make brutal
force algorithms unusable [3]. Therefore, it will be
infructuous to attempt to find an algorithm performing well
under all circumstances. Research work is mainly oriented
to exhuming inherent structures or characteristics of certain
classification problems that can make heuristic algorithms
that compute “fast enough” and occupy “not too much”
memory.

Historically, most packet filtering firewalls use linear
search algorithms when performing policy lookup. These
algorithms are very time consuming and without upper
bound of searching time—the searching time increase
linearly as the policy table size grow.

Many research results have been published in recent years
to improve the efficiency of firewall policy lookup,
essentially solving the problem of multiple field packet
classification.

V. Srinivasan, et al, proposed Grid-of-tries and Cross-
producting [3]. Grid-of-tire uses a trie-based data structure,
like Hierarchical tries and Set-pruning tries [4], but the
adoption of switch pointers to avoid the time-consuming
back tracking search makes Grid-of-tries superior to other
trie-based algorithms. Cross-producting divides the search
space according to the rule segmentations along each
dimension. Each segment refers to a sub-region in one of
the F dimensions, and the cross-product of the F sub-
regions makes up of a sub-space. Search can be done
quickly by parallel lookups on each dimension and indexing
into the cross-product table but this algorithm bear large
space complexity (memory requirement). Several papers
followed this direction and proposed improvement or
extensions to the Grid-of-tries algorithms [7, 10].

P. Gupta and N. McKeown proposed two algorithms RFC
[5] and HiCuts [6]. RFC can be seen as a form of Cross-
producting but is improved by significantly compressing
the cross-product table. RFC simplifies packet classification
scheme by reducing structure redundancy in the
classification process and does not obtain the classification
result through one table lookup. The main idea of RFC is to
place the smaller cross-products into equivalence classes
before combing them to form larger cross-products. This
equivalence of partial cross-products considerably reduces
memory requirements, because several original cross-
product items map into the same equivalence class. HiCuts
is an optimized algorithm based on a decision tree structure.
At each tree node, the current search space is equally
divided along a chosen dimension. The dimension to be cut
and the number of cuttings depend on the characteristics of
the rules belong to the node. Experimental results show that
HiCuts performs well with non-overlap rules but consumes
much time and space with overlapped classifiers. HiCuts is
not stable at time and space while RFC performs stably at
lookup time. HyperCuts [11] was proposed to divide along
two dimensions at the same time.

In another direction of packet classification algorithm
research, not only effort has been made to exploit structural
characteristics, but also introduce of additional heuristic
information based on statistical characteristics such as
traffic flow [8, 9]. They improved the average case
performance and time/space tradeoff of the algorithms
described earlier, but the worst case stays unchanged.

Generally, performance of different algorithms can be
evaluated with two aspects: theoretical analysis of worst-
case complexity and experimental comparison of mostly
average cases. Table.1 is a list of worst-case analysis of
aforementioned algorithms, from which we cannot easily
conclude which algorithm is superior to the others. But
when concentrating on time complexity, we will find that
RFC and HiCuts are superior to the other algorithms, while

 3

theoretical analysis and experimental results tell us RFC is
more stable in lookup time than HiCuts (RFC needs only 9
memory accesses during one lookup process no matter how
the rules distribute).

This paper introduced a new algorithm called HSM. Similar
to RFC, HSM used hierarchical space mappings. However,
HSM consumes much less memory space while its average
lookup time is on the same order as RFC. Experimental
results will be given afterwards in the paper and HSM has
been proved to be very effective in real networks by
commercial products of ServGate Technologies, Inc.

Algorithm Worst time Worst space
Linear Search O(N) O(N)
Grid-of-tries O(WF-1) O(N)
Cross-producting O(FW) O(NF)
RFC O(F) O(NF)
HiCuts O(F) O(NF)

Table.1 Worst-case complexity comparison of algorithms.
In this table N is the number of rules, W is bit-width of a
certain dimension (e.g. for IPv4 IP address, W=32), F is
dimensionality of the search space.

