
TSINGHUA SCIENCE AND TECHNOLOGY 
ISSNll1007-0214ll14/15llpp432-439 2  
Volume 16, Number 4, August 2011 

 

High-Performance Packet Classification on Multi-Core  
Network Processing Platforms* 

QI Yaxuan ( )1,2, XUE Yibo ( )2,3, LI Jun (  )2,3,** 

 
1. Department of Automation, Tsinghua University, Beijing 100084, China; 

2. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China; 
3. Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China 

 
Abstract: Packet classification is crucial to the implementation of advanced network services that require the 

capability to distinguish traffic in different flows, such as access control in firewalls and protocol analysis in 

intrusion detection systems. This paper proposes a novel packet classification algorithm optimized for 

multi-core network processors. The proposed algorithm, AggreCuts, has an explicit worst-case search time 

with modest memory usage. The data structure of AggreCuts is flexible and well-adapted to different types 

of multi-core platforms. The algorithm on both Intel IXP2850 32-bit and Cavium OCTEON3860 64-bit 

multi-core platforms was implemented to evaluate the performance of AggreCuts. The experimental results 

show that AggreCuts outperforms the best-known existing algorithm in terms of memory usage and classifi-

cation speed.  
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Introduction 

Keeping network operation and information exchange 
efficient and secure is highly desired. The resulting 
network services, such as policy-based routing, service 
differentiation, access control, and load balancing, re-
quire the discrimination of packets based on the multi-
ple fields of packet headers. This process is called 
packet classification. To reach multi-Gbps packet clas-
sification speed, there are currently two types of solu-
tions: software-based solutions on general-purpose 
processors and hardware-based solutions on ASIC/     
FPGA or Ternary CAMs. However, existing solutions 
have inherent limitations. 

• Software-based packet classification Soft-
ware-based algorithmic solutions embrace the practice 
of leveraging the statistical structure of classification 
rule sets to improve average performance. However, 
due to the bottleneck of computation capacity and 
memory hierarchy of general-purpose CPUs, software 
solutions implemented on this platform cannot meet 
the line rate packet classification requirement of 
high-end products[1]. 

• Hardware-based packet classification Hard-
ware-based solutions trade programmability for proc-
essing speed, and they achieve extremely high packet 
classification speeds by using proprietary hardware. 
However, the use of application-specific hardware, 
such as Ternary CAMs, requires too much power and 
board area to support a large number of rules. There-
fore, hardware-based solutions usually mean higher 
production costs and a longer time-to-market[2]. 

Thus, the challenge of combining intelligent soft-
ware algorithms and flexible hardware platforms to 
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minimize the unfavorable characteristics of existing 
solutions is motivating current research efforts. As an 
emerging class of programmable processors highly 
optimized for fast packet processing operations, multi-    
core network processors deliver hardware-level per-
formance to software-programmable systems[3-5]. In 
this paper, we propose a packet classification algorithm 
optimized for multi-core network processing platforms 
to achieve near line rate packet classification perform-
ance. The main contributions of this paper are as    
follows.  

• An efficient packet classification algorithm  
The proposed AggreCuts algorithm has explicit 
worst-case classification speed with modest memory 
usage[6]. We developed a controllable space partition 
strategy to limit the worst-case memory access times 
and a bitmap aggregation technique to reduce memory 
storage. Compared to the best-known existing algo-
rithm, AggreCuts requires 85% less memory access 
time and uses 90% less memory storage.  

• System-level implementation and evaluation  
The AggreCuts algorithm was implemented on two 
different state-of-the-art multi-core network processing 
platforms. In our evaluation on real systems, Aggre-
Cuts outperformed the best-known existing algorithm 
with near line rate throughput on both Intel IXP2850[3] 
and Cavium OCTEON3860 multi-core platforms[4]. 

1  Background 

Generic packet classification classifies a packet ac-
cording to the multiple fields of its header. Based on 
certain specifications on the F fields of the packet 
header, each rule specifies a flow to which a packet 
belongs. Each rule has F components, and the i-th 
component of a rule R, referred to as R[i], is a prefix or 
range match expression on the i-th field of the packet 
header. A packet P is said to match a particular rule R 
if i , the i-th field of the header of P, satisfies the ex-
pression R[i]. If a packet P matches multiple rules, the 
matching rule with the highest priority is returned[6]. 

