
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll14/15llpp432-439 2
Volume 16, Number 4, August 2011

High-Performance Packet Classification on Multi-Core
Network Processing Platforms*

QI Yaxuan ()1,2, XUE Yibo ()2,3, LI Jun ()2,3,**

1. Department of Automation, Tsinghua University, Beijing 100084, China;

2. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;
3. Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

Abstract: Packet classification is crucial to the implementation of advanced network services that require the

capability to distinguish traffic in different flows, such as access control in firewalls and protocol analysis in

intrusion detection systems. This paper proposes a novel packet classification algorithm optimized for

multi-core network processors. The proposed algorithm, AggreCuts, has an explicit worst-case search time

with modest memory usage. The data structure of AggreCuts is flexible and well-adapted to different types

of multi-core platforms. The algorithm on both Intel IXP2850 32-bit and Cavium OCTEON3860 64-bit

multi-core platforms was implemented to evaluate the performance of AggreCuts. The experimental results

show that AggreCuts outperforms the best-known existing algorithm in terms of memory usage and classifi-

cation speed.

Key words: packet classification; multi-core; performance evaluation

Introduction

Keeping network operation and information exchange
efficient and secure is highly desired. The resulting
network services, such as policy-based routing, service
differentiation, access control, and load balancing, re-
quire the discrimination of packets based on the multi-
ple fields of packet headers. This process is called
packet classification. To reach multi-Gbps packet clas-
sification speed, there are currently two types of solu-
tions: software-based solutions on general-purpose
processors and hardware-based solutions on ASIC/
FPGA or Ternary CAMs. However, existing solutions
have inherent limitations.

• Software-based packet classification Soft-
ware-based algorithmic solutions embrace the practice
of leveraging the statistical structure of classification
rule sets to improve average performance. However,
due to the bottleneck of computation capacity and
memory hierarchy of general-purpose CPUs, software
solutions implemented on this platform cannot meet
the line rate packet classification requirement of
high-end products[1].

• Hardware-based packet classification Hard-
ware-based solutions trade programmability for proc-
essing speed, and they achieve extremely high packet
classification speeds by using proprietary hardware.
However, the use of application-specific hardware,
such as Ternary CAMs, requires too much power and
board area to support a large number of rules. There-
fore, hardware-based solutions usually mean higher
production costs and a longer time-to-market[2].

Thus, the challenge of combining intelligent soft-
ware algorithms and flexible hardware platforms to

Received: 2011-01-05; revised: 2011-06-07

** Supported by the National High-Tech Research and Development
(863) Program of China (No. 2007AA01Z468)

** To whom correspondence should be addressed.
E-mail: junl@tsinghua.edu.cn; Tel: 86-10-62796400

QI Yaxuan () et al. High-Performance Packet Classification on Multi-Core …

433

minimize the unfavorable characteristics of existing
solutions is motivating current research efforts. As an
emerging class of programmable processors highly
optimized for fast packet processing operations, multi-
core network processors deliver hardware-level per-
formance to software-programmable systems[3-5]. In
this paper, we propose a packet classification algorithm
optimized for multi-core network processing platforms
to achieve near line rate packet classification perform-
ance. The main contributions of this paper are as
follows.

• An efficient packet classification algorithm
The proposed AggreCuts algorithm has explicit
worst-case classification speed with modest memory
usage[6]. We developed a controllable space partition
strategy to limit the worst-case memory access times
and a bitmap aggregation technique to reduce memory
storage. Compared to the best-known existing algo-
rithm, AggreCuts requires 85% less memory access
time and uses 90% less memory storage.

• System-level implementation and evaluation
The AggreCuts algorithm was implemented on two
different state-of-the-art multi-core network processing
platforms. In our evaluation on real systems, Aggre-
Cuts outperformed the best-known existing algorithm
with near line rate throughput on both Intel IXP2850[3]
and Cavium OCTEON3860 multi-core platforms[4].

