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Abstract 
 

Network intrusion prevention system (NIPS) becomes 
more complex due to the rapid growth of network 
bandwidth and requirement of network security. However 
existing solutions, either hardware-based or software-
based cannot obtain a good tradeoff between 
performance and flexibility. In this paper, we propose a 
parallel NIPS architecture using emerging network 
services processor. To resolve the problems and 
bottlenecks of high-speed processing, we investigate the 
main design aspects which have dramatic impacts on 
most parallel network security system implementations: 
efficient and flexible pipeline and parallel processing, 
flow-level packet-order preserving, and latency hiding of 
deep packet inspection. To these key points, we address 
several optimizations and modifications with an 
architecture-aware design principle to guarantee high 
performance and flexibility of the NIPS on a network 
services processor implementation. Performance 
evaluation shows that, our prototype NIPS on Cavium 
OCTEON3860 processor can reach line-rate stateful 
inspection and multi-Gbps deep inspection performance. 
 
 
1. Introduction 
 

Facing the rapid growth of Internet bandwidth and 
continual emergence of new network applications, 
network systems require high-performance packet 
processing, which drives critical functions in network 
processing, such as policy processing and data flow 
control, to be merged into the data-plane [1]. And the 
functions in data-plane are becoming rich along with this 
trend. Take security territory for example, in order to 
perform finer-accuracy and higher-granularity processing, 
deep packet inspection (DPI) becomes the necessary 
module of security systems, such as NIPS and Anti-Virus 

Gateway. As all these new changes arise, it is a big 
challenge to the network system design and 
implementation. In general, network systems must match 
the following requirements: 1) network systems must 
have high performance adapted to the high-speed network; 
2) network systems should be able to implement the ever-
increasing applications; 3) network systems should be 
more extensible to be easily updated. 

According to system requirements, device 
manufacturers have proposed different solutions. For 
high-end products, application specific integrated circuit 
(ASIC) / field programmable gate array (FPGA) based 
solution is commonly used [4][5]. This solution can 
achieve higher speed, but the disadvantages are also 
obvious: high risk, high cost and low flexibility. At low-
end, the solution is based on X86 series generic 
processors and is able to meet the flexibility with low cost. 
However, this solution cannot be adapted to high-speed 
networks due to the limit of processor architecture. Thus, 
many chip manufacturers, such as Intel and Freescale 
[6][7], bring the concept of network processor (NP) with 
optimized architecture and dedicated instruction set to 
suffice line-rate packet processing. With the recent 
advance in technology, the industry extends the NP 
concept and proposes a newly designed multi-core 
network processor with security and application hardware 
acceleration engines, Network Services Processor (NSP) 
[3]. It not only reserves the traditional NP’s advantages, 
but also provides high performance, high flexibility, low 
cost, and low power. 

Deploying the NIPS, such a complicated network 
system, over NSP platform is also a challenge. The NIPS 
has complex data flow and different computing intensity 
tasks. It is required to balance the system’s performance 
and flexibility. In this paper, we propose a parallel NIPS 
architecture based on Cavium OCTEON3860. Main 
contributions of this paper are: 
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 System Design: We present an effective parallel 
NIPS architecture to meet both performance and 
flexibility. It also provides the facility of 
extending the system’s functions. We describe all 
modules’ functions in detail, and analyze the 
issues and bottlenecks. As a summary, 
architecture-aware NIPS design principles are 
proposed. 

 System Optimization: To optimize the 
performance of NIPS on NSP platform, we use 
different coprocessors of NSP to break the 
following system bottlenecks: i) inflexibility of 
parallel and pipeline processing mode; ii) flow-
level packet-order preserving over multi-cores; iii) 
slow pattern matching for deep packet inspection. 

 System Deployment: The proposed NIPS is 
implemented as a prototype system on Cavium 
OCTEON3860 NSP. And experimental results 
show that the NIPS obtains line-rate stateful 
inspection throughput, and 2Gbps deep inspection 
performance. 