III. HIERARCHICAL SPACE MAPPING ALGORITHM
Many previous works assume that some or even all fields in
a policy are presented as prefix. In contrast, most inspected
fields or matching templates in a policy are represented as
numbers or ranges naturally, except networks (subnets).
Even network addresses such as addresses of a group of
servers are easier to be represented as ranges sometimes. As
range-to-prefix conversion can generate a large number of
policies and thus increase computational workload of policy
lookup, ranges are used in this paper rather than prefixes.
When needed, the one time prefix-to-range conversion does
not add more policies and therefore has no impact on packet
classification.

The algorithm proposed in this paper can be applied in
general cases of multiple field classification problems
where sorting and caching do not help. However, the
discussion in this paper focuses on IP network application,
using a four-tuple firewall security policy lookup as
example. The four-tuples considered in the firewall policy
lookup example are destination address (DA), source
address (SA), destination port (DP), and source port (SP).
Normally, packet filtering inspects at least five-tuples. Here
it is assumed properties other than the four tuples will be
handled before or after policy lookup, such as TCP and
UDP will have two separate policy tables or checked
separately after the four-tuple search.

The basic idea of the HSM algorithm proposed in this paper
is to reduce the searching fields by mapping the lookup
domains two-to-one, step by step and hierarchically.
First, it maps the 2 IP address spaces (DA, SA) and the 2
port number spaces (DP, SP) into non-overlapped segments
precisely according the network address ranges and port

number ranges used in the policy table, and reduces the
original four-dimension space to a two-dimension space by
looking up the following two tables:

AMT — source/destination IP address mapping table
PMT — source/destination port number mapping table

Second, the two-dimension space resulted from the
previous step is transformed to the one-dimension policy
space. This is done by looking up the third table:

PLT — policy lookup table

Figure.1 gives us an overview of the packet flow in HSM
algorithm. We will elaborate the whole process step by step
afterwards.

Figure.1 Packet flow in HSM

IP Address Fragmentation

IP address fragmentation is done for both SA space and DA
space respectively but in the same way. For each address
range (including address or subnet) appeared in the policy
table, its two boundary IP addresses are marked down in the
corresponding SA or DA IP space. When this is finished for
each and every policies in the policy table, for each
segment that has at least one policy falls in it, an address
sequence number (ASN) is assigned in the ascend order
along the increasing IP address, starting from 0. Figure.2 is
an example that illustrated the IP address segmentation.

ASN: 0 1 2 3

s: starting address of an address range; t: ending address of an address range.

Figure.2 IP address segmentation

There are many ways to map a given IP address (i.e. the
source or destination IP address of a received packet) to a
segment. In HSM, this is achieved by maintaining a
balanced binary tree.

Port Number Fragmentation

Packet

S
A

D
A

S
P

D
P

A
M
T

P
M
T

P
L
T

Phase0 Phase1 Phase2

IP: 0 232

s1 t1 s2 s3 t2t3

 4

The principle of port number fragmentation to get port
sequence number (PSN) is quite similar to that of IP
address fragmentation.
For the port number mapping, a direct table (216 or 65536 in
size) lookup is feasible when there is enough memory that
can be allocated for it and usually more efficient.

Lookup Table Structure

The AMT table is a two-dimension table with the source
address sequence number (SASN) and the destination
address sequence number (DASN) as the indexes, and filled
with address group numbers (AGN). The PMT table is
similar to AMT except using the source port sequence
number (SPSN) and the destination port sequence number
(DPSN) as the indexes of the two dimensions, and filled
with port group numbers (PGN). The PLT is a two-
dimension table with the AGN and PGN as the indexes, and
filled with policy order numbers representing priority of the
policies.

Lookup Table Setup

AMT
When putting IP address segmentation, we assign a bitmap
(BM) for each ASN indicating which policies in the policy
table contain this ASN. This bitmap has one bit for each
policy in the policy table. For example, if the policy table
contains 8 policies and SA#1 is covered by policy#1,
policy#2 and policy#6, then a BM of 01000110 will be set
to SA#1.