1 Background

Generic packet classification classifies a packet ac-
cording to the multiple fields of its header. Based on
certain specifications on the F fields of the packet
header, each rule specifies a flow to which a packet
belongs. Each rule has F components, and the i-th
component of a rule R, referred to as R[i], is a prefix or
range match expression on the i-th field of the packet
header. A packet P is said to match a particular rule R
if i , the i-th field of the header of P, satisfies the ex-
pression R[i]. If a packet P matches multiple rules, the
matching rule with the highest priority is returned[6].

Packet classification can be viewed as a point loca-
tion problem in a multi-dimensional search space[7]. It
has been proven that the best bounds for point location
in N non-overlapping F-dimensional hyper-rectangles
are ()N storage with 1(log)F N search time or

()FN storage with (log)N search time[8]. Al-
though the theoretical bounds make it impossible to

design a single algorithm that performs well for all
cases, real-life rule sets have inherent characteristics
that can be exploited to reduce the complexity in both
search time and storage space. Existing algorithmic
solutions for packet classification can be categorized
based on two classification strategies[6]:

• Field-independent search RFC[9] and HSM[10]
perform independent parallel searches on indexed ta-
bles; the results of the table searches are combined in
multiple phases to generate the final classification re-
sult. All the entries of a lookup table are stored con-
secutively in memory. The indices of a table are ob-
tained by space mapping and each entry corresponds to
a particular sub-space and stores the search result at the
current stage. Algorithms using parallel search are very
fast in term of classification speed, but they may re-
quire exponentially large memories to store the
cross-producting tables.

• Field-dependent search HiCuts[11] and Hyper-
Cuts[12] are examples of algorithms that employ
field-dependent searches, i.e., the search results ob-
tained along the fields that have already been searched
influence the way in which subsequent fields are
searched. Field-dependent algorithms are often based
on a decision tree data structure with linear searches at
leaf-nodes, and they are commonly considered to be
more efficient in terms of memory use compared to
field-independent search algorithms. However, these
algorithms cannot guarantee explicit worst-case search
time due to the uncontrollable decision tree depth and
the number of linear searches, and thus cannot provide
a stable worst-case classification speed for different
rule sets.

In practice, it is difficult for existing network proc-
essing platforms to satisfy the excessive memory re-
quirement of field-independent algorithms for large
rule sets. In contrast, algorithms that use
field-dependent searches are more flexible with regard
to optimization for network processor implementation.
Accordingly, the presented AggreCuts algorithm is
based on field-dependent search. Unlike existing solu-
tions, AggreCuts uses a controllable space partition
strategy to limit the worst-case memory access times
and employs aggregated bitmaps to reduce memory
usage. Therefore, AggreCuts achieves both a determi-
nistic worst-case bound for search speed and small
memory usage.

 Tsinghua Science and Technology, August 2011, 16(4): 432-439

434

2 AggreCuts Algorithm

Field-independent search algorithms on multi-core
network processing platforms cannot achieve determi-
nistic worst-case classification speed with modest
memory usage[13]. AggreCuts improves on existing
algorithms by using the following strategies:

(1) Fixing the number of cuttings at internal
nodes If the number of cuttings is fixed to 2w (w is a
constant referred to as stride), the current search space
is then always segmented into 2w sub-spaces at each
internal node. This guarantees a worst-case bound of

(/)W w , where W is the bit width of the packet
header.

(2) Aggregating consecutive sub-spaces Because
consecutive sub-spaces are very likely to have the
same sub-set of rules, we can compress these sub-
spaces and hence reduce the number of next-node
pointers.

(3) Eliminating the next-node pointer array
Because the number of next-node pointers has been
reduced by space aggregation, and because the size of
a next-node pointer is comparable to the size of a child
node, we can eliminate the pointer array by replicating
the child nodes.

Consider the common 5-tuple packet classification
problem, where W=104. If w is fixed to 8, the
worst-case depth of the decision tree is no greater than

104/8=13. Although w=8 means that at each internal
node there are 256 next-node pointers, after space ag-
gregation the number of sub-spaces can be signifi-
cantly reduced (less than 10 in most cases). So we can
eliminate the 256 next-node pointers by directly link-
ing the current node with a small number of child
nodes stored in continuous memory space. Figures 1
and 2 are examples of the HiCuts algorithm and the
proposed AggreCuts algorithm, respectively.