Packet classification can be viewed as a point loca-
tion problem in a multi-dimensional search space[7]. It 
has been proven that the best bounds for point location 
in N non-overlapping F-dimensional hyper-rectangles 
are ( )N  storage with 1(log )F N  search time or 

( )FN  storage with (log )N  search time[8]. Al-
though the theoretical bounds make it impossible to 

design a single algorithm that performs well for all 
cases, real-life rule sets have inherent characteristics 
that can be exploited to reduce the complexity in both 
search time and storage space. Existing algorithmic 
solutions for packet classification can be categorized 
based on two classification strategies[6]: 

• Field-independent search  RFC[9] and HSM[10] 
perform independent parallel searches on indexed ta-
bles; the results of the table searches are combined in 
multiple phases to generate the final classification re-
sult. All the entries of a lookup table are stored con-
secutively in memory. The indices of a table are ob-
tained by space mapping and each entry corresponds to 
a particular sub-space and stores the search result at the 
current stage. Algorithms using parallel search are very 
fast in term of classification speed, but they may re-
quire exponentially large memories to store the 
cross-producting tables.  

• Field-dependent search HiCuts[11] and Hyper-
Cuts[12] are examples of algorithms that employ 
field-dependent searches, i.e., the search results ob-
tained along the fields that have already been searched 
influence the way in which subsequent fields are 
searched. Field-dependent algorithms are often based 
on a decision tree data structure with linear searches at 
leaf-nodes, and they are commonly considered to be 
more efficient in terms of memory use compared to 
field-independent search algorithms. However, these 
algorithms cannot guarantee explicit worst-case search 
time due to the uncontrollable decision tree depth and 
the number of linear searches, and thus cannot provide 
a stable worst-case classification speed for different 
rule sets. 

In practice, it is difficult for existing network proc-
essing platforms to satisfy the excessive memory re-
quirement of field-independent algorithms for large 
rule sets. In contrast, algorithms that use 
field-dependent searches are more flexible with regard 
to optimization for network processor implementation. 
Accordingly, the presented AggreCuts algorithm is 
based on field-dependent search. Unlike existing solu-
tions, AggreCuts uses a controllable space partition 
strategy to limit the worst-case memory access times 
and employs aggregated bitmaps to reduce memory 
usage. Therefore, AggreCuts achieves both a determi-
nistic worst-case bound for search speed and small 
memory usage. 
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2 AggreCuts Algorithm 

Field-independent search algorithms on multi-core 
network processing platforms cannot achieve determi-
nistic worst-case classification speed with modest 
memory usage[13]. AggreCuts improves on existing 
algorithms by using the following strategies:  

(1) Fixing the number of cuttings at internal 
nodes  If the number of cuttings is fixed to 2w (w is a 
constant referred to as stride), the current search space 
is then always segmented into 2w sub-spaces at each 
internal node. This guarantees a worst-case bound of 

( / )W w , where W is the bit width of the packet 
header.  

(2) Aggregating consecutive sub-spaces  Because 
consecutive sub-spaces are very likely to have the 
same sub-set of rules, we can compress these sub-     
spaces and hence reduce the number of next-node 
pointers. 

(3) Eliminating the next-node pointer array  
Because the number of next-node pointers has been 
reduced by space aggregation, and because the size of 
a next-node pointer is comparable to the size of a child 
node, we can eliminate the pointer array by replicating 
the child nodes. 

Consider the common 5-tuple packet classification 
problem, where W=104. If w is fixed to 8, the 
worst-case depth of the decision tree is no greater than  

104/8=13. Although w=8 means that at each internal 
node there are 256 next-node pointers, after space ag-
gregation the number of sub-spaces can be signifi-
cantly reduced (less than 10 in most cases). So we can 
eliminate the 256 next-node pointers by directly link-
ing the current node with a small number of child 
nodes stored in continuous memory space. Figures 1 
and 2 are examples of the HiCuts algorithm and the 
proposed AggreCuts algorithm, respectively.  

To effectively reduce the memory usage, the bitmap 
technique is used to aggregate consecutive sub-spaces. 
After each cutting, the current search space is parti-
tioned into 2w sub-spaces. Consecutive sub-spaces 
containing the same rules are then aggregated to M 
( 2 )wM aggregated sub-spaces. This space aggrega-
tion is represented by a 2w-bit space aggregation bit-
map (SAB): (1) set the first bit as ‘1’; (2) if the next 
sub-space is merged into the previous one, set it as ‘0’; 
(3) else, set the next bit as ‘1’. After setting the SAB, 
M child nodes are created in continuous memory space 
(each node has an identical size), and the memory ad-
dress of the first child node (denoted as addr) is stored 
in its parent node. During classification, if the packet 
falls in the m-th sub-space (1 )m M , we can locate 
the address of the corresponding child node as follows: 
(1) count the number of ‘1’s in the first m bits of the 
SAB, denoted as space_id; (2) compute the address by 
addr + space_id*sizeof(node). 