Each entry of AMT is given an address group number
(AGN) according to the order of its appearance, along with
a BM tagged to it. The BM is formed by an OR operation of
the two BMs of SA and DA. We can use Table.2 as an
example. Assume that SA#1 has bitmap 01000110 and
DA#0 has bitmap 00100110, then the combination of the
two comes to bitmap 00000110. So we put 1,2 in the entry
corresponding to SA#1 and DA#0. Different AGN has
different BM. If the result of combination is the same as
previous AGN, then the AGN and associated BM for the
entry will stay unchanged.

PMT
The process of PMT is almost like AMT. We also combine
the BM of each PSN indicating the policies contain it. Each
entry of PMT is given a port group number (PGN)
according to the order of its appearance, and has a BM
tagged to it. The BM is formed by an OR operation of the
two BMs form SP and DP. Table.3 provides a reference
and the foundation process is just like Table.2.

Note that the BMs are not physically stored in lookup table;
they are only used in the setup of lookup tables and will be
released after PLT established.

PLT
Table.4 shows an example of PLT, which is generated from
Table.2 and Table.3. The table is 5 by 7 in size because

Table.2 engages 5 different AGN with BM indicating
policy sets: {1,2}, {1}, {0}, {0,1,2}, {2} and Table.3
engages 7 different PGN with BM indicating policy sets:
{1}, {0}, {0,1},{0,1,2}, {0,2}, {1,2}, {2}.

Each entry of PLT is filled with a policy number. We
combine the BMs of AGN and PGN, and then pick out the
policy number of the highest priority. For example, AGN#0
has a BM indicating policy sets {1,2} while PGN#2 has a
BM indicating policy sets {0,1,2}, then the result of the
combination will be rule sets {1,2}. We fill the entry
corresponding to AGN#0 and PGN#2 with policy 1 because
of its higher priority.

AMT SA#0 SA#1 SA#2 SA#3
DA#0 1,2 1,2 1
DA#1 0 0,1,2 1,2 1
DA#2 2 2

Policy 0 falls into SA segments 0 through 1, and DA segment 1; policy 1 falls into
SA segments 1 through 3, and DA segments 0 through 1; policy 2 falls into SA
segment 1 through 2, and DA segments 0 through 2.

Table.2 AMT structure and setup

PMT SP#0 SP#1 SP#2 SP#3
DP#0 1 1
DP#1 0 0,1 0,1,2 0,2
DP#2 1 1,2 2

Policy 0 falls into all SP segments, and DP segment 1; policy 1 falls into SP segment
1, and all DA segments; policy 2 falls into SP segments 1 through 2, and DP
segments 1 through 2.

Table.3 PMT structure and setup

PLT AGN#0 AGN#1 AGN#2 AGN#3 AGN#4
PGN#0 1 1 1
PGN#1 0 0
PGN#2 1 1 0 0(1)
PGN#3 1(2) 1 0 0(1,2) 2
PGN#4 2 0 0(2) 2
PGN#5 1(2) 1 1(2) 2
PGN#6 2 2 2

Table.4 PLT structure and setup

Policy Lookup for Packet Classification

1. Parse the header of a received packet to get DA,
SA, DP, and SP;

2. Travel corresponding balanced binary trees to get
the DASN and SASN according to DA and SA,
respectively;

3. Travel corresponding balanced binary trees or
lookup corresponding tables to get the DPSN and
SPSN according to DP and SP, respectively;

4. Lookup AMT to get AGN by using the (DASN,
SASN) pair as indexes;

5. Lookup PMT to get PGN by using (DPSN, SPSN)
pair as indexes;

6. Lookup PLT to ultimately find the policy number
by using (AGN, PGN) pair as indexes.

 5

A Simple Example of HSM
We present a simple example of a HSM that showing the
complete HSM operation including preprocessing to set up
the tables based on a given policy table and to perform
policy lookup to determine the actions to the packet under
inspection. The example is shown in Figure.6 in the
Appendix, which is based on a four-tuples searching case of
Table.7, also in the Appendix.