To effectively reduce the memory usage, the bitmap
technique is used to aggregate consecutive sub-spaces.
After each cutting, the current search space is parti-
tioned into 2w sub-spaces. Consecutive sub-spaces
containing the same rules are then aggregated to M
(2)wM aggregated sub-spaces. This space aggrega-
tion is represented by a 2w-bit space aggregation bit-
map (SAB): (1) set the first bit as ‘1’; (2) if the next
sub-space is merged into the previous one, set it as ‘0’;
(3) else, set the next bit as ‘1’. After setting the SAB,
M child nodes are created in continuous memory space
(each node has an identical size), and the memory ad-
dress of the first child node (denoted as addr) is stored
in its parent node. During classification, if the packet
falls in the m-th sub-space (1)m M , we can locate
the address of the corresponding child node as follows:
(1) count the number of ‘1’s in the first m bits of the
SAB, denoted as space_id; (2) compute the address by
addr + space_id*sizeof(node).

Fig. 1 HiCuts example

QI Yaxuan () et al. High-Performance Packet Classification on Multi-Core …

435

Fig. 2 AggreCuts example

With the SAB, the memory-consuming next-node
pointer array is removed from the node structure,
leaving only a bitmap with a single first-child pointer.
However, to achieve fast classification speed, the fixed
number of cuttings is large, which will still result in a
large node size. For example, assume w=8, the size of
the SAB is thus 28=256 bits, or 32 bytes. Accordingly,
at each internal node, we need to load 32 bytes from
memory. Since the tree depth is 104/8=13, the overall
memory access time required to classify a single
packet is more than 400 bytes, which might be too
much for a practical memory bandwidth budget to
reach multi-Gbps[1]. In addition, counting the ‘1’s in all
the 256 bits is also a heavy burden that may also re-
duce the processing performance.

Fortunately, in our experiments on a variety of
real-life rule sets, we have found that the number of

child nodes of a given internal tree node is usually very
small. For example, with 256 cuttings at each internal
node, the average number of child nodes is less than 10,
i.e., M<10 in most cases. This observation indicates
that the number of bits set as ‘1’ in the SAB is small,
and this motivates us to compress the SAB to further
reduce the number of memory accesses.

Figure 3 illustrates how to use the hierarchical space
aggregation bitmap (HSAB) to further compress the
data structure of internal nodes. Define the sizes of the
SAB and HSAB as 2w and 2v, respectively, and let
u=w v. To compress the 2w bit SAB: (1) divide the 2w
SAB into 2v consecutive sub-bitmaps; (2) set the first
bits in the HSAB as ‘1’; (3) set the i-th bit of the
HSAB as ‘1’ if the i-th sub-bitmap of the SAB contains
at least one ‘1’; (4) else, set the i-th bit of the HSAB as
‘0’.

Fig. 3 Hierarchical space aggregation

A bit set in an HSAB indicates that a different se-
quence of the consecutively identical sub-array of

pointers starts at the corresponding position. At the
same time, whenever a bit is set, its corresponding

 Tsinghua Science and Technology, August 2011, 16(4): 432-439

436

sub-array of pointers is appended in the compressed
pointer array (CPA). Accordingly, the n-th pointer in
the original point array can be located as follows:
(1) extract the higher v bits of n to get a v-bit value m;
(2) extract the lower u bits of n to form a u-bit value j;

(3) add 0-m bits of the HSAB to get a sub-array index i;
(4) use ((i<<u)+j) as the index to load the correspond-
ing pointer from the CPA. The flowchart of AggreCuts
is shown in Fig. 4. The 32-bit and 64-bit data structures
of AggreCuts are shown in Fig. 5.

Fig. 4 Flowchart of AggreCuts

Fig. 5 32-bit and 64-bit implementation of AggreCuts

3 Performance Evaluation

We evaluated the proposed AggreCuts algorithm with
real-life rules. The performance of AggreCuts was then

compared to the performance of one of the most popu-
lar algorithms, HiCuts[11], through both software simu-
lation and hardware tests.

