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Abstract
The security gateways today are required not only 

to block unauthorized accesses by authenticating 
packet headers, but also by inspecting connection 
states to defend against malicious intrusions. Hence 
session creation rate plays a key role in determining 
the overall performance of stateful intrusion prevention 
systems. In this paper, we propose a high-speed session 
creation scheme optimized for network processors. 
Main contribution includes: a) A high-performance 
flow classification algorithm on network processors; b) 
An efficient TCP three-way handshake scheme 
designed for fast-path processing using a two-stage 
intelligent hashing. Experimental results show that: a) 
The presented parallel optimized flow classification 
algorithm, Parallel Search Cross-Producting, 
outperforms the original Cross-Producting and Binary 
Search Cross-Producting algorithms with 300% and 
60% increase of classification speed; b) The proposed 
fast path three-way handshake scheme, IntelliHash, 
achieves a TCP connection creation rate over 2M 
connections per second. 

1. Introduction 
Nowadays prevailing network security devices, such 

as firewalls, NIPS and UTMs, have raised the 

requirement of supporting stateful deep inspection, in 

which session processing is one of the most important 

building blocks. The two critical components of session 

processing scheme are session creation and session 

update modules. As a crucial performance metrics, 

session creation rate is attracting more and more 

attention of network security vendors besides the 

number of concurrent sessions. However, due to the 

complicated processing stages, reaching high-speed 

session creation to meet the ever-increasing network 

bandwidth still remains an open issue and motivates the 

research today. With the emerging of network 

processor as a competent alternative to deal with 

network traffic at transportation layer, the performance 

of session creation has a promising chance to be 

accelerated.  

Many integrated circuit companies, such as Intel [1], 

AMCC [2], Freescale [3], and Agere [4] have provided 

their own programmable network processors, while 

Cavium [5] and RMI [6] have also developed their 

multiple MIPS cores for accelerating the network 

processing. So there is a big challenge for researchers 

to build high-performance network security devices 

with today’s multi-core and multi-threaded network 

processors. 

Different from traditional architecture based on 

general-purpose processors, packet processing on 

network processors usually has two different routes: 

data plane processing and control plane processing. 

Data plane tasks are performance-critical, and typically 

require straightforward processing per packet, while 

control plane tasks are usually complex and considered 

difficult to be implemented in the data plane [7]. In 

network processing, data plane processing is treated as 

fast path and control plane processing is treated as slow 

path. Because the session creation requires complicated 

processing such as flow classification and three-way 

handshakes, it is often implemented in the slow path of 

today’s network processors. 

In order to improve the session creation 

performance, an intuitive idea is to treat session 

creation as a fast path module. However, fast-path 

implementation is inherently hard because: 

� Due to no OS running on fast-path cores, all the 

related operations in low-level network layers, such as 

packet classification and TCP three-way handshake, 

need to be implemented and optimized by the 

developers, according to hardware specifications of 

different NPs. 

� Fast-path session creation requires light-weight 

data structure and high-speed state maintenance. 

Besides, to ensure holistic performance, the session 

creation module should not affect other fast-path 

functions, such as session update and teardown. 
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This paper investigates the fast-path session creation 

solution and proposes a high-speed session creation 

scheme based on a typical multi-core and 

multi-threaded network processor. Main contribution 

includes:  

� An effective flow classification algorithm is 

developed to support fast path parallel processing. The 

algorithm, named Parallel Searching Cross-Producting 

(PSCP), makes optimization on space mapping based 

on the Cross-Producting algorithm [8] to improve the 

time performance on NP.  

� An efficient TCP three-way handshake scheme is 

presented for fast path implementation. The Intelligent 

Hash (IntelliHash) scheme separates the processing and 

maintenance of half-open sessions takes the advantage 

of separation between SRAM and DRAM channels on 

NP.

The rest of this paper is organized as follows: 

Section 2 gives a background of existed research. 

Section 3 describes the PSCP flow classification 

algorithm and Section 4 presents the IntelliHash 

scheme for three-way handshakes. Experimental results 

are discussed in Section 5. And in section 6, we draw 

our conclusion and discuss the future work. 

2. Background
In this paper, we mainly discuss how to effectively 

implement TCP session creation mechanisms on 

network processors. So we first give a brief 

introduction of a typical multi-core NP and then 

discuss existed work related to high-speed session 

creation. 

