
Fast Path Session Creation on Network Processors

Bo Xu
1, 2

, Yaxuan Qi
1, 4

, Fei He
1, 2

, Zongwei Zhou
1, 3

 Yibo Xue
1, 4

 and Jun Li
1, 4

1Research Institute of Information Technology, Tsinghua University
2Department of Automation, Tsinghua University

3Department of Computer Science and Technology, Tsinghua University
4Tsinghua National Lab for Information Science and Technology

xb00@mails.tsinghua.edu.cn

Abstract
The security gateways today are required not only

to block unauthorized accesses by authenticating
packet headers, but also by inspecting connection
states to defend against malicious intrusions. Hence
session creation rate plays a key role in determining
the overall performance of stateful intrusion prevention
systems. In this paper, we propose a high-speed session
creation scheme optimized for network processors.
Main contribution includes: a) A high-performance
flow classification algorithm on network processors; b)
An efficient TCP three-way handshake scheme
designed for fast-path processing using a two-stage
intelligent hashing. Experimental results show that: a)
The presented parallel optimized flow classification
algorithm, Parallel Search Cross-Producting,
outperforms the original Cross-Producting and Binary
Search Cross-Producting algorithms with 300% and
60% increase of classification speed; b) The proposed
fast path three-way handshake scheme, IntelliHash,
achieves a TCP connection creation rate over 2M
connections per second.

1. Introduction
Nowadays prevailing network security devices, such

as firewalls, NIPS and UTMs, have raised the

requirement of supporting stateful deep inspection, in

which session processing is one of the most important

building blocks. The two critical components of session

processing scheme are session creation and session

update modules. As a crucial performance metrics,

session creation rate is attracting more and more

attention of network security vendors besides the

number of concurrent sessions. However, due to the

complicated processing stages, reaching high-speed

session creation to meet the ever-increasing network

bandwidth still remains an open issue and motivates the

research today. With the emerging of network

processor as a competent alternative to deal with

network traffic at transportation layer, the performance

of session creation has a promising chance to be

accelerated.

Many integrated circuit companies, such as Intel [1],

AMCC [2], Freescale [3], and Agere [4] have provided

their own programmable network processors, while

Cavium [5] and RMI [6] have also developed their

multiple MIPS cores for accelerating the network

processing. So there is a big challenge for researchers

to build high-performance network security devices

with today’s multi-core and multi-threaded network

processors.

Different from traditional architecture based on

general-purpose processors, packet processing on

network processors usually has two different routes:

data plane processing and control plane processing.

Data plane tasks are performance-critical, and typically

require straightforward processing per packet, while

control plane tasks are usually complex and considered

difficult to be implemented in the data plane [7]. In

network processing, data plane processing is treated as

fast path and control plane processing is treated as slow

path. Because the session creation requires complicated

processing such as flow classification and three-way

handshakes, it is often implemented in the slow path of

today’s network processors.

In order to improve the session creation

performance, an intuitive idea is to treat session

creation as a fast path module. However, fast-path

implementation is inherently hard because:

� Due to no OS running on fast-path cores, all the

related operations in low-level network layers, such as

packet classification and TCP three-way handshake,

need to be implemented and optimized by the

developers, according to hardware specifications of

different NPs.

� Fast-path session creation requires light-weight

data structure and high-speed state maintenance.

Besides, to ensure holistic performance, the session

creation module should not affect other fast-path

functions, such as session update and teardown.

The 28th International Conference on Distributed Computing Systems

1063-6927/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.2008.33

571

The 28th International Conference on Distributed Computing Systems

1063-6927/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.2008.33

573

This paper investigates the fast-path session creation

solution and proposes a high-speed session creation

scheme based on a typical multi-core and

multi-threaded network processor. Main contribution

includes:

� An effective flow classification algorithm is

developed to support fast path parallel processing. The

algorithm, named Parallel Searching Cross-Producting

(PSCP), makes optimization on space mapping based

on the Cross-Producting algorithm [8] to improve the

time performance on NP.

� An efficient TCP three-way handshake scheme is

presented for fast path implementation. The Intelligent

Hash (IntelliHash) scheme separates the processing and

maintenance of half-open sessions takes the advantage

of separation between SRAM and DRAM channels on

NP.

The rest of this paper is organized as follows:

Section 2 gives a background of existed research.