 
Fig. 1  HiCuts example 
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Fig. 2  AggreCuts example 

With the SAB, the memory-consuming next-node 
pointer array is removed from the node structure, 
leaving only a bitmap with a single first-child pointer. 
However, to achieve fast classification speed, the fixed 
number of cuttings is large, which will still result in a 
large node size. For example, assume w=8, the size of 
the SAB is thus 28=256 bits, or 32 bytes. Accordingly, 
at each internal node, we need to load 32 bytes from 
memory. Since the tree depth is 104/8=13, the overall 
memory access time required to classify a single 
packet is more than 400 bytes, which might be too 
much for a practical memory bandwidth budget to 
reach multi-Gbps[1]. In addition, counting the ‘1’s in all 
the 256 bits is also a heavy burden that may also re-
duce the processing performance. 

Fortunately, in our experiments on a variety of 
real-life rule sets, we have found that the number of 

child nodes of a given internal tree node is usually very 
small. For example, with 256 cuttings at each internal 
node, the average number of child nodes is less than 10, 
i.e., M<10 in most cases. This observation indicates 
that the number of bits set as ‘1’ in the SAB is small, 
and this motivates us to compress the SAB to further 
reduce the number of memory accesses. 

Figure 3 illustrates how to use the hierarchical space 
aggregation bitmap (HSAB) to further compress the 
data structure of internal nodes. Define the sizes of the 
SAB and HSAB as 2w and 2v, respectively, and let 
u=w v. To compress the 2w bit SAB: (1) divide the 2w 
SAB into 2v consecutive sub-bitmaps; (2) set the first 
bits in the HSAB as ‘1’; (3) set the i-th bit of the 
HSAB as ‘1’ if the i-th sub-bitmap of the SAB contains 
at least one ‘1’; (4) else, set the i-th bit of the HSAB as 
‘0’.  

 
Fig. 3  Hierarchical space aggregation 

A bit set in an HSAB indicates that a different se-
quence of the consecutively identical sub-array of 

pointers starts at the corresponding position. At the 
same time, whenever a bit is set, its corresponding 
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sub-array of pointers is appended in the compressed 
pointer array (CPA). Accordingly, the n-th pointer in 
the original point array can be located as follows:    
(1) extract the higher v bits of n to get a v-bit value m; 
(2) extract the lower u bits of n to form a u-bit value j; 

(3) add 0-m bits of the HSAB to get a sub-array index i; 
(4) use ((i<<u)+j) as the index to load the correspond-
ing pointer from the CPA. The flowchart of AggreCuts 
is shown in Fig. 4. The 32-bit and 64-bit data structures 
of AggreCuts are shown in Fig. 5. 

 
Fig. 4  Flowchart of AggreCuts 

 
Fig. 5  32-bit and 64-bit implementation of AggreCuts 

3 Performance Evaluation 

We evaluated the proposed AggreCuts algorithm with 
real-life rules. The performance of AggreCuts was then 

compared to the performance of one of the most popu-
lar algorithms, HiCuts[11], through both software simu-
lation and hardware tests. 
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3.1 Data sets and testbeds  

Our research focuses on real-life rule sets because ex-
perimental results on these rule sets are more convinc-
ing than those obtained on synthetic rules. We evalu-
ated all the packet classification algorithms on real-life 
firewall and core router rule sets. The rule sets are 
SET01, SET02, , SET07[14]. The largest real-life rule 
set (SET07) contains 1945 rules. All rules are 5-dimen-
sional with 32-bit source/destination IP addresses, 
16-bit source/destination port numbers, and 8-bit 
transport layer protocols. Table 1 shows the character-
istics of these rule sets. Input packets are set to match 
the worst-case search condition. 