IV. EXPERIMENTAL RESULTS
Theoretical Analysis
Assume we have N policies, the height of balanced binary
tree used to hold all the boundary information of IP
segments is log(2N+1). A policy lookup in F fields will
only need to travel through at most F balanced binary trees
for compare and branch, then lookup log(F-1) tables.
Therefore, the worst case computational complexity of
policy lookup is O(logN) in time. In general, a F-tuple
HSM search with N policies will have time complexity of
O(Flog(2N+1)+log(F-1)), or O(logN) when 2<F<<N.

Using the four-tuple search described earlier as an example.
Assuming we have a case of 1024 policies. The SASN and
DASN trees are of maximum height 11. To travel these two
trees, we need maximum 22 times compare and branch. If
we use the direct table lookup to determine the port
segment, only 2 times memory access is needed. To index
through AMT, PMT and PLT, three times of table lookup
are needed, which means 3 times of memory access. Totally,
we need maximum 22 compare and branch plus 5 table
lookups to locate the right policy by HSM.

When there are N policies, the maximum size of PLT is
O(N4), and the worst case size of AMT and PMT are both
(2N+1)*(2N+1), as there could be at most 2N+1 IP address
or port number segments for N entries in a policy table.

However, with real-life policy tables, there is structural
redundancy among policies as observed by Gupta [5, 6]. In
the example shown in the Appendix where N=3, the size of
AMT and PMT are both 4 by 3, rather than (2N+1)*(2N+1)
or 7 by 7, and the size of PLT is 5 by 7, rather than in the
order of N2 *N2 or 49 by 49. Therefore, due to the
elimination of overlapping, memory requirement in practice
(average cases) are far less than theoretical worst cases.

Experimental Results
Experimental results are shown in Figure.3 and Figure.4,
which provide comparisons of RFC and HSM on average
lookup time and memory occupied. The testing policy table
is a real-life ACL from Tsinghua University, Beijing, China.

From Figure.3, we can see that lookup time of HSM is
slower than RFC, and the time has little change when the
number of rules grows. This result is consistent with
theoretical analysis. We know that RFC needs 9 memory
accesses during one lookup process [5] regardless of
number of policies, while HSM needs 4*log (N) + 3
memory accesses for N policies. When N is on the order of

1,000, HSM average lookup time is determined by 15~19
memory accesses.

200 400 600 800 1000 1200 1400 1600 1800 2000
30

35

40

45

50

55

60

65

70

75

80

Number of rules

Lo
ok

up
 T

im
e(

m
s)

Time Complexity

RFC

HSM

Total lookup time of 122,936 packets.

Figure.3 Comparison of average lookup time

From Figure.4 we can see that HSM is superior to RFC in
space complexity. With the number of policies grows to
above 2 kB, HSM can save more than 3 MB fast memory
space compared to RFC.

 Number of
rules

Memory
use of
RFC(k)

Memory
use of
HSM(k)

FW1 69 797 41
FW2 341 910 262
CR1 1001 1,666 923
CR2 2180 13,840 10,062

Table.5 Comparisons of memory occupied

For more test to evaluate performance of HSM algorithm,
we managed to obtain 4 real-life policy tables from
enterprise networks and major ISPs. The two firewall
policy tables are named FW1, FW2, the two router access
control lists are called CR1, CR2. Table.5 shows us a
comparison between HSM and RFC on memory occupied.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

2000

4000

6000

8000

10000

12000

Number of Rules

M
em

or
y

oc
cu

pi
ed

(k
)

Space Complexity

RFC

HSM

Figure.4 Comparison of memory requirement

We can explain the efficiency in space requirement on the
structure level. Figure.1 has shown us the packet flow in
HSM, while the following Figure.5 will give us the logical
chart of RFC.