Section 3 describes the PSCP flow classification

algorithm and Section 4 presents the IntelliHash

scheme for three-way handshakes. Experimental results

are discussed in Section 5. And in section 6, we draw

our conclusion and discuss the future work.

2. Background
In this paper, we mainly discuss how to effectively

implement TCP session creation mechanisms on

network processors. So we first give a brief

introduction of a typical multi-core NP and then

discuss existed work related to high-speed session

creation.

2.1. NP Architecture and Challenges
Network processors are designed to scale up with

high data processing rate characterized by distributed,

multi-core, multi-threaded architectures, which are

beneficial for hiding memory latencies. This section

gives a brief overview of a typical multi-core network

processor, the Intel IXP2850 NP.

Figure 1 extracts the components of the Intel

IXP2850 network processor, which includes 1 XScale

core, 16 Micro-engines (MEs), 4 SRAM controllers, 3

DRAM controllers, and high-speed bus interfaces. The

XScale core is a general purpose 32-bit RISC processor

taking charge of initializing and managing the MEs.

Each ME has eight hardware-assisted threads and uses

the shared buses to access off-chip SRAM (4 channels,

256MB) and DRAM (3 channels, 2GB). The average

access latency for SRAM is about 150 cycles, and that

for DRAM is about 300 cycles. Detailed information of

IXP2850 can be referred in [9-12].

2.2. Session Creation on Network Processors
Generally, session creation includes two main steps:

flow classification for the SYN packets and state

tracking for TCP three-way handshakes.

2.2.1. The Flow Classification Problem
In existing literatures, a variety of flow

classification algorithms are proposed [15-19]. All

these algorithms can be categorized as

field-independent search and field-dependent search

[20]. In our research, we focus on field-independent

algorithms because:

� Algorithms using field-independent search have

better classification rate: Algorithms using

field-independent search have explicit worst-case

bound, which is the most important performance

metrics required by the system.

� Algorithms using field-independent search is

simple to implement: This type of algorithms only uses

table lookups and some add/shift operations, which are

more suitable for fast path implementation than those

complicated operations required by field-dependent

algorithms.

� In addition, although field-independent algorithms

often require large memory storages, today’s

new-generation multi-core NPs can satisfy this

requirement. For example, the Intel IXP 2850 NP has

up to 256MB SRAM and 2GB DRAM, which is far

more sufficient for most field-independent algorithms.

Many field-independent search algorithms are based

on the Cross-Producting algorithm proposed by

Srinivasan et al. [8]. These algorithms perform

independent searches on each packet header field; and

combine the results of the single-field searches by

Cross-Producting. Then, Cross-Producting performs

longest-prefix-matching on each field, resulting in O(W)

search time, where W is the packet header bit-width. As

an improvement, HSM [17] uses binary search to find

the best-match on each fields, achieving O(d*log2(N)

search speed. Our research focuses on how to further

ME
0x0

ME
0x1

ME
0x3

ME
0x2

ME
0x4

ME
0x5

ME
0x7

ME
0x6

ME
0x0

ME
0x1

ME
0x2

ME
0x3

ME
0x4

ME
0x5

ME
0x6

ME
0x7

Cluster 1 Cluster 0

Intel Xscale?
Core

DRAM
Controller

DRAM
Controller

DRAM
Controller

SRAM
Controller 0

SRAM
Controller 3

SRAM
Controller 2

SRAM
Controller 1

Execution Unit

Local
Memory

CRC
Unit CAM

MicroengineSHaC

Scratchpad

CAP

Hash Unit

Figure 1. Hardware blocks of Intel IXP 2850

572574

improve the performance of the Cross-Producting

algorithm on multi-core network processors.

2.2.2. TCP Three-way Handshake Handling
To our knowledge, today’s most NP-based network

security products handle the TCP three-way handshake

in slow path. This means, incoming packets not

belonging to the established sessions will be sent from

the fast path to the slow path. Session creation in slow

path typically results in: a) Memory copies for packet

or packet handling duplication; b) Traversing of a full

TCP/IP stack for state tracking; c)Locking and

unlocking global session table for mutual exclusion.

Therefore, the three-way handshake processing will

be slow down due to these redundant processing

mechanisms. In this paper, we strive to realize a fast

path TCP three-way handshake scheme on network

processors by simplified TCP state maintenance,

separated session state table, and elaborated data

structures.

3. Fast Flow Classification on NP
This section introduces a fast flow classification

algorithm optimized for multi-core network processors.

The basic ideas are based on the algorithm

Cross-Producting, which is proposed by Srinivasan et

al. [8].