The rest of this paper is organized as follows. Section 
2 introduces the background of both NIPS and NSP. 
Section 3 presents the parallel NIPS architecture and 
discusses the challenges of implementation. Section 4 
introduces the solutions to the bottlenecks in detail along 
with the guidance of network system design on multi-core 
NSP. Section 5 presents the experimental results and 
performance evaluation. Finally, section 6 concludes and 
discusses our work. 
 
2. Background 
 

Many research and industrial entities have proposed 
various solutions for high-performance NIPS. Most of 
them are implemented by adding stateful firewall and 
policy modules to the intrusion detection system (IDS) to 
make IDS obtain the ability of blocking attacking flow 
initiatively. 

In general, there are hardware-based and software-
based solutions. Among hardware-based implementations, 
A. Mitra, W. Najjar and L. Bhuyan compile the Perl 
compatible regular expressions (PCRE) library to FPGA 
to accelerate the intrusion detection of Snort [8], the most 
popular IDS which performs intrusion detection by 
comparing every incoming and outgoing packet against a 
rule set [11]. It achieves a significant speed up compared 
with the implementation on Intel architecture (IA), using 
a set of very limited rules. Sourdis and Pnevmatikatos 
implement independent comparison pipelines on FPGA to 
perform fast and large-scale pattern matching at a speed 
of multiple characters per clock cycle [9]. J. M. Gonzalez, 
V. Paxson, and N. Weaver propose a newly designed 
packet processing model – Shunting and implement it on 
FPGA to improve IPS performance [10]. They also adapt 

the Bro IDS to work with Shunting. The performance of 
these systems is well improved; however, it is obvious 
that all solutions based on hardware have high cost and 
low flexibility.  

Among software-based implementations, most of the 
researches are around the optimization of Snort. Figure 1 
shows the processing loop of Snort. Intel has proposed 
two kinds of Snort parallelism on IA [12], but only 
performing packets processing by multi-process of Snort 
or simply implementing a naive scheduler without the 
optimization for shared resources. These solutions cannot 
reach even 1Gbps throughput. Aiming at these unresolved 
issues, D.L. Schuff, Y. R. Choe and V. S. Pai research on 
data sharing between multi-thread in both packet-level 
and flow-level parallelization and achieve an average 
1.09Gbps throughput [13]. Because this work is still 
based on the IA platform and just tested with local-stored 
traffic traces, the real performance on the advanced NSP 
platform is still unveiled.  

As the solutions discussed above, the software-based 
IDS/IPS using IA platform can hardly meet the 
performance requirement of high-speed network, while 
hardware-based solutions are less flexible and often mean 
higher R&D costs. Therefore, it is necessary to search for 
other solutions to balance both sides. 

The newly designed multi-core network processor with 
security and application hardware acceleration engines 
simplifies the network system design and implementation 
under current application background. It can be used in 
various networking equipments, including unified threat 
management appliances, content-aware switches, 
application-aware gateways, and storage networking 
equipments [2]. Its emergence provides us an appropriate 
approach to deploy the NIPS efficiently and flexibly. 

Figure 2 shows the architecture of OCTEON3860 NSP. 
The processor has 16 MIPS cores and several 
coprocessors, including DFA hardware engine. The 
Packet Input Processing/Input Packet Data (PIP/IPD) unit 
receives packets from the wire, and then the Packet Order 
/ Work (POW) unit schedules packets to different 
processing engines for packet processing. Finally packets 
are sent out from Packet Output Processing (PKO) unit. 
More details about OCTEON processor 3860 can be 
found in [14]. 
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Figure 1. The packet processing loop of Snort 
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3. Parallel NIPS architecture 
 
3.1. Design 
 

The NIPS scans every incoming packet according to 
preset security policies. Once attacks in the traffic are 
detected, the NIPS takes prevention actions immediately. 
Due to different requirements, we divide the system into 
two different granularity inspections: stateful inspection 
and deep inspection. Stateful inspection tracks and 
validates connection-level packet information stored in 
packet headers, while deep inspection scans the overall 
packet payload for attack signatures. In consideration of 
both extensibility and flexibility, our NIPS architecture is 
proposed in figure 3: 

Packet Receiving Module: It receives packets from 
wire, and performs packet analysis based on Layer 2 to 
Layer 4 headers. Then it passes the analysis results and 
packets to the scheduler module. 