2.1. NP Architecture and Challenges 
Network processors are designed to scale up with 

high data processing rate characterized by distributed, 

multi-core, multi-threaded architectures, which are 

beneficial for hiding memory latencies. This section 

gives a brief overview of a typical multi-core network 

processor, the Intel IXP2850 NP.  

Figure 1 extracts the components of the Intel 

IXP2850 network processor, which includes 1 XScale 

core, 16 Micro-engines (MEs), 4 SRAM controllers, 3 

DRAM controllers, and high-speed bus interfaces. The 

XScale core is a general purpose 32-bit RISC processor 

taking charge of initializing and managing the MEs. 

Each ME has eight hardware-assisted threads and uses 

the shared buses to access off-chip SRAM (4 channels, 

256MB) and DRAM (3 channels, 2GB). The average 

access latency for SRAM is about 150 cycles, and that 

for DRAM is about 300 cycles. Detailed information of 

IXP2850 can be referred in [9-12]. 

2.2. Session Creation on Network Processors 
Generally, session creation includes two main steps: 

flow classification for the SYN packets and state 

tracking for TCP three-way handshakes. 

2.2.1. The Flow Classification Problem 
In existing literatures, a variety of flow 

classification algorithms are proposed [15-19]. All 

these algorithms can be categorized as 

field-independent search and field-dependent search 

[20]. In our research, we focus on field-independent 

algorithms because:  

� Algorithms using field-independent search have 

better classification rate: Algorithms using 

field-independent search have explicit worst-case 

bound, which is the most important performance 

metrics required by the system. 

� Algorithms using field-independent search is 

simple to implement: This type of algorithms only uses 

table lookups and some add/shift operations, which are 

more suitable for fast path implementation than those 

complicated operations required by field-dependent 

algorithms. 

� In addition, although field-independent algorithms 

often require large memory storages, today’s 

new-generation multi-core NPs can satisfy this 

requirement. For example, the Intel IXP 2850 NP has 

up to 256MB SRAM and 2GB DRAM, which is far 

more sufficient for most field-independent algorithms. 

Many field-independent search algorithms are based 

on the Cross-Producting algorithm proposed by 

Srinivasan et al. [8]. These algorithms perform 

independent searches on each packet header field; and 

combine the results of the single-field searches by 

Cross-Producting. Then, Cross-Producting performs 

longest-prefix-matching on each field, resulting in O(W)

search time, where W is the packet header bit-width. As 

an improvement, HSM [17] uses binary search to find 

the best-match on each fields, achieving O(d*log2(N)

search speed. Our research focuses on how to further 
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improve the performance of the Cross-Producting 

algorithm on multi-core network processors. 

2.2.2. TCP Three-way Handshake Handling 
To our knowledge, today’s most NP-based network 

security products handle the TCP three-way handshake 

in slow path. This means, incoming packets not 

belonging to the established sessions will be sent from 

the fast path to the slow path. Session creation in slow 

path typically results in: a) Memory copies for packet 

or packet handling duplication; b) Traversing of a full 

TCP/IP stack for state tracking; c)Locking and 

unlocking global session table for mutual exclusion.  

Therefore, the three-way handshake processing will 

be slow down due to these redundant processing 

mechanisms. In this paper, we strive to realize a fast 

path TCP three-way handshake scheme on network 

processors by simplified TCP state maintenance, 

separated session state table, and elaborated data 

structures.

3. Fast Flow Classification on NP 
This section introduces a fast flow classification 

algorithm optimized for multi-core network processors. 

The basic ideas are based on the algorithm 

Cross-Producting, which is proposed by Srinivasan et 

al. [8]. 

3.1. Basic Ideas 
Cross-Producting employs the divide-and-conquer 

strategy, which first performs longest-prefix-matching 

at each field using trie structures, and then searches a 

cross-product table for every possible combination of 

results from the d field longest-prefix searches. If we 

have the rules as shown on the left of Figure 2, the 

right picture in Figure 2 depicts the single field search 

of the first step in Cross-Producting. 

Although the divide-and-conquer strategy 

introduced by Cross-Producting simplifies the 

processing of multi-field flow classification, the two 

steps have inherent weakness that limits the overall 

performance: 

� In the first step, doing longest-prefix search on 

each field is time-consuming due to the O(dW)

complexity, where W is the bit-width of each field. For 

5-tuple flow classification, the worst-case memory 

access of Cross-Producting is over 100, which is too 

many to reach ideal performance even on 

new-generation multi-core network processors [21]. 