3.1. Basic Ideas
Cross-Producting employs the divide-and-conquer

strategy, which first performs longest-prefix-matching

at each field using trie structures, and then searches a

cross-product table for every possible combination of

results from the d field longest-prefix searches. If we

have the rules as shown on the left of Figure 2, the

right picture in Figure 2 depicts the single field search

of the first step in Cross-Producting.

Although the divide-and-conquer strategy

introduced by Cross-Producting simplifies the

processing of multi-field flow classification, the two

steps have inherent weakness that limits the overall

performance:

� In the first step, doing longest-prefix search on

each field is time-consuming due to the O(dW)

complexity, where W is the bit-width of each field. For

5-tuple flow classification, the worst-case memory

access of Cross-Producting is over 100, which is too

many to reach ideal performance even on

new-generation multi-core network processors [21].

Moreover, because some rules are specified by ranges

rather than prefix, using longest-prefix-matching for

search require range-to-prefix conversion, which will

cause additional memory storage [22].

� In the second step, the cross-product table suffers

from exponential memory requirements. This is

because, for a set of N filters containing d fields each,

the size of the cross-product table can grow to O(Nd
). It

is considered that Cross-Producting can only handle

less than 100 classification rules [20, 22]. However,

real-life rule sets on modern firewalls and security

gateways may have tens of thousands rules, making

Cross-Producting infeasible in practice.

Rule Prefix Range

R1 ****** 00~63

R2 0000** 00~03

R3 001*** 08~15

R4 0011** 12~15

R5 010111 23~23

R6 0110** 24~27

R7 10**** 32~47

R8 1000** 32~35

R9 1001** 36~39

R10 110100 52~52

R11 1111** 60~63

R1

R7

R3 R9

R2 R4 R6 R8 R11

R5 R10

0

0

0

0

0

0

0

0

0

0

0

1

1
1

1 1

1

1

1

1

1 1

1 1

0

Figure 2. Flow Classification Rules and
Longest-Prefix-Matching Trie

Therefore, to seek a more effective flow

classification algorithm, we should not only improve

the single-field search speed, but also limit the size of

the cross-product table for multiple field combination

result.

3.2. Parallel Search Cross-Producting

3.2.1. Improving Single-field Search Speed

R2

R1

R3

R4
R5

R6

R7

R8 R9
R10

R11

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

0 15 31 47 63

Figure 3. Single-Field Segmentation

To improve the single-field search speed, we

consider using range-match to replace the prefix

matching in Cross-Producting. The basic idea of

range-match is to segment the search space by rule

projections on each field [16] [17]. Figure 3 depicts the

rule segmentation result with the rules in Figure 3. To

find the best match of an incoming packet in a certain

field, we only need to find the exact segment that the

packet (represented as a dot in single-dimensional

search space) falls in.

Intuitively, we can record all the boundaries

(starting and end points) of the segments and using

binary search to find the best match, which is

illustrated in Figure 4. Because N rules generate at

most 2N-1 segments [22], the worst-case search time

for binary search on a single field is log2(2N-1). For

573575

example, given 1K rules, the worst-case binary search

required in each field is 11, and totally 55 searches on

all five dimensions of the 5-tuple packet header.

To further improve the single-field search speed, we

can extend the binary search trie to a multi-search trie,

which performs multiple balanced searches at a time on

each field. For example, if we use quad-search trie

shown in Figure 5 to find the best-match segment, the

worst-case search time then becomes

log4(2N-1)=1/2*log2(2N-1), i.e. the search speed

doubles. Note that using m times of balanced search at

a time (m-search), each time we need to read (m-1)

boundaries. For example, using quad-search to find the

best match, each time we need to read three bounds to

split the current search space into four sub-spaces. In

comparison, binary search needs only one memory

access at a time. Fortunately, modern multi-core

network processors have built-in multi-channel

SRAMs and burst-supported DRAMs, both of which

provide the capability to access consecutive memory

words once a time without extra latency [6, 9, 10].

Thus, because the m-1 boundaries are independent

memory access, they can be loaded in parallel-mode

from multiple memory channels or in burst-mode from

a single channel of memory by issuing only one

memory access.