Scheduler Module: Based on the preprocessed results, 
this module schedules packets to different processing 
engines. It also provides packet-order preserving function 
and critical area protection for the traffic. 

Stateful Inspection Module: It performs session 
management and stateful inspection. After the security 
policy is processed, it decides whether to pass packets to 
deep inspection module or only to send packets out. 

Packet Transmitting Module: According to the 
priority, this module submits packets of different flows to 
different output queues, and then transmits packets to the 
wire. 

The above four modules compose the fast-path to 
guarantee the rapid packet forwarding. 

On the basis of the fast-path, the system is able to 
schedule packets to different upper processing engines by 
scheduler module. And the engine of upper processing 
can be extended according to the system requirement. For 
example, the anti-virus module can be easily added. In 
our prototype system, the upper processing module is 
only the intrusion detection module. 

Intrusion Detection Module: This module is 
responsible for deep inspection – intrusion detection by 
matching the payload of packets to the preset rule sets. 

And it is separated into four submodules: Decoder, 
Preprocessor, Detection and Alert. Decoder performs 
protocol analysis from Layer 2 to Layer 4 for the 
following process. Preprocessor performs necessary 
examination and manipulation before packets are handed 
to the detection, including IP fragment and flow 
reassembly. Detection checks packets against various rule 
sets by examining the aspect or field of packets. Alert 
generates alert messages when attacks are detected. 
 
3.2. Challenges 
 

Processing Model: The NIPS has complex processing 
modules and different compute intensities of various 
granularity detections, therefore we map the inspections, 
stateful inspection and deep inspection, into two different 
data paths to guarantee the system’s high forwarding 
efficiency. This not only avoids the compute-intensive 
function’s long occupancy of computing resources, but 
also provides the flexibility of different combinations of 
pipeline processing in accordance with system 
requirements. Moreover, in order to improve the 
performance of each processing stage, we assign 
parallelizable tasks to different cores to make parallel 
processing. As a result, it is necessary to perform both 
pipeline processing and parallel processing in NIPS. 

Packet-order Preserving: Being a network system, 
the NIPS need to send the packets in same flow by their 
incoming order. This is the principle of network system 
design and also is the requirement of high-layer protocols. 
Take transfer control protocol (TCP) for example, if the 
network system doesn’t maintain the sequence, disorder 
will happen and be amplified during the transmitting. As a 
result, the receiver will get poor TCP performance. 
Besides, packets in the same flow must be kept in order 
when accessing the critical areas of processing loop, 
otherwise relative functions, such as stateful inspection 
will get error. Therefore, packet-order preserving scheme 
should also be carefully considered. 

DPI Acceleration: DPI is the processing bottleneck, 
which is recognized by both academia and industry. 
Software-based algorithms are hardly adapted to high-
speed traffic processing because: Firstly, during the DFA 
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Figure 3. The parallel NIPS architecture 
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graph walking, each node access of a DFA graph depends 
on the previous node and the next input character, and the 
performance is limited by the node access time. However, 
in software-based algorithm, DFA graphs are usually 
stored in memory whose access latency is large. Besides, 
DFA graph walking is character dependent and hence 
cannot get benefit from general CPU caching scheme. 
Also, large and/or multiple DFA graphs result in 
excessive capacity/conflict misses and unnecessary cache 
trashing [15]. So we need an optimized DFA processing 
engine and low latency memory used for storing the DFA 
walk graph. 