Moreover, because some rules are specified by ranges 

rather than prefix, using longest-prefix-matching for 

search require range-to-prefix conversion, which will 

cause additional memory storage [22]. 

� In the second step, the cross-product table suffers 

from exponential memory requirements. This is 

because, for a set of N filters containing d fields each, 

the size of the cross-product table can grow to O(Nd
). It 

is considered that Cross-Producting can only handle 

less than 100 classification rules [20, 22]. However, 

real-life rule sets on modern firewalls and security 

gateways may have tens of thousands rules, making 

Cross-Producting infeasible in practice. 

Rule Prefix Range

R1 ****** 00~63

R2 0000** 00~03

R3 001*** 08~15

R4 0011** 12~15

R5 010111 23~23

R6 0110** 24~27

R7 10**** 32~47

R8 1000** 32~35

R9 1001** 36~39

R10 110100 52~52

R11 1111** 60~63
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Figure 2. Flow Classification Rules and 
Longest-Prefix-Matching Trie

Therefore, to seek a more effective flow 

classification algorithm, we should not only improve 

the single-field search speed, but also limit the size of 

the cross-product table for multiple field combination 

result.  

3.2. Parallel Search Cross-Producting  

3.2.1. Improving Single-field Search Speed 
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Figure 3. Single-Field Segmentation 

To improve the single-field search speed, we 

consider using range-match to replace the prefix 

matching in Cross-Producting. The basic idea of 

range-match is to segment the search space by rule 

projections on each field [16] [17]. Figure 3 depicts the 

rule segmentation result with the rules in Figure 3. To 

find the best match of an incoming packet in a certain 

field, we only need to find the exact segment that the 

packet (represented as a dot in single-dimensional 

search space) falls in. 

Intuitively, we can record all the boundaries 

(starting and end points) of the segments and using 

binary search to find the best match, which is 

illustrated in Figure 4. Because N rules generate at 

most 2N-1 segments [22], the worst-case search time 

for binary search on a single field is log2(2N-1). For 
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example, given 1K rules, the worst-case binary search 

required in each field is 11, and totally 55 searches on 

all five dimensions of the 5-tuple packet header. 

To further improve the single-field search speed, we 

can extend the binary search trie to a multi-search trie, 

which performs multiple balanced searches at a time on 

each field. For example, if we use quad-search trie 

shown in Figure 5 to find the best-match segment, the 

worst-case search time then becomes 

log4(2N-1)=1/2*log2(2N-1), i.e. the search speed 

doubles. Note that using m times of balanced search at 

a time (m-search), each time we need to read (m-1) 

boundaries. For example, using quad-search to find the 

best match, each time we need to read three bounds to 

split the current search space into four sub-spaces. In 

comparison, binary search needs only one memory 

access at a time. Fortunately, modern multi-core 

network processors have built-in multi-channel 

SRAMs and burst-supported DRAMs, both of which 

provide the capability to access consecutive memory 

words once a time without extra latency [6, 9, 10]. 

Thus, because the m-1 boundaries are independent 

memory access, they can be loaded in parallel-mode 

from multiple memory channels or in burst-mode from 

a single channel of memory by issuing only one 

memory access. 

Therefore, for the 32-bit source and destination IP 

fields, we choose to use multi-search rather than 

longest-prefix-matching to find the best match. This 

m-search reduces the memory access time from 32 to 

logm(2N-1). When m=4 and N=1K, the exact memory 

access time for IP fields is less than 6, which is 5 times 

faster than longest-prefix-matching used by the original 

Cross-Producting algorithm. For the 16-bit source and 

destination port fields, we choose to use two 2
16

-entry 

arrays to map each port to its best match segments, 

which are originally proposed by P. Gupta in the RFC 

algorithm [16]. Using such arrays the best-match for a 

16-bit port field can be done by only one memory 

access.

3.2.2. Reducing Multi-field Cross-Product Table 
Size

To reduce the size of the cross-product table 

generated by Cross-Producting, we employ the 

Hierarchical Space Mapping [17] strategies, which 

effectively eliminated the redundant table entries 

generated by the single step Cross-Producting. The idea 

of multi-field Cross-Producting consists of: a) 

combining pairs of the single-field search results to 

generate 2-dimensional intermediate cross-product 

tables; b) combining pairs of these 2-dimensional 

cross-product results to generate next phase 

cross-product tables; c) recursively, PSCP generate the 

finally match results in the last cross-product table. 