Our testbeds are 32-bit Intel IXP2850[3] and 64-bit 
Cavium OCTEON3860[4] multi-core network process-
ing platforms. The IXP2850 architecture (shown in Fig. 
6) uses multiple processing micro-engines (ME) where  

Table 1  7 real-life rule sets in our test 

Name Number of rules Length of prefix 
SET01  68 
SET02 136 
SET03 340 

30-32 for destination IP 
0 and 16 for source IP 

SET04  500 
SET05 1000 
SET06 1530 
SET07 1945 

Mainly 32 for destination IP 
Vary from 0-32 for source IP 

   

each ME has 8 hardware threads. All MEs work in 
parallel running at 1.4 GHz. The IXP2850 has 4 chan-
nels of QDR SRAM running at 233 MHz and 3 chan-
nels of RDRAM running at 127.3 MHz. The IXP2850 
also has flexible 32-bit media switch interfaces. Each 
interface is configurable as media standard SPI-4 or 
CSIX-L1 interfaces[6]. 

 
Fig. 6  Intel IXP2850 architecture 

The architecture of the OCTEON3860 is shown in 
Fig. 7. The OCTEON3860 has 16 MIPS cores running 
at 500 MHz, and its network interfaces consist of eight 
1 Gbps RGMII ports. Memory hierarchy includes 
1 MB shared L2 cache, 2 GB DDR2 SDRAM, and 
8x16 MB RLDRAM. The PIP unit receives packets 
from the network; then the POW unit schedules pack-
ets (as a work) to different cores for packet processing; 
and finally packets are sent out from the PKO unit. 

3.2 Software simulations 

In our software simulations, we evaluated the worst-    
case memory access times and the memory usage of 

AggreCuts. From Fig. 8, we can see that the worst-case 
memory accesses of AggreCuts is less than 20% of that 
of HiCuts. This is because the worst-case tree depth of 
HiCuts depends on the data structure of the rule set, 
while that of AggreCuts is set-independent due to the 
fixed stride cutting scheme. Such a definite worst-case 
memory access is expected to guarantee stable per-
formance of high-speed flow classification on the net-
work processor. 

The memory usages of AggreCuts and HiCuts are 
shown in Fig. 9. It can be seen that AggreCuts uses 
significantly less memory than HiCuts. Specifically, 
AggreCuts requires less than 5.3 MB of memory space,  
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Fig. 7  Cavium OCTEON3860 architecture 

 
Fig. 8  Memory access comparison 

 
Fig. 9  Memory usage comparison 

which is smaller than the size of a single SRAM chip 
on the IXP2850 network processor (there are three 
8 MB SRAM chips on the IXP2850). In comparison, 
the memory usage of HiCuts on SET07 is larger than 
28 MB, which exceeds the total memory size of all 
three SRAM chips. 

3.3  Hardware performance 

Figures 10 and 11 show the throughput of the     

AggreCuts algorithm on two different multi-core plat-
forms. For the IXP2850 platform, we used 64-byte 
Ethernet packets as the input traffic and set each packet 
to match the longest tree path (i.e., each packet will 
incur the worst-case memory access). From Fig. 10, we 
can see that the AggreCuts algorithm achieves over 8.8 
Gbps throughput on the IXP2850 platform (100% 
throughput is 10 Gbps). In contrast, the HiCuts algo-
rithm achieves less than 2 Gbps throughput.  

 
Fig. 10  Throughput on the IXP2850 

Figure 11 shows the throughput of AggreCuts and 
HiCuts on the OCTEON3860 multi-core platform. For 
the OCTEON platform, we used different packet sizes 
in our test. From Fig. 11, we can see that the Aggre-
Cuts algorithm achieves over 3 times more throughput 
than HiCuts on 64-byte Ethernet packets. As the packet 
size increases, the AggreCuts algorithm has near linear 
speedup and reaches 100% throughput (8 Gpbs) with 
512-byte and larger packets. In comparison, the HiCuts 
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algorithm cannot reach the 100% line rate even with 
1518-byte packets. 

 
Fig. 11  Throughput on the OCTEON3860 

4 Conclusions 

Packet classification is crucial to the implementation of 
several advanced network services that require the ca-
pability to distinguish traffic in different flows, such as 
firewalls, intrusion detection systems, and many QoS 
implementations. To reach multi-Gbps packet classifi-
cation speed, this computation-intensive task can util-
ize new generation network processors to perform at 
nearly the line rate. In this paper, we have proposed the 
AggreCuts algorithm which has explicit worst-case 
search time with modest memory usage. The data 
structure of AggreCuts is also optimized for multi-core 
platforms. To evaluate the performance of AggreCuts, 
we implemented the algorithm on both Intel IXP2850 
32-bit and Cavium OCTEON3860 64-bit multi-core 
platforms. The experimental results show that Aggre-
Cuts outperform the best-known existing algorithm in 
terms of memory usage and classification speed.  
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