 6

Figure.5 Packet flow in RFC

In Figure.5, HSA indicates the high 16 bits of Source
Address and LSA stands for the low 16 bits of Source
Address. The same formula can be extended to HDA and
LDA. We consider the same rule sets in comparison
between RFC and HSM. Assume that in RFC, HSA has R1
segments, and that LSA has R2 segments, and HDA R3
segments, LDA R4 segments, SP R5 segments, DP R6
segments. Meantime, we suppose that in HSM, SA has H1
segments, DA H2 segments, SP H3 segments, DP H4
segments.

Obviously, R5 is equal to H3 and R6 is equal to H4. And it
can be concluded that R1+R2 >= H1 and R3+R4 >= H2.
We have R1*R2 > R1+R2 and R3*R4 > R3+R4 when R1,
R2, R3, R4 > 2. So we get the inequations R1*R2 > H1 and
R3*R4 > H2, from which it results to R1*R2*R5 > H1*H3
and R3*R4*R6 > H2*H4. Thus we get the point that HSM
requires less memory than RFC in phase1. And we have
described before that HSM used trees in phase0 rather than
chunks, it only stores the start and end IP addresses of
fragments. So it needs much less memories than RFC. The
two decreases in memory determine that HSM is superior to
RFC in space consuming, for the memories occupied in
phase2 are just the same, that is because the segments of the
two chunks of phase1 must be the same.

Comparison with Other Packet Classification Schemes

Table.6 shows a qualitative comparison of some of the
schemes for packet classification.

Schemes Advantages Disadvantages
Grid-of-trie Good storage

requirements and fast
lookup rates for two
fields. Suitable for
large policy tables.

Not easily extendible to
more than two fields.
Not suit-able for non-
contiguous masks.

Corss-
producting

Fast accesses.
Suitable for multiple
fields. Can be adapted
to non-contiguous
masks.

Large memory
requirements. Suitable
without caching for
small policy tables.

RFC Suitable for multiple
fields. Works for non-
contiguous masks.
Fast lookup rate.

Large preprocessing
time and memory
requirements for large
policy tables.

HiCuts Suitable for multiple
fields. Performs well
for non-overlapped
rules. Good tradeoff
between time and
space.

Large preprocessing
time and memory
requirements for large
policy tables. Not
stable for different
policy lookups.

HSM Suitable for multiple
fields. Fast lookup
rate. Reasonable
memory requirements
for real-life policy
lookup.

Large preprocessing
time and not small
memory requirements
for large policy tables.

Table.6 Comparison of popular algorithms

Perspective on IPv6
The development of NGI and the proposition of IPv6 set
new challenges to packet classification algorithms. The
present tree-based algorithms like Grid-of-trie and HiCuts
will encounter big problems. The increasing of tree depth
would result in the boom in storage requirements and make
the policy lookup time-consuming. Cross-producting and
RFC might not be effective any more because of oppressive
space needed. But the proposed algorithm in the paper will
perform well under IPv6 structure, for it is the fragments of
SA, DA, SP, and DP that determines the storage
requirements. The space needed increases when the
numbers of fragments increase, but would not change a lot
when the IP address bit length increases. It just needs more
memory to store the longer IP addresses in phase0.

The HSM algorithm was successfully implemented in wire-
speed giga-bit security gateway products commercialized
by ServGate Technologies, Inc. The system was built based
on two Intel IXP1200 network processors each handling
inbound and outbound network traffic, respectively. Test
was carried out with line-rate packet flows generated by
Spirent SmartBit to pass through the system, with the
percentage of denied traffic (packets dropped by the action
of the last policy which denies all packets not explicitly
permitted by any other policies) increasing from 0% to
100% cross all different packet sizes and various policy
table sizes. It was shown that the packets allowed by the
explicitly defined policies, which permit the respective
packet flows, passed the system almost unaffected, meaning
the policy lookup is not the bottleneck. Note that session
lookup or stateful inspection was implemented in the
system so that allowed traffic flows had almost no load on
policy lookup, except the first packet of each flows. In
cases where policy lookup is the bottleneck, as denied
traffic becomes heavy, processing power of the systems
would be drew too much to perform policy lookup for
denied traffic as each packet rather than flow need to go
through packet lookup individually, and therefore packets
are dropped randomly, causing throughput degraded faster
than linear.