More specifically, in Figure 6, sIP/dIP quad trees and 

sPT/dPT tables are single field-search results; IP 

Cross-Producting Table (ICPT) is the cross-product 

table that combines the search results of sIP and sIP, 

and likewise, Port Cross-Producting Table (PCPT) is 

the cross-product table that combines the sPT and dPT 

search results; Final Cross-Producting Table (FCPT) 

combines the search results of ICPT and PCPT, giving 

output of the final search result. The protocol field is 

processed separately in PSCP. 

The reasons why PSCP can significantly compress 

the original cross-product table are: 

� Each cross-product table in PSCP is 

2-dimemsional, which is exponentially smaller than the 

d-dimensional cross-product table generated by 

original Cross-Producting. 

� Although mathematically, the final FCPT table is 

also O(Nd
) in magnitude, the actual FCPT is likely to 

be fairly small because the number of input of FCPT 

has been compressed by ICPT and PCPT.  

3.3. PSCP on the IXP 2850 Network Processor 
This section discusses how to implement PSCP on a 

typical multi-core network processor, the Intel 

IXP2850 NP. We only focus on the processing of 

Figure 4. Binary Search Cross-Producting Tree 

Figure 5. Quad Search Cross-Producting Tree 
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Figure 6. PSCP Data Structure 
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source/destination IP fields and source/destination Port 

fields, because the protocol field and flag field are 

fairly simple and can be processed seperately [17]. The 

data structure of PSCP includes: a) two m-search 

balanced tree for sIP and dIP; b) two 2
16

-entry 

port-to-segment array for sPT and dPT; c) three 

hierarchical 2-dimensional Cross-Producting tables: 

ICPT, PCPT and FCPT. 

Because the IXP2850 NP has 4 independent SRAM 

channels, each supporting low-latency word-oriented 

memory accesses, we choose to use three of them to 

store the three boundaries and the left one to store the 

pointer to the next multi-search. Thus reading three 

boundaries together with a pointer can be done by 

issuing 4 memory accesses simultaneously, making the 

latency nearly the same as binary search while reducing 

half of the memory accesses. Because both the sPT and 

dPT tables have only 2
16

 entries, they can be stored in 

any of the 4 SRAM channels.  

Considering the IXP2850 hardware, if the table size 

is less than 64MB, it can be stored in SRAM. 

Otherwise, it will be stored in DRAM. Because each 

table is accessed only once per packet, using DRAM 

does not significantly increase the overall latency. 

4. IntelliHash Scheme For Fast Path 
Session Creation 

This section presents a new session handling 

scheme optimized for fast path TCP three-way 

handshake on multi-core network processors. In this 

section, the TCP three-way handshake packets are 

denoted as handshake packets and subsequent packets 

are denoted as data packets.

4.1. Basic Ideas 
The traditional hash scheme, which is called 

DirectHash in this paper, processes the three-way 

handshake packets and the subsequent data packets in a 

single hash table and uses link lists to handle hash 

collisions. Although DirectHash is easy to implement, 

this scheme suffers from: 

� Excessive Collisions between handshake and 
data packets processing: Session creation and session 

update are processed through the same hash table in 

DirectHash scheme. This introduces additional hash 

collisions between handshake packets and data packets, 

which will bring excessive MUTEX locks in traversing 

the hash link lists.  

� Isomorphic session entries for handshake and 
data packets: DirectHash maintains the same size of 

session entry for handshake packets and data packets. 

Assuming that 4M concurrent sessions were to support 

and each session entry is 256 bytes, DirectHash will 

consume at least 1G memory totally, which is too large 

compared to the 256M SRAM on IXP 2850. As a result, 

the hash table can only reside in DRAM banks, which 

have longer access latencies and hence limit the session 

creation rate. 

To overcome these defections, an effective fast path 

session handling scheme should separate the session 

tables for handshake packets apart from data packets 

and design appropriate session entries for them each. 