Therefore, for the 32-bit source and destination IP

fields, we choose to use multi-search rather than

longest-prefix-matching to find the best match. This

m-search reduces the memory access time from 32 to

logm(2N-1). When m=4 and N=1K, the exact memory

access time for IP fields is less than 6, which is 5 times

faster than longest-prefix-matching used by the original

Cross-Producting algorithm. For the 16-bit source and

destination port fields, we choose to use two 2
16

-entry

arrays to map each port to its best match segments,

which are originally proposed by P. Gupta in the RFC

algorithm [16]. Using such arrays the best-match for a

16-bit port field can be done by only one memory

access.

3.2.2. Reducing Multi-field Cross-Product Table
Size

To reduce the size of the cross-product table

generated by Cross-Producting, we employ the

Hierarchical Space Mapping [17] strategies, which

effectively eliminated the redundant table entries

generated by the single step Cross-Producting. The idea

of multi-field Cross-Producting consists of: a)

combining pairs of the single-field search results to

generate 2-dimensional intermediate cross-product

tables; b) combining pairs of these 2-dimensional

cross-product results to generate next phase

cross-product tables; c) recursively, PSCP generate the

finally match results in the last cross-product table.

More specifically, in Figure 6, sIP/dIP quad trees and

sPT/dPT tables are single field-search results; IP

Cross-Producting Table (ICPT) is the cross-product

table that combines the search results of sIP and sIP,

and likewise, Port Cross-Producting Table (PCPT) is

the cross-product table that combines the sPT and dPT

search results; Final Cross-Producting Table (FCPT)

combines the search results of ICPT and PCPT, giving

output of the final search result. The protocol field is

processed separately in PSCP.

The reasons why PSCP can significantly compress

the original cross-product table are:

� Each cross-product table in PSCP is

2-dimemsional, which is exponentially smaller than the

d-dimensional cross-product table generated by

original Cross-Producting.

� Although mathematically, the final FCPT table is

also O(Nd
) in magnitude, the actual FCPT is likely to

be fairly small because the number of input of FCPT

has been compressed by ICPT and PCPT.

3.3. PSCP on the IXP 2850 Network Processor
This section discusses how to implement PSCP on a

typical multi-core network processor, the Intel

IXP2850 NP. We only focus on the processing of

Figure 4. Binary Search Cross-Producting Tree

Figure 5. Quad Search Cross-Producting Tree

sIP Quad Tree dIP Quad Tree

sPT
Table

dPT
Table

Final Cross-
Producting Table

Port Cross-
Producting Table

0

65535

0

65535

S11S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S12 S13 S14 S15 S11S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S12 S13 S14 S15

IP Cross-
Producting Table

Figure 6. PSCP Data Structure

574576

source/destination IP fields and source/destination Port

fields, because the protocol field and flag field are

fairly simple and can be processed seperately [17]. The

data structure of PSCP includes: a) two m-search

balanced tree for sIP and dIP; b) two 2
16

-entry

port-to-segment array for sPT and dPT; c) three

hierarchical 2-dimensional Cross-Producting tables:

ICPT, PCPT and FCPT.

Because the IXP2850 NP has 4 independent SRAM

channels, each supporting low-latency word-oriented

memory accesses, we choose to use three of them to

store the three boundaries and the left one to store the

pointer to the next multi-search. Thus reading three

boundaries together with a pointer can be done by

issuing 4 memory accesses simultaneously, making the

latency nearly the same as binary search while reducing

half of the memory accesses. Because both the sPT and

dPT tables have only 2
16

 entries, they can be stored in

any of the 4 SRAM channels.

Considering the IXP2850 hardware, if the table size

is less than 64MB, it can be stored in SRAM.

Otherwise, it will be stored in DRAM. Because each

table is accessed only once per packet, using DRAM

does not significantly increase the overall latency.

4. IntelliHash Scheme For Fast Path
Session Creation

This section presents a new session handling

scheme optimized for fast path TCP three-way

handshake on multi-core network processors. In this

section, the TCP three-way handshake packets are

denoted as handshake packets and subsequent packets

are denoted as data packets.

4.1. Basic Ideas
The traditional hash scheme, which is called

DirectHash in this paper, processes the three-way

handshake packets and the subsequent data packets in a

single hash table and uses link lists to handle hash

collisions. Although DirectHash is easy to implement,

this scheme suffers from:

� Excessive Collisions between handshake and
data packets processing: Session creation and session

update are processed through the same hash table in

DirectHash scheme. This introduces additional hash

collisions between handshake packets and data packets,

which will bring excessive MUTEX locks in traversing

the hash link lists.