Based on the discussion above, the problems are: 
 How to build the NIPS architecture with efficient 

and flexible pipeline and parallel processing. 
 How to guarantee the packet order at flow level 

with full use of system resources and low costs. 
 How to accelerate detection processing in 

intrusion detection module. 
 
4. Implementation of parallel NIPS on NSP 
 

OCTEON processor includes a large variety of 
application specific offload and acceleration engines, such 
as compression/decompression, encryption/decryption, 
DFA and checksum engines. These engines help us to 
offload compute-intensive tasks of simple control logic 
and improve the system’s performance. 
 
4.1. All-in-one scheduler 
 

As Section 3.2 shows, the system should perform 
efficient and flexible pipeline processing and parallel 
processing, and the scheduler module plays a great 
important role in the system. Since the generic processor 
is hardly competent for this task, the scheduler must be 
implemented in an efficient and specific coprocessor. In 
OCTEON processor, POW hardware unit is responsible 
for this function. This unit has the following important 
features [14]: 

 Maintaining eight hardware queues for all 
incoming packets to provide different service 
levels. And the input work queues can be 
infinitely large if necessary. 

 Scheduling and descheduling packets to different 
processing groups, which avoid consuming one 
core for this function. And the hardware supports 
a maximum of 16 groups  

 Ordering and synchronization of packets. This 
unit associates a tag value/type tuple to each 
packet to support this feature. 

In pipeline processing mode, the whole packet 
processing is separated into several stages, and each core 
handles one or more processing stages. Packets are passed 
from one stage to the next until the processing is 

completed. In OCTEON processor, we utilize the group 
scheme: each processing stage is mapped into one group; 
packets from different groups are processed by different 
processing engines. Besides this advantage, one 
processing engine can be set to receive packets from 
different groups, and call relative functions to process. 
The whole processing based on group scheme can be 
described as follows: when the processing of the task with 
group X is completed, the current processing engine 
changes the group number from X to Y, then deschedules 
the task and sends it back to POW. The POW picks the 
processing engine which is responsible for packets of 
group Y processing, and reschedules the task to it. Figure 
4 shows the group-based pipeline process mapping: 

During each pipeline stage, we parallelize the 
processing to improve the performance. According to the 
packet’s group and the status of the group-related cores, 
POW can choose the idle core to process the packet 
automatically. 

In the implementation of our system, we set four 
groups for system processing: ORIG_GRP, TO_DO_ID 
_GRP, DFA_RESULT_GRP, and ID_RESULT_GRP 
which is separately used for representing the original 
packets, the packets which need intrusion detection after 
stateful inspection, the results of DFA processing, and the 
packets after intrusion detection. Six cores are selected for 
stateful inspection, and configured for processing packets 
from ORIG_GRP and ID_RESULT _GRP. The other ten 
cores are for intrusion detection along with the DFA 
hardware engine, and configured with TO_DO_ID_GRP 
and DFA_RESULT_GRP. 
 
4.2. Flow-level packet-order preserving 
 

As shown in Section 3.2, flow-level packet order must 
be guaranteed by every network system. From the 
network system’s point of view, the packet-order 
preserving solution is typically software-based ordered 
thread execution [16], but it demands signal 
communication between every processing engine which is 
complicated for software design. POW’s ORDERED tag 
type keeps the packets in inbound order, and simplifies 
the programming.  

From the critical area’s point of view, in multi-core 
environment, we can lock the critical area to make sure 
that only one packet in the same flow can access the 
critical area in a certain time. It is obvious that 
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Figure 4. The group-based pipeline mapping 
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lock/unlock is a waste of system resources. POW’s 
ATOMIC tag type guarantees that the packets from the 
same flow, which means they have the same tag value, are 
serially processed in inbound order. So when accessing 
the critical areas, we need not to lock them, avoiding the 
consuming of the system resources. Figure 5 compares 
the ORDERED tag type packet processing with the 
ATOMIC tag type packet processing. 