4.2. The IntelliHash Scheme 

4.2.1. Separating Processing of Handshake Packets 
and Data Packets 

Illumined by the idea of TCP half-proxy, we 

designed a novel hash scheme to isolate the processing 

of handshake packets from data packets. As shown in 

Figure 7, the IntelliHash scheme has two hash tables: 

the Digested Session Table in SRAM handles all the 

handshake packets processing in session creation and 

the Full Session Table in DRAM deals with data packet 

processing in session update. Both tables are indexed 

by the hash value of packet header returned by the hash 

unit. However, the two tables can be different in size 

and can be accessed simultaneously and independently. 

For instance, we can use the lower 20bits of the hash 

value to index the Digested Session Table, while use 

the lower 24bits of the hash value to index the Full 

Session Table.  

Under such deployment, IntelliHash surpasses 

DirectHash by avoiding the excessive collisions 

between handshake and data packets processing. 

Consequently, the session update performance will not 

be impacted by the session creation process.  

4.2.2. Differentiating Session Entries for Handshake 
Packets and Data Packets 

TCP three-way handshake can be handled with 

relatively small amount of memory, which motivates us 

to design a standalone data structure for the handshake 

processing. 

Figure 8 shows the 28 bytes entry data structure of 

the Digested Session Table in SRAM. The handshake 

state and the 5-tuple fields along with sequence number 

and ACK number are used for TCP three-way 

handshake. The MUTEX lock and next session pointer 

are used for handling session collisions and the 

timestamp and timeout threshold are used for tearing 

down the half-open session when it expires. Such a 

compact data structure enormously decreases the 

memory requirement for handling handshake packets 

and makes it possible to place the Digested Session 

Table entirely in low-latency SRAM banks. 
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The entries of Full Session Table could simply take 

the design of DirectHash, typically 200-300 bytes in 

size, which we do not extract here in detail. 

4.3. IntelliHash on the IXP 2850 NP 

4.3.1. Packet Processing in IntelliHash 
Figure 9 gives a holistic packet processing route on 

IXP 2850, including three-way handshake packets and 

subsequent data packets. The processing procedure 

includes the following branches:  

� SYN packet: handled by Digested Session Table 

in SRAM. If the half-open session already exists, 

update time stamp and forward the packet. Otherwise, 

create a half-open session entry in the Digested Session 

Table with the handshake state of SYN_RECV. 

� SYN_ACK packet: handled by Digested Session 

Table in SRAM. If the half-open session exists with the 

state SYN_RECV and the sequence number and ACK 

number match with the previous ones in the session 

entry, set handshake state to SYN_ACK_RECV, 

update sequence number, ACK number, time stamp 

and forward it. Otherwise, drop the packet. 

� Packet with ACK flag: First, check the Full 

Session Table. If the session exists: a) if sequence 

number and ACK number is in the TCP transmission 

window, update session entry and forward the packet; b) 

if sequence number and ACK number is not in the 

window, drop the packet. If the session does not exist: 

c) if payload length does not equal to zero, drop the 

packet; d) if payload length equals to zero, use 

Digested Session Table to examine it sequentially.  

In case d), the processing in Digested Session Table is 

as follows: e) if the half-open session exists with the 

state SYN_ACK_RECV and the sequence number and 

ACK number matches with the previous ones in the 

session entry, set handshake state to ESTABLISHED, 

update session entry and forward the packet; f) 

otherwise, drop the packet.  

� Data packet without ACK flag: directly handled 

by Full Session Table in DRAM. If the session exists 

with sequence number and ACK number in TCP 

transmission window, update session entry and forward 

the packet. Otherwise, drop the packet. 

The only overhead of IntelliHash scheme is that it 

forces all the packets with ACK flag to traverse the 

Full Session Table first. Fortunately, the session update 

speed is fast enough that the overhead can be properly 

concealed.  

4.3.2. Session Table Size Adjusting 
Assuming that new session creation rate is C (new

sessions per second) and each entry of Digested 

Session Table is D bytes in size, with the load factor L
and average session creation latency T, the total size of 

