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New Security Gateway: UTMs
Network security has become one of the 
most critical issues
Standalone security products are not 
effective
Multiple security features need to be 
integrated
Holistic protection results in Unified 
Threat Management (UTM)



The Value of UTMs
Cost-effectiveness

Reducing the number of appliances
lower deployment, management and 
support costs

Easy-to-use
Simplifying the management of complex 
resources and platforms

Application-level gateway
Blocking network threats before they enter 
the internal network



Our Research for UTMs
Packet Classification

Heart of packet filtering firewall
Base of stateful inspection firewall

Pattern Matching
Core of deep inspection firewall
Key in intrusion detection/prevention, and anti-
virus

Integrated Framework 
Flow identification
Order preservation
Defragment and Reassembly
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Packet Classification: Example

Definition
Given N rules, find the action associated with the highest 
priority rule matching an incoming packet

Example
A packet P(192.168.3.32, 166.163.171.71, …, TCP) would have 
action A2 applied to it

Field 1 Field 2 … Field F Action
Rule 1 192.163.190.69/21 166.163.80.11/32 … UDP A1
Rule 2 192.168.3.0/24 166.163.0.0/16 … TCP A2
… … … … … …
Rule N 0.0.0.0/0 0.0.0.0/0 … ANY An



Packet Classification: Complexity
Computational Geometry

Point Location among N non-overlapping regions in F
dimensions
Takes either O(log N) time with O(NF) space or O(N) space 
with O(logF-1N) time 
E.g. N=1000，F=4：1000G space, or 1000 accesses

De-overlapping
N overlapping regions need up to (2N-1)F non-overlapping 
region to represent

Range-to-Prefix
N rules in range [0, 2W-1] need up to N(2W-1) prefixes



Packet Classification: Observations

It is not possible to arrive at a practical worst 
case solution

No application reaches the worst case bound
Real-life rule sets have some inherent data-
structures

No single algorithm performs well in all cases
Different applications require different packet 
classification schemes
Hybrid algorithms might be able to combine the 
advantages of several different approaches



Packet Classification Algorithms
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Related Work: HiCuts

Field-dependent cuttings

Variable number of cuttings

Linear Search required

Rules HiCuts Tree



Related Work: Summary
Decision Tree Algorithms

Pros
Modest memory usage
Good average search speed
Ruleset adaptive

Cons
Non-deterministic worst-case search time
Excessive memory usage for large rulesets
Long preprocessing

Non-deterministic
worst-case search time

Long pre-processing
time 

Variable
stride

Constant
stride

Not rule-adaptive
No t/s tradeoff

To build
the decision

tree
Stride
#cuts



ExpCuts: Novel Ideas
Guarantee the Worst-case Search Time

Constant stride: Fixed number of cuttings

E.g. for 5-tuple packet classification, let stride=8, then tree-
depthworst=(32+32+16+16+8)/8=13 

Reduce the Pointer Array Size
Using bit-string to aggregate contiguous sub-spaces

Further Space Compression
Aggregate non-contiguous sub-spaces

Each point in the array points to a unique sub-space



ExpCuts : Optimization
Compressed Pointer Array (CPA)

Observation: pointer arrays are 
sparse
Compress a sequence of 
consecutively identical pointers as 
one element in CPA

Aggregation Bit String (ABS)
Use ABS to track the appearance 
of unique elements in the pointer 
array
Use population count instruction

Hierarchical ABS (HABS)
Observation: ABS is still too large
Trade memory for speed using 
one bit for multiple pointers



Parameters and Data-structure
Stride w: stride is set to 8 

256 cuttings per level, totally 13 levels
Size of HABS: the size of HABS is set to be 16

HABS can be is stored together with the cutting information within 
a single 32-bit long-word 
Each bit represent 256/16=16 consecutive pointers 



ExpCuts Space Aggregation

Space aggregation
Reduce up to 85% memory usage

Without space aggregation
CR02~04 cannot be implement in the 8MB*3 SRAM chips

With space aggregation
All rule sets can be implemented



ExpCuts Throughput

Vs. HiCuts (no linear search): 3 times faster than HiCuts
Vs. HSM: Stable worst-case performance
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Given an alphabet set S, a pattern P of length m 
and a text T of length n, find if P is in T or the 
position (s) P matches a substring of T, where 
usually m<<n

Considering the pattern P
String

exact string matching
String with errors

approximate string matching
Regular expression

regular expression matching

Definition



Prefix Based Algorithms

Matching forward in the search window

All the characters are read 



Suffix Based Algorithms

Matching backward along the search window
Not all the characters are read due to “shift” 
(“skip”, “leap”), which leads to sublinear average-
case algorithms