The tag scheme’s advantage is not only keeping 
packets in order at different levels, but also switching 
flexibly between ORDERED and ATOMIC. When 
accessing the non-critical area, we can set the packets’ tag 
value to ORDERED to parallelize the processing of the 
packets in the same flow; when accessing the critical area, 
we only perform a tag switch to ATOMIC, and the 
packets will be serially processed in ingress order 
automatically. 

In the implementation of our prototype system, the 
session management and the TCP states transition in the 
stateful inspection module need the serial access, as well 
as the reassembly preprocess and the detection in the deep 
inspection module. So only before entering these critical 
areas, we perform a tag switch from ORDERED type to 
ATOMIC type. Thus, the other parts can be parallelized 
to make full use of the system resources. 
 
4.3. DPI acceleration 
 

In the intrusion detection module, the detection 
submodule occupies the most processing time, while the 
multi-pattern matching is the highest time-consuming part 
with an average of 48 percentage of the whole module 
processing [13]. Nowadays the software-based algorithm 
running on general CPU isn’t suit for high-speed traffic 
processing, so we accelerate the multi-pattern matching 
by using DFA hardware engine. This acceleration unit has 
16 DFA thread engines, the low-latency DRAM controller, 
and the instruction-input logic. In order to make further 
improvement, several optimizations have been done as 
follows: 

Firstly, depending on the asynchronous mode of the 
DFA hardware engine, the generic processor performs 
necessary preprocess, including IP fragment and flow 
reassembly, then submits the packets to the DFA 
hardware engine for multi-pattern matching, and 

continues the other preprocesses and detections. The 
packets are shared between the generic processor and the 
DFA hardware engine. Once the DFA hardware engine 
completes the DFA walk, it passes the multi-pattern 
matching result to the POW. Then the generic processor 
gets the multi-pattern matching result from the POW and 
submits the final intrusion detection result to the stateful 
inspection module, including the results of other 
detections. In this way, we hide the latency of multi-
pattern matching by parallelizing the multi-pattern match 
processing and other detections. 

Secondly, as Section 3.2 discusses, during the DFA 
graph walk, each status transition is one memory access. 
The access latency of the SRAM which is the main 
memory of this system is above 40ns, so the memory 
access latency has great impact on system’s performance. 
In the system implementation, we store the DFA walking 
graph in reduced latency DRAM (RLDRAM) whose 
access latency is about 15~20ns, and can be accessed 
through two dedicated low latency memory (LLM) 
channels. 
 
4.4. System Deployment 
 

Based on the discussion above, we finally implement 
the prototype system which is described as below: 

The PIP/IPD unit performs preprocessing and 
checksum on every incoming packet and all packets here 
are labeled with ORIG_GRP and ORDERED tag type. 
According to the group type, the POW unit submits 
packets to the stateful inspection module. During the 
stateful inspection, a tag switch from ORDERED to 
ATOMIC will be executed after packets decapping, then 
the module will call session functions. After the stateful 
inspection, the traffic which needs deep inspection is 
labeled with TO_DO_ID_GRP and submitted back to 
POW unit. Then the POW assigns packets to the intrusion 
detection module. And in this module, multi-pattern 
matching will be offloaded to the DFA hardware engines, 
while the other detections will performed by generic 
processors. After the DFA walking results is received, the 
intrusion detection module will hand in these results 
accompanied with the other detection results to the 
stateful inspection module. The stateful inspection judges 
from the detection results to decide the action it will take.  

In figure 6, we can state that all optimizations shown 
below speed up and flexiblize the system processing. 

1) The efficient and specific coprocessor is used for 
scheduler, which guarantees the efficiency of scheduling. 
We can map different processing stages into different 
groups, which helps us to perform flexible pipeline and 
parallel processing. 

2) Tag-based flow-level packet-order preserving 
scheme simplifies the programming, and its flexible tag 
switch helps us to perform both packet-level and flow-
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level parallel process during the whole packet processing 
with the full use of system’s computing resources. 