Digested Session Table will be C*T*D/L. Here, load 

factor L is defined by N/M, where M is the total number 

of buckets in the hash table and N is the number of 

concurrent sessions supported. Average session 

creation latency T means the time needed for 

completing the three-way handshake. Similarly, 

assuming N concurrent sessions were to be supported 

and each Full Session Table entry is F bytes in size, 

with the load factor L, the total size of Full Session 

Table will be N*F/L. For example, if C is 1M new 

sessions per second, D is 28 bytes, T is 1 second, N is 

SIP 32bits DIP 32bits SP 16bits DP 16bits Prot 8bitsHeader

Hash Return 
Value

CRC Hash

20bits 

24bits DRAM index

Digested Session Table 
in SRAM Full Session Table in DRAM

Handshake State

SRAM 
index

Full Flow State

Figure 7. Data Structure of IntelliHash 
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Figure 8. Digested Session Table Entry in SRAM 
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4M, F is 256 bytes and L is 1/2, the size of Digested 

Session Table will be 112M bytes and the size of Full 

Session Table will be 2G bytes. These volumes of the 

two session tables are acceptable on IXP2850 platform.  

Furthermore, with a deterministic Full Session 

Table size in DRAM for handling a fixed number of 

concurrent sessions, the size of Digested Session Table 

could be adjusted for adapting different network 

conditions.

5. Performance Evaluation 

5.1. Experiment Environments 
To evaluate the performance, the applications were 

tested in the Intel SDK 4.0 Developer Workbench, 

which provides a cycle-accurate simulator of the 

IXP2850 NP. We also test the applications on a real 

dual-IXP2850 platform using Smartbit600 to verify the 

compatibility on hardware. 

5.2. Performance of PSCP  
5.2.1. Worst-case Memory Access 

Worst-case memory accesses, as the most important 

performance metrics of flow classification algorithms, 

provide an evaluation of the worst-case processing 

speed. Figure 10 shows the worse-case memory 

accesses of the original Cross-Producting 

(Cross-Producting), Binary Search Cross-Producting 

(BSCP) and Parallel Search Cross-Producting (PSCP) 

with five real-life rule sets, from which we can see that 

the worse-case memory accesses of PSCP is nearly 1/2 

of that of BSCP and nearly 1/4 of that of 

Cross-Producting algorithm. This is because PSCP uses 

quad-search tire in the single-field search, while BSCP 

uses binary-search tire and the original 

Cross-Producting uses longest-prefix-matching 

respectively. 

5.2.2. Throughput on Network Processor 
To evaluate the worst-case throughput on IXP2850, 

minimum 64Byte Ethernet packets are engaged here as 

the input traffic and all the packets are designed to 

match the longest prefix and reside in the leaf nodes of 

the tries. Figure 11 gives the worse-case throughput 

achieved by PSCP, BSCP and the original 

Cross-Producting. It is shown that PSCP reaches a 

throughput of 5-7Gbps with different sizes of rule sets, 

whereas BSCP obtains a throughput of 2.5-4.5Gbps 

and Cross-Producting only reaches 1.7G throughput. 

Besides, the worse-case performance of PSCP and 

BSCP decreases slowly as the number of rules 

increases, because their single-field search is on the 

magnitude of log(N).
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5.2. Performance of IntelliHash 
To evaluate the performance of IntelliHash, we do 

experiments to compare its TCP three-way handshake 

processing speed with the DirectHash scheme. From 

Figure 12, we can see that the DirectHash scheme 

reaches 6.5 Gbps handshake processing speed with 72 

threads, while the IntelliHash scheme reaches 8.5 Gbps 

speed. This is because the handshake processing of 

IntelliHash is implemented on SRAM while that of 

DirectHash can only be implemented on DRAM.  

Figure 13 illustrates the entire fast path session creation 

performance of IntelliHash scheme integrating the 

PSCP algorithm proposed in this paper, where packet 

classification is applied on the SYN packets. From the 

figure, we can see that a session creation rate of up to 2 

Mcps (connections per second) could be achieved with 

72 Micro-engine threads and the performance increases 

slowly with the number of threads growing.  

6. Conclusion 
In this paper, we presented a fast path session 

creation mechanism based on multi-core and 

multi-threaded network processors. To achieve it, a 

hardware optimized flow classification algorithm based 

on Cross-Producting is proposed. Besides, an efficient 

fast path session handling scheme using separate 

session tables for handshake and subsequent data 

packets is proposed to get high session creation rate 

along with high session update rate.  

Experimental results show that the PSCP algorithm 

optimized for network processor reaches a throughput 

of 5-7Gbps with real-life rule sets and the IntelliHash 

scheme achieves a session creation rate of 2M new 

sessions per second.  

Our future work includes implementing TCP stream 

reassembly and holistic deep inspection system on the 

IXP series network processors.  
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