Factor Based Algorithms

Matching backwards along the search window
Not all the characters are read, but requires to recognize 
the set of factors (sub pattern) of the pattern (s)



Categorization

RSI

MDH



Wu-Manber Algorithm

A hash table SHIFT to store the shift values of character 
blocks and link the patterns has the same last character block
A hash table PREFIX to discriminate patterns link with the 
HASH entry
SHIFT and HASH share the same hash function
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Wu-Manber Algorithm

Pros: Excellent average time performance
Hash function

Avoid unnecessary character comparison

Cons: 
Bad worse case performance

Ex: {baa, caa, daa} against a string of “a”

Shift distance is limited by length of shortest 
pattern



Pattern Matching Challenges
Large-scale pattern sets: e.g. Clam AntiVirus

Increasing network edge bandwidth: 10Gbps UTM

Performance=E(Shift)/ E(Comparison)  



Motivation and Observations
Shifts are needed when designing high speed 
multi-pattern string matching algorithms for 
large scale pattern sets
Table based algorithms are faster as direct 
table lookup is faster than automaton and trie 
traversing
WM can be improved for large pattern sets as 
two/three character heuristic is not strong 
enough to generate shifts and diminish hash 
collisions



RSI: Recursive Shit Indexing
More heuristic to generate long leaps when 
there is no match

Block Leap Tables (BLT)
Further Leap Table (FLT)

Keep track of the potential matching patterns 
to avoid naïve comparisons with all the 
patterns

Potential Match Table (PMT)

Consider both time and space efficiency
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RSI: Performance
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MDH: Multi-phase Dynamic Hash

Two important improvement on WM
Multi-phase Hash

Dynamic-cut Heuristics

High throughput and low memory 
requirement under large-scale pattern set

High Speed Multi-phase Dynamic Hash String 
Matching Algorithm for Large-scale Pattern set



MDH: Multi-phase Hash

Use big block size (E.g. 4)
SHIFT table

Compressed hash function h1
Reduce table size from 2^32 to 2^a (a<32, e.g. 
a=20)

PMT table
Compressed hash function h2
Handle with all the character blocks has zero shift 
value
Table size is 2^b (b<a<32, e.g. b=17)



MDH: Multi-phase Hash

Reduce zero value entry in SHIFT table

Cut down memory requirement
WM: 2^32+2^32       MDH: 2^a+2^b

Pattern
set size

WM(B=2) WM(B=3) MDH

ZR
(%)

MEM
(MB)

ZR
(%)

MEM
(MB)

ZR
(%)

MEM
(MB)

10k 14.2 0.95 0.059 80.64 0.85 2.42
25k 31.7 1.91 0.149 81.59 1.91 2.98

50k 53.3 3.5 0.297 83.19 3.46 3.93

75k 68.0 5.09 0.446 84.78 4.32 4.87

100k 78.3 6.69 0.594 86.38 6.25 5.81



MDH: Dynamic-cut Heuristics

WM MDH
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MDH: Performance

Real-life pattern set from ClamAV

Algorithm

20k 40k 60k 77k

Thr
(Mbps)

Mem
(MB)

Thr
(Mbps)

Mem
(MB)

Thr
(Mbps)

Mem
(MB)

Thr
(Mbps)

Mem
(MB)

MDH 250.56 3.82 203.28 5.2 174.24 8.08 150.16 10.41

WM 329.52 3.33 126 5.2 66.88 8.53 43.36 11.27

SBOM 69.68 81.87 56.16 162.5 43.76 244.7 36.48 316.84

Lower ZR and APM
Reasonable preprocessing overhead
Improved searching throughput



MDH: Performance
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MDH: Performance
Memory requirement
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Problems

Redundant protocol processing
Security applications are commonly 
deployed in different modules
Each packet header is loaded multiple 
times from the main memory and then 
processed by different modules

Unnecessary deep inspection
Deep inspection is very time-consuming 
and often the bottleneck of a UTM device
Only malicious or dubious traffic needs to 
be processed using deep inspection



Contribution

Algorithm: Integrated protocol 
processing (IPP)

Unnecessary deep inspection can be 
significantly reduced by protocol analysis
Protocol processing can be effectively 
integrated in a single module

Implementation: Network processor
NPs are optimized for network processing
IPP algorithm is implemented and 
evaluated on the Intel IXP2850 NP



Protocol Processing

Generally, protocol processing
Refer to all network security applications 
responsible for the manipulations of 
networking protocols
Involve packet classification, session 
setup/teardown, and statistics gathering... 