� Isomorphic session entries for handshake and
data packets: DirectHash maintains the same size of

session entry for handshake packets and data packets.

Assuming that 4M concurrent sessions were to support

and each session entry is 256 bytes, DirectHash will

consume at least 1G memory totally, which is too large

compared to the 256M SRAM on IXP 2850. As a result,

the hash table can only reside in DRAM banks, which

have longer access latencies and hence limit the session

creation rate.

To overcome these defections, an effective fast path

session handling scheme should separate the session

tables for handshake packets apart from data packets

and design appropriate session entries for them each.

4.2. The IntelliHash Scheme

4.2.1. Separating Processing of Handshake Packets
and Data Packets

Illumined by the idea of TCP half-proxy, we

designed a novel hash scheme to isolate the processing

of handshake packets from data packets. As shown in

Figure 7, the IntelliHash scheme has two hash tables:

the Digested Session Table in SRAM handles all the

handshake packets processing in session creation and

the Full Session Table in DRAM deals with data packet

processing in session update. Both tables are indexed

by the hash value of packet header returned by the hash

unit. However, the two tables can be different in size

and can be accessed simultaneously and independently.

For instance, we can use the lower 20bits of the hash

value to index the Digested Session Table, while use

the lower 24bits of the hash value to index the Full

Session Table.

Under such deployment, IntelliHash surpasses

DirectHash by avoiding the excessive collisions

between handshake and data packets processing.

Consequently, the session update performance will not

be impacted by the session creation process.

4.2.2. Differentiating Session Entries for Handshake
Packets and Data Packets

TCP three-way handshake can be handled with

relatively small amount of memory, which motivates us

to design a standalone data structure for the handshake

processing.

Figure 8 shows the 28 bytes entry data structure of

the Digested Session Table in SRAM. The handshake

state and the 5-tuple fields along with sequence number

and ACK number are used for TCP three-way

handshake. The MUTEX lock and next session pointer

are used for handling session collisions and the

timestamp and timeout threshold are used for tearing

down the half-open session when it expires. Such a

compact data structure enormously decreases the

memory requirement for handling handshake packets

and makes it possible to place the Digested Session

Table entirely in low-latency SRAM banks.

575577

The entries of Full Session Table could simply take

the design of DirectHash, typically 200-300 bytes in

size, which we do not extract here in detail.

4.3. IntelliHash on the IXP 2850 NP

4.3.1. Packet Processing in IntelliHash
Figure 9 gives a holistic packet processing route on

IXP 2850, including three-way handshake packets and

subsequent data packets. The processing procedure

includes the following branches:

� SYN packet: handled by Digested Session Table

in SRAM. If the half-open session already exists,

update time stamp and forward the packet. Otherwise,

create a half-open session entry in the Digested Session

Table with the handshake state of SYN_RECV.

� SYN_ACK packet: handled by Digested Session

Table in SRAM. If the half-open session exists with the

state SYN_RECV and the sequence number and ACK

number match with the previous ones in the session

entry, set handshake state to SYN_ACK_RECV,

update sequence number, ACK number, time stamp

and forward it. Otherwise, drop the packet.

� Packet with ACK flag: First, check the Full

Session Table. If the session exists: a) if sequence

number and ACK number is in the TCP transmission

window, update session entry and forward the packet; b)

if sequence number and ACK number is not in the

window, drop the packet. If the session does not exist:

c) if payload length does not equal to zero, drop the

packet; d) if payload length equals to zero, use

Digested Session Table to examine it sequentially.

In case d), the processing in Digested Session Table is

as follows: e) if the half-open session exists with the

state SYN_ACK_RECV and the sequence number and

ACK number matches with the previous ones in the

session entry, set handshake state to ESTABLISHED,

update session entry and forward the packet; f)

otherwise, drop the packet.

� Data packet without ACK flag: directly handled

by Full Session Table in DRAM. If the session exists

with sequence number and ACK number in TCP

transmission window, update session entry and forward

the packet. Otherwise, drop the packet.

The only overhead of IntelliHash scheme is that it

forces all the packets with ACK flag to traverse the

Full Session Table first. Fortunately, the session update

speed is fast enough that the overhead can be properly

concealed.