QI Yaxuan () et al. High-Performance Packet Classification on Multi-Core …

437

3.1 Data sets and testbeds

Our research focuses on real-life rule sets because ex-
perimental results on these rule sets are more convinc-
ing than those obtained on synthetic rules. We evalu-
ated all the packet classification algorithms on real-life
firewall and core router rule sets. The rule sets are
SET01, SET02, , SET07[14]. The largest real-life rule
set (SET07) contains 1945 rules. All rules are 5-dimen-
sional with 32-bit source/destination IP addresses,
16-bit source/destination port numbers, and 8-bit
transport layer protocols. Table 1 shows the character-
istics of these rule sets. Input packets are set to match
the worst-case search condition.

Our testbeds are 32-bit Intel IXP2850[3] and 64-bit
Cavium OCTEON3860[4] multi-core network process-
ing platforms. The IXP2850 architecture (shown in Fig.
6) uses multiple processing micro-engines (ME) where

Table 1 7 real-life rule sets in our test

Name Number of rules Length of prefix
SET01 68
SET02 136
SET03 340

30-32 for destination IP
0 and 16 for source IP

SET04 500
SET05 1000
SET06 1530
SET07 1945

Mainly 32 for destination IP
Vary from 0-32 for source IP

each ME has 8 hardware threads. All MEs work in
parallel running at 1.4 GHz. The IXP2850 has 4 chan-
nels of QDR SRAM running at 233 MHz and 3 chan-
nels of RDRAM running at 127.3 MHz. The IXP2850
also has flexible 32-bit media switch interfaces. Each
interface is configurable as media standard SPI-4 or
CSIX-L1 interfaces[6].

Fig. 6 Intel IXP2850 architecture

The architecture of the OCTEON3860 is shown in
Fig. 7. The OCTEON3860 has 16 MIPS cores running
at 500 MHz, and its network interfaces consist of eight
1 Gbps RGMII ports. Memory hierarchy includes
1 MB shared L2 cache, 2 GB DDR2 SDRAM, and
8x16 MB RLDRAM. The PIP unit receives packets
from the network; then the POW unit schedules pack-
ets (as a work) to different cores for packet processing;
and finally packets are sent out from the PKO unit.

3.2 Software simulations

In our software simulations, we evaluated the worst-
case memory access times and the memory usage of

AggreCuts. From Fig. 8, we can see that the worst-case
memory accesses of AggreCuts is less than 20% of that
of HiCuts. This is because the worst-case tree depth of
HiCuts depends on the data structure of the rule set,
while that of AggreCuts is set-independent due to the
fixed stride cutting scheme. Such a definite worst-case
memory access is expected to guarantee stable per-
formance of high-speed flow classification on the net-
work processor.

The memory usages of AggreCuts and HiCuts are
shown in Fig. 9. It can be seen that AggreCuts uses
significantly less memory than HiCuts. Specifically,
AggreCuts requires less than 5.3 MB of memory space,

 Tsinghua Science and Technology, August 2011, 16(4): 432-439

438

Fig. 7 Cavium OCTEON3860 architecture

Fig. 8 Memory access comparison

Fig. 9 Memory usage comparison

which is smaller than the size of a single SRAM chip
on the IXP2850 network processor (there are three
8 MB SRAM chips on the IXP2850). In comparison,
the memory usage of HiCuts on SET07 is larger than
28 MB, which exceeds the total memory size of all
three SRAM chips.

3.3 Hardware performance

Figures 10 and 11 show the throughput of the

AggreCuts algorithm on two different multi-core plat-
forms. For the IXP2850 platform, we used 64-byte
Ethernet packets as the input traffic and set each packet
to match the longest tree path (i.e., each packet will
incur the worst-case memory access). From Fig. 10, we
can see that the AggreCuts algorithm achieves over 8.8
Gbps throughput on the IXP2850 platform (100%
throughput is 10 Gbps). In contrast, the HiCuts algo-
rithm achieves less than 2 Gbps throughput.