Packet

H
S
A

Phase0

L
S
A

H
D
A

L
D
A

S
P

D
P

C
hunk#0

C
hunk#1

R
esults

Phase1 Phase2

 7

V. CONCLUSION
Due to the characteristics of ordered and overlapping
policies, packet classification on multiple fields cannot be
expedited by policy sorting prior to policy lookup or policy
cache during policy lookup. To achieve high-performance
policy lookup, special hardware and associated algorithms
can be applied but they introduce additional cost. Those
hardware solutions are usually neither flexible nor scalable.
The HSM algorithm proposed in this paper provided a
novel generic solution that can be implemented either in
software or hardware, with reasonably balanced time and
space computational complexity.

Future work can be conducted in optimization of date
structure to further improve lookup and update efficiency
by leveraging on modern network processor architecture.

VI. ACKNOWLEDGEMENT
The authors would like to acknowledge ServGate and
related engineers of the company for the support and
contribution to the study and experiment. Thanks also due
to Dr. Enke Chen and Mr. Yaxuan Qi, for their help in
providing data and contributing their thoughts.

VII. REFERENCE
[1] M.H. Overmars and A.F. van der Stappen, Range

Searching and Point Location Among Fat Objects,
Journal of Algorithms, Vol. 21, No. 3, 1996.

[2] David E. Taylor, Survey & Taxonomy of Packet
Classification Techniques, Technical Report of
Washington University in Saint-Louis, 2004.

[3] V. Srinivasan, G. Varghese, S. Suri, and M.
Waldvogel, Fast and Scalable Layer Four Switching,
Proc. ACM SIGCOMM, 1998.

[4] P. Gupta and N. McKeown, Algorithms for Packet
Classification, IEEE Network, 2001.

[5] P. Gupta and N. McKeown, Packet Classification on
Multiple Fields, Proc. ACM SIGCOMM, 1999.

[6] P. Gupta and N. McKeown, Packet Classification
Using Hierarchical Intelligent Cuttings, Proc. Hot
Interconnects, 1999.

[7] F. Baboescu, S. Singh, and G. Varghese, Packet
Classification for Core Routers: Is There an Alternative
to CAMs? Proc. INFOCOM, 2003.

[8] T.Y.C Woo, A Modular Approach to Packet
Classification: Algorithms and Results, Proc. IEEE
INFOCOM, 2000.

[9] Y.X Qi and J. Li, Dynamic Cuttings: Packet
Classification with Network Traffic Statistics,
submitted to Proc. INFOCOM, 2004

[10] L. Qiu, G. Varghese, and S. Suri, Fast Firewall
Implementation for Software and Hardware Based
Routers, Proc. ICNP, 2001.

[11] F. Baboescu and G. Varghese, Packet
Classification Using Multidimensional Cutting, Proc.
ACM SIGCOMM, 2003.

 8

VIII. APPENDIX
Rule SA Range DA Range SP Range DP Range Action
(0) 0.0.0.0~64.0.0.0 32.0.0.0~64.0.0.0 0~65535 128~256 deny
(1) 32.0.0.0~255.255.255.25 0.0.0.0~64.0.0.0 64~256 0~65535 permit
(2) 32.0.0.0~128.0.0.0 0.0.0.0~255.255.255.255 128~65535 128~65535 deny

Table.7 Policy table used for example

Figure. 6 This figure shows the contents of HSM tables for the example of Table.7.
The sequences of accesses made by the example packet have been shown in grayed blanks.