4.3.2. Session Table Size Adjusting
Assuming that new session creation rate is C (new

sessions per second) and each entry of Digested

Session Table is D bytes in size, with the load factor L
and average session creation latency T, the total size of

Digested Session Table will be C*T*D/L. Here, load

factor L is defined by N/M, where M is the total number

of buckets in the hash table and N is the number of

concurrent sessions supported. Average session

creation latency T means the time needed for

completing the three-way handshake. Similarly,

assuming N concurrent sessions were to be supported

and each Full Session Table entry is F bytes in size,

with the load factor L, the total size of Full Session

Table will be N*F/L. For example, if C is 1M new

sessions per second, D is 28 bytes, T is 1 second, N is

SIP 32bits DIP 32bits SP 16bits DP 16bits Prot 8bitsHeader

Hash Return
Value

CRC Hash

20bits

24bits DRAM index

Digested Session Table
in SRAM Full Session Table in DRAM

Handshake State

SRAM
index

Full Flow State

Figure 7. Data Structure of IntelliHash

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3

Time Stamp Timeout Protocol

Source IP Address

Destination IP Address

Source Port Destination Port

Sequence Number

ACK Number

Mtx State Next Session Pointer

Mtx indicates the 2 bits for MUTEX lock. State indicates the
handshake state value.

Figure 8. Digested Session Table Entry in SRAM

Listen

Set SYN_RECV &Store
state

SYN_ACK Seq. No. & Ack.

No. valid?

Set SYN__ACK_RECV
&Update state

ACK Seq. No. & Ack. No.

valid?

Set ESTABLISH
&Update state

Flush whole flow state
into DRAM Session Table

Release
handshake entry

Yes

Incoming SYN packets

Incoming SYN_ACK packets

Session exist & Seq.

No. & Ack. No. in

window size?

Update flow state
Yes

Incoming ACK packets

Yes

SRAM ZONE

DRAM ZONE

LEN == 0?

Yes

No Yes

Figure 9. Handshake Packets Processing

576578

4M, F is 256 bytes and L is 1/2, the size of Digested

Session Table will be 112M bytes and the size of Full

Session Table will be 2G bytes. These volumes of the

two session tables are acceptable on IXP2850 platform.

Furthermore, with a deterministic Full Session

Table size in DRAM for handling a fixed number of

concurrent sessions, the size of Digested Session Table

could be adjusted for adapting different network

conditions.

5. Performance Evaluation

5.1. Experiment Environments
To evaluate the performance, the applications were

tested in the Intel SDK 4.0 Developer Workbench,

which provides a cycle-accurate simulator of the

IXP2850 NP. We also test the applications on a real

dual-IXP2850 platform using Smartbit600 to verify the

compatibility on hardware.

5.2. Performance of PSCP
5.2.1. Worst-case Memory Access

Worst-case memory accesses, as the most important

performance metrics of flow classification algorithms,

provide an evaluation of the worst-case processing

speed. Figure 10 shows the worse-case memory

accesses of the original Cross-Producting

(Cross-Producting), Binary Search Cross-Producting

(BSCP) and Parallel Search Cross-Producting (PSCP)

with five real-life rule sets, from which we can see that

the worse-case memory accesses of PSCP is nearly 1/2

of that of BSCP and nearly 1/4 of that of

Cross-Producting algorithm. This is because PSCP uses

quad-search tire in the single-field search, while BSCP

uses binary-search tire and the original

Cross-Producting uses longest-prefix-matching

respectively.

5.2.2. Throughput on Network Processor
To evaluate the worst-case throughput on IXP2850,

minimum 64Byte Ethernet packets are engaged here as

the input traffic and all the packets are designed to

match the longest prefix and reside in the leaf nodes of

the tries. Figure 11 gives the worse-case throughput

achieved by PSCP, BSCP and the original

Cross-Producting. It is shown that PSCP reaches a

throughput of 5-7Gbps with different sizes of rule sets,

whereas BSCP obtains a throughput of 2.5-4.5Gbps

and Cross-Producting only reaches 1.7G throughput.

Besides, the worse-case performance of PSCP and

BSCP decreases slowly as the number of rules

increases, because their single-field search is on the

magnitude of log(N).