In our research, protocol processing
Focus on multidimensional packet 
classification operation
Because it is the key operation to the 
system-level optimization



HSM
HSM performs multi-phase searches

In the first phase, the original search space are segmented
In subsequent phases,  spaces are recursively aggregated
In the final phase, the table lookup yields the action
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IPP
IPP handles two independent rule sets by

Integrated space segmentation
Independent space aggregation

S
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Temporal Performance

Memory Access (Unit: 32bit-word)

RULESET #RULE FW+IDS IPP
ACL01 68 30 20
ACL02 136 31 22
ACL03 340 34 24
ACL04 500 34 24
ACL05 1,000 36 26
ACL06 1,530 36 26
ACL07 1,945 36 26



Spatial Performance

Memory Usage (Unit: Byte) 

RULESET #RULE FW+IDS IPP
ACL01 68 563,350 563,484

ACL02 136 584,680 584,944

ACL03 340 672,922 673,492

ACL04 500 609,880 610,664

ACL05 1,000 1,002,096 1,003,690

ACL06 1,530 898,422 899,902

ACL07 1,945 937,998 939,586



Hardware Performance

Throughput (Unit: Gigabits/Second)

RULESET #RULE FW+IDS IPP 
ACL01 68 3.72 4.64
ACL02 136 3.55 4.48
ACL03 340 3.37 4.46
ACL04 500 3.28 4.37
ACL05 1,000 3.10 4.03
ACL06 1,530 3.19 4.04
ACL07 1,945 3.16 3.97
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Hardware: Architecture Limitation
TCAM

Board area
Power 
Range matching

ASIC/FPGA 
R&D cost
Update

General Purpose CPU
Lack of integrated 
networking processing 
power

Network Processor (NP)
Highly integrated 
processing units
Date plane & control plane
Handle rarely associative 
network traffics



Intel IXP2850 NP

Intel XScale core
1 general purpose 32-bit RISC processor

Multithreaded microengines:
16 MEs working in parallel at 1.4 GHz clock frequency

Memory hierarchy
4 channels of QDR SRAM running at 233 MHz
3 channels of RDRAM running at 127.3 MHz

Build-in media interfaces
2 configurable 32-bit media switch interfaces

Hash
Unit

Me dia Switch
Fabric

SRAM
Controlle rs

Crypto
Units

XScale
Core

PCI
Interface

Microengines

DRAM
Controllers

SRAM
Controllers



Programming Challenges
Achieving a deterministic bound on packet processing operation  

Due to the line rate constraint, the number of clock cycles to 
process the packet on each NP cannot exceed an upper bound
Use the right kind of data structures, and limiting the total number 
of memory accesses

Hiding memory access latency through multi-threading
Memory access latency is typically much higher than the amount of 
processing budget
Utilize the multiple hardware threads to hide memory latency 
effectively 

Preserve packet order in spite of parallel processing
Preserve packet order is extremely critical for applications like 
security gateways and traffic management
Packet ordering can be guaranteed using tags and/or strict thread 
ordering



Why Not Existing Algorithms?
For example, HiCuts algorithm for packet classification

Admittedly
HiCuts has good time/space tradeoffs and works well for real-life rule sets

However
HiCuts has non-deterministic worst-case search time

Because the number of cuttings varies at different tree nodes, the decision-tree 
may have inexplicit worst-case depth

HiCuts also requires linear search
Experimental results show that linear search is very time-consuming

With HiCuts default  
setting, only 3Gbps 

throughput



So We Design New Algorithms
For example, ExpCuts

Fix the number of cuttings at internal-nodes 
If the number of cuttings is fixed to 2w, the worst-case bound of 
tree depth is then O(W/w)

Eliminate linear search at leaf-nodes
Linear search can be eliminated if we “keep cutting” until every 
sub-space is full-covered by a certain set of rules

Performance estimation
The common 5-tuple packet classification problem (32-bit 
source/destination IP addresses, 16-bit source/destination port 
numbers and 8-bit protocol field)
If w is fixed to be 8, then a (32+32+16+16+8)/8=13 worst-case 
search time is guaranteed, and no linear search is required



Hardware Mapping (General)
Pure pipeline model does not work well; Parallelism is a must in 
next-generation network processor design

Parallel Processing
engine Cluster

(PPC)



Hardware Mapping (Specific)
Context-pipelining

Rx, Processing, Scheduling, Tx
Advantages: separate driver/processing codes

Multi-processing
Packet processing
Advantages: scalability and per-packet  data cache

Task Receive Processing Scheduling Queue Transmit

Num. of MEs 2 1~9 3 2



Parallel Processing (General)
How can a network processor maximize the 
utilization of its Paralleled Processing engines 
Cluster (PPC)? 