Fig. 10 Throughput on the IXP2850

Figure 11 shows the throughput of AggreCuts and
HiCuts on the OCTEON3860 multi-core platform. For
the OCTEON platform, we used different packet sizes
in our test. From Fig. 11, we can see that the Aggre-
Cuts algorithm achieves over 3 times more throughput
than HiCuts on 64-byte Ethernet packets. As the packet
size increases, the AggreCuts algorithm has near linear
speedup and reaches 100% throughput (8 Gpbs) with
512-byte and larger packets. In comparison, the HiCuts

QI Yaxuan () et al. High-Performance Packet Classification on Multi-Core …

439

algorithm cannot reach the 100% line rate even with
1518-byte packets.

Fig. 11 Throughput on the OCTEON3860

4 Conclusions

Packet classification is crucial to the implementation of
several advanced network services that require the ca-
pability to distinguish traffic in different flows, such as
firewalls, intrusion detection systems, and many QoS
implementations. To reach multi-Gbps packet classifi-
cation speed, this computation-intensive task can util-
ize new generation network processors to perform at
nearly the line rate. In this paper, we have proposed the
AggreCuts algorithm which has explicit worst-case
search time with modest memory usage. The data
structure of AggreCuts is also optimized for multi-core
platforms. To evaluate the performance of AggreCuts,
we implemented the algorithm on both Intel IXP2850
32-bit and Cavium OCTEON3860 64-bit multi-core
platforms. The experimental results show that Aggre-
Cuts outperform the best-known existing algorithm in
terms of memory usage and classification speed.

References

[1] Naik U, Chandra P. Designing High-Performance Net-
working Applications. USA: Intel Press, 2004.

[2] Sherwood T, Varghese G, Calder B. A pipelined memory
architecture for high throughput network processors. In:
Proceedings of the 30th ACM/IEEE International Sympo-
sium on Computer Architecture (ISCA). San Diego, USA,

2003.
[3] IXP2850. http://www.intel.com/design/network/products/

npfamily/ixp2xxx.htm. 2010.
[4] OCTEON3860. http://www.caviumnetworks.com/OCTEON-

Plus_CN38XX_solutions.html. 2010.
[5] XRL732. http://www.netlogicmicro.com/Products/Multi-

Core/XLP.asp. 2010.
[6] Qi Yaxuan, Xu Bo, He Fei, et al. Towards optimized packet

classification algorithms for multi-core network processors.
In: Proceedings of the International Conference on Parallel
Processing (ICPP). Xi’an, China, 2007.

[7] Overmars M H, Van der Stappen A. Range searching and
point location among fat objects. Lecture Notes in Com-
puters Science, 1994, 855/1994: 240-253.

[8] Gupta P, McKewon N. Algorithms for packet classification.
IEEE on Network, 2001, 15(2): 24-32.

[9] Gupta P, McKeown N. Packet classification on multiple
fields. In: Proceedings of ACM SIGCOMM. Boston, USA,
1999.

[10] Xu Bo, Jiang Dongyi, Li Jun. HSM: A fast packet classifi-
cation algorithm. In: Proceedings of the 19th International
Conference on Advanced Information Networking and Ap-
plications (AINA). Taipei, China, 2005.

[11] Gupta P, McKeown N. Packet classification using hierar-
chical intelligent cuttings. In: Proceedings of Hot Inter-
connects. California, USA, 1999.

[12] Singh S, Baboescu F, Varghese G, et al. Packet classifica-
tion using multidimensional cutting. In: Proceedings of
ACM SIGCOMM. Karlsruhe, Germany, 2003.

[13] Qi Yaxuan, Xu Lianghong, Yang Baohua, et al. Packet
classification algorithms: From theory to practice. In: Pro-
ceedings of the 28th IEEE International Conference on
Computer Communications (INFOCOM). Rio de Janeiro,
Brazil, 2009: 648-656.

[14] Qi Yaxuan, Xu Bo, He Fei, et al. Towards high-perform-
ance flow-level packet processing on multi-core network
processors. In: Proceedings of the 3rd ACM/IEEE Sympo-
sium on Architectures for Networking and Communica-
tions Systems (ANCS). Orlando, USA, 2007.