3) Hardware-based DPI processing improves the 
system performance. We modify the detection flow to 
parallelize the multi-pattern matching by DFA hardware 
engines and the other detections by generic processor, so 
we hide the latency of multi-pattern matching to a large 
extent. Besides this, RLDRAM with two LLM channels 
also reduce the memory access latency. 

Based on the NIPS design and implementation, we 
provide several guidelines for building an efficient 
network system on NSP platform. 

 Use group-based pipeline processing when 
necessary. Map different processing stages to 
different groups and call related functions. It is 
recommended to use different binary to do 
pipeline processing, if the performance must be 
guaranteed. 

 Maximize the packet-level parallelism during 
each processing stage. Only switch to flow-level 
parallelism by tag switch when stateful function 
is called. 

 It is recommended to use DFA hardware engine 
asynchronous mode to parallelize the generic 
processing and the DFA processing. 

 
5. Experiments and performance analysis 
 

In this section, the proposed parallel NIPS architecture 
is evaluated. First we will describe the development 
platform and test environments, then we show the 
comparing test results to illustrate our solution’s 
advantage, and finally we present the prototype system’s 
performance. 
 
5.1. Development platform and test environments 
 

The prototype system is running on Lanner MR950 
series evaluation board. It includes one Cavium 
OCTEON3860 processor of 16 MIPS64 cores, eight 
RGMII interfaces connected to eight Gigabit ports which 
ensures maximum throughput and performance, two built-

in DDR2 DIMM sockets with 2GB DDR2 400MHz main 
memory and 128MB RLDRAM onboard connected to 
two dedicated low latency memory channels to satisfy the 
requirements of the DPI applications. More detailed 
information can be found in [17]. 

The target system is based on Snort 2.4.3 which has 
around 5500 rules. We replace the multi-pattern matching 
algorithm with the DFA hardware walking to offload the 
compute intensive tasks, and several preprocessing 
sequence are modified for improving the performance. 
The Cavium Software Development Kit’s version is 1.5.0 
build 195. 

There’re two types of testing flow. One is the traffic 
generated by SmartBit 600, which is UDP flows of 
different packet size, and the other one is the traffic 
generated by two test machines which communicate with 
each other by multiple sessions using hyper text transfer 
protocol (HTTP) protocol.  
 
5.2. Scheduler efficiency 
 

Figure 7 shows the throughput of POW scheduler and 
generic MIPS64 core scheduler. The POW scheduler 
works under ATOMIC tag type, and the generic MIPS64 
core scheduler only submits packets to the other 15 
MIPS64 cores averagely without load balance and packet-
order preserving functions. In order to investigate the 
tasks impacting on efficiency, we compare the pure 
scheduling and scheduling with jhash which is commonly 
used in Linux kernel network stack. We can see that 
regardless of the packet size, the POW scheduler can 
adapt to line-rate processing. On the contrary, the generic 
MIPS64 core scheduler is competent for only scheduling 
the packets of 256 Bytes or above to the other processing 
engines. And adding only the hash function significantly 
slows down the throughput. Therefore, it is wasteful of 
using one generic MIPS64 core to perform simple 
scheduling, and it is also susceptible to the amount of 
tasks. The scheduler should be implemented in a 
dedicated coprocessor. 
 
5.3. Packet-order preserving 
 

In classic NP, like Intel IXP28XX, the ordered thread 
execution is used for packet order preserving. An ordered 
critical section is used for reading the packets off the 
scratch ring form the previous stage. Then the engines 
process the packets, which may cause out of order during 
this stage. At the end of the dispatch loop, another ordered 
critical section is used for correcting the order. And inter-
thread signaling is also used for the implementation [16]. 
From the discussion, we can see that the transmitting 
order should match the reading off order, and the first-in 
and last-out packet will cause the other processing 
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engines waiting for order preserving. The ORDERED tag 
scheme ensures processing engines not idling away after 
processing packets, avoiding inter-thread signaling and 
leaving the order preserving to the POW scheduler. 
Therefore, it highly improves the system’s performance 
and also is convenient for performing flexible pipeline 
and parallel processing discussed next. 
5.4. Parallelization at different level 
 