Load-balancing: the processing task should be uniformly 
distributed across the processing engines

Our Solution: Flow-based Load-Balancing via Static/Dynamic 
Hashing (SQF-C)

Intra-flow packet ordering: the packets in the same flow 
should leave in their arrival order

Our Solution: Per-flow ordering without per-flow information

Memory contention: efficient memory subsystem should be 
developed to catch up with line rate processing

Our Solution: Distributed Memory Hierarchy



Parallel Processing (Specific)

Multi-channel memory allocation
Distribute different level of the decision-tree on different SRAM 
channels according to the bandwidth headroom of each channel

Flow-level Packet Ordering
External Packet Ordering (EPO) by ordered-thread-execution
Internal Packet Ordering (IPO) by SRAM QArray

Load Balancing
CRC hardware supported hashing
Flow-level fragment load balancing

Instruction Selection
POP_COUNT  can count the number of ‘1’s in a 32-bit bit-string 
within only 3 system cycles 
10 times faster than other RISC implementations



Data-set and Development-Kits
Set #Rules Length of Prefix

FW1 68
University gateway 

firewall rulesFW2 136

FW3 340

CR1 500

Large ISP core 
router ACLs

CR2 1,000

CR3 1,530

CR4 1,945

Rule Set Selection
Synthetic rule sets

Used by existing work
Algorithm-dependent performance

Real-life rule sets
More complex
Objective performance

Development-Kits
Microengine C and IXP C

Compiler-dependent
Poor performance

Microcode assembly
High performance: MUTEX, Debug…

Evaluation
Software evaluation

Cycle-accurate workbench
Hardware evaluation

Smartbit 600



ExpCuts Performance

#SRAM Channel Throughput

1 4963Mbps

2 5357Mbps

3 6483Mbps

4 7261Mbps

Multi-thread Microengine impact

Multi-channel SRAM impact
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Summary (I)
Packet Classification 

“Fast enough”?
Worst-case bounded: Fixed stride decision tree

“Use not too much memory”?
Contiguous space aggregation: Bit-string compression

Non-contiguous space aggregation

Y. Qi and J Li, “Towards Effective Packet Classification”, 
CNIS，2006.

B. Xu, D. Jiang, and J. Li, “HSM: A Fast Packet Classification 
Algorithm,” AINA, 2005.

Y. Qi and J. Li, “Dynamic Cuttings: Packet Classification with 
Network Traffic Statistics,” TIW, 2004.



Summary (II)
Pattern Matching 

Automata-based algorithms
Set-wise AC algorithm: exploit real-life police structures

Trade speed for space: NFA with Bitmap compression

Hash-based algorithms
More effective/intelligent shift: RSI, MDH

Avoid very short patterns: hybrid algorithms with cache

Z. Zhou,Y. Xue, J. Liu, W. Zhang, and J. Li, “MDH: A High 
Speed Multi-Phase Dynamic Hash String Matching 
Algorithm for Large-Scale Pattern Set,” ICICS, 2007. 

B. Xu, X. Zhou and J. Li, “Recursive Shift Indexing: A Fast 
Multi-Pattern String Matching Algorithm,” ACNS, 2006.



Summary (III)
Integrated Framework

High-performance UTMs should be optimized at system-level 
rather than simply stringed together a number of security 
applications

Algorithmic Solution
The IPP algorithm avoids Redundant Packet Classification and 
Unnecessary Deep Inspection

Hardware Evaluation
NP evaluation shows that our scheme outperforms existing 
algorithms with about 30% increase of throughput

Y. Qi, B. Xu, F. He, B. Yang, J. Yu and J. Li, “Towards High-
performance Flow-level Packet Processing on Multi-core 
Network Processors,” ANCS, 2007 (to appear) . 

Y. Qi, B. Yang, B. Xu and J. Li, “Towards System-level 
Optimization for High Performance Unified Threat 
Management,” ICNS, 2007.



Summary (IV)
Hardware-aware Implementation

New algorithms
Set-aware algorithms

Traffic-aware algorithms

New hardware
Multi- MIPS core network processors (large L2 cache)

FPGA or ASIC implementation

Y. Qi, B. Xu, F. He, X. Zhou, J. Yu, and J. Li, “Towards Optimized 
Packet Classification Algorithms for Multi-Core Network Processors,” 
ICPP, 2007. 

L. Shi, Y. Zhang, J. Yu, B. Xu, B. Liu, and J. Li, “On the Extreme 
Parallelism Inside Next-Generation Network Processors,” INFOCOM,  
2007. 
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