Figure 8 shows the comparison between pure 
ATOMIC tag type processing and ORDERED, ATOMIC 
tag types mixed processing. The throughput is tested on 
four MIPS64 cores. By Amdahl’s Law, we can achieve 
higher speedup, if sequential parts of the program are 
fewer and the extra cost of parallelization is lower. In the 
case of fewer flows or high percentage of long lifetime 
flows, the pure ATOMIC tag type processing doesn’t 
make full use of computing resources for its whole 
serialized processing. Therefore, we separate the whole 
processing into packet-level parallelization and flow-level 
parallelization using a tiny-cost tag switch between them. 
We can see that there is a slight slowdown of the 
throughput when mixed processing is used for multiple 
flows. While used for the real Internet traffic streams 
where the tortoises, defined as flows which have long 
lifetimes, and carries a large portion of the total bytes on 
links [18], the performance illustrated in figure 8 can be 
improved to a certain extent. 
 

5.5. DFA walking accelerating 
 

Table 1 shows the comparison of throughput between 
software DFA and hardware DFA using RLDRAM. The 
test is based on subset of Snort rules. We built HardDFA 
using DFA tools provided by Cavium, and built SoftDFA 
using AC [19] algorithms. The HardDFA is stored in 
RLDRAM, and the SoftDFA is stored in DDR2 DRAM. 
We can see that under the memory size limitation and 
whatever the DFA size is, the performance of hardware 
DFA is almost unchanged. On the contrary, the software 
DFA’s performance goes down along with the increase of 
the DFA’s size. 
 
5.6. Stateful inspection performance 
 

Figure 9 shows the performance of stateful inspection 
on different processing cores. When tested with the 
minimum Ethernet packets (64Bytes), stateful inspection 
with six cores can nearly reach the linear processing rate. 
Figure 10 shows the performance of stateful inspection on 
different packets size. When using one MIPS64 core, 
stateful inspection processing the 512-Byte packet can 
reach the linear processing rate.  
 
5.7. Deep inspection performance 
 

Table 2 shows the performance of deep inspection on 
different processing cores and different packet sizes. We 
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Figure 8. The stateful inspection performance 
on different percentage of tortoises 
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can see that deep inspection using ten MIPS64 cores can 
reach 2.18Gbps throughput of normal Ethernet packets 
(MTU is set to 1500), which is limited by DFA hardware 
engine’s bandwidth.  
 
6. Conclusions and future works 
 

In this paper, we present a parallel NIPS architecture 
and also implement the prototype system on NSP 
platform which is newly designed multi-core network 
processing platform. To resolve the problems and 
bottlenecks of high-speed processing, we make full use of 
the application specific offload and acceleration engines 
in the NSP. Experimental results show that, our prototype 
system can reach line-rate stateful inspection and multi-
Gbps deep inspection performance. 

Our proposed architecture shows high flexibility, and 
we can easily add more processing modules on this 
prototype system to enrich the system functions. Besides, 
our performance analysis indicates that the performance 
of deep inspection is limited by the DFA hardware 
engine’s bandwidth. We can adjust the proportion of 
multi-pattern matching using DFA hardware engine to 
improve the system performance further. We will do more 
research on these two directions. 
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Table 1. The DFA performance 
on different DFA size 

The Throughput (Gbps) of HardDFA and SoftDFA 
 320KB 855KB 3086KB 5675KB 9055KB 
HardDFA 2.15 2.15 2.15 2.192 2.2 
SoftDFA 1.12 1.12 0.87 0.524 0.426 

 

Table 2. The deep inspection performance 
The Deep Inspection performance: Throughput (Mbps) 

MTU 1 core 2 cores 4 cores 8 cores 10 cores 
300 70 152 246 358 364 
512 124 268 429 590 660 

1024 245 543 852 1241 1548 
1500 375 947 1539 2179 2185 
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