0

10

20

30

40

50

60

70

80

68 Rules 360 Rules 500 Rules 752 Rules 916 Rules
Rule Sets

W
or

st
-c

as
e

M
em

or
y

Ac
ce

ss
 (3

2-
bi

t w
or

ds
)

Cross-Producting

BSCP

PSCP

0

1

2

3

4

5

6

7

8

68 Rules 360 Rules 500 Rules 752 Rules 916 Rules
Rule Sets

Th
ro

ug
hp

ut
 (G

bp
s)

Cross-Producting

BSCP

PSCP

Figure 10. Worst-case Memory Access Figure 11. Throughput on IXP 2850

0

1

2

3

4

5

6

7

8

9

8 16 24 32 40 48 56 64 72
Number of Threads

H
an

ds
ha

ke
 P

ro
ce

ss
in

g
Sp

ee
d

(G
bp

s

IntelliHash

DirectHash

0.0

0.5

1.0

1.5

2.0

2.5

8 16 24 32 40 48 56 64 72
Number of Threads

Se
ss

io
n

C
re

at
io

n
R

at
e

(M
cp

s) IntelliHash

Figure 12. Handshake Processing Rate Figure 13. Session Creation Rate

577579

5.2. Performance of IntelliHash
To evaluate the performance of IntelliHash, we do

experiments to compare its TCP three-way handshake

processing speed with the DirectHash scheme. From

Figure 12, we can see that the DirectHash scheme

reaches 6.5 Gbps handshake processing speed with 72

threads, while the IntelliHash scheme reaches 8.5 Gbps

speed. This is because the handshake processing of

IntelliHash is implemented on SRAM while that of

DirectHash can only be implemented on DRAM.

Figure 13 illustrates the entire fast path session creation

performance of IntelliHash scheme integrating the

PSCP algorithm proposed in this paper, where packet

classification is applied on the SYN packets. From the

figure, we can see that a session creation rate of up to 2

Mcps (connections per second) could be achieved with

72 Micro-engine threads and the performance increases

slowly with the number of threads growing.

6. Conclusion
In this paper, we presented a fast path session

creation mechanism based on multi-core and

multi-threaded network processors. To achieve it, a

hardware optimized flow classification algorithm based

on Cross-Producting is proposed. Besides, an efficient

fast path session handling scheme using separate

session tables for handshake and subsequent data

packets is proposed to get high session creation rate

along with high session update rate.

Experimental results show that the PSCP algorithm

optimized for network processor reaches a throughput

of 5-7Gbps with real-life rule sets and the IntelliHash

scheme achieves a session creation rate of 2M new

sessions per second.

Our future work includes implementing TCP stream

reassembly and holistic deep inspection system on the

IXP series network processors.

Acknowledgments
This work was granted by National High-Tech R&D

(863) Plan of China (No. 2007AA01Z468). The

authors also would like to acknowledge the colleagues

in Network Security Lab for their suggestions.

References
[1] Intel, IXP2XXX Product Line of Network Processor,

http://www.intel.com/design/network/products/npfamily/ixp2xx

x.htm.

[2] AMCC, Network Processor,

https://www.amcc.com/MyAMCC/jsp/public/browse/controller

.jsp?networkLevel=COMM&superFamily=NETP.

[3] Freescale, C-Port Network Processors,

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeI

d=02VS01DFTQ3126.

[4] Agere, Network Processor,

http://www.agere.com/telecom/network_processors.html.

[5] Cavium, http://www.cavium.com/.

[6] RMI, http://www.razamicroelectronics.com/.

[7] U. R. Naik and P. R. Chandra, “Designing High-performance

Networking Applications”, Intel Press, 2004.

[8] V. Srinivasan, G. Varghese, S. Suri and M. Waldvogel, “Fast

and Scalable Layer Four Switching”, Proc. ACM SIGCOMM,

1998.

[9] Intel Corporation, “Intel IXP2850 Network Processor Hardware

Reference Manual”, 2004.

[10] Intel Corporation, “Intel IXDP2850 Advanced Development

Platform System User’s Manual”, 2004.

[11] B. Carlson, “Intel Internet Exchange Architecture and

Applications”, Intel Press, 2003.

[12] E. J. Johnson and A. R. Kunze, “IXP2400/2850 Programming”,

Intel Press, 2003.

[13] M. Venkatachalam, P. Chandra and R. Yavatkar, “A Highly

Flexible, Distributed Multiprocessor Architecture for Network

Processing”, Computer Networks, 2003.

[14] M. H. Overmars and A. F. van der Stappen, “Range Searching

and Point Location among Fat Objects”, Journal of Algorithms,

21(3), 1996.

[15] P. Gupta and N. McKeown, “Packet Classification Using

Hierarchical Intelligent Cuttings”, Proc. Hot Interconnects,

1999.

[16] P. Gupta and N. McKeown, “Packet Classification on Multiple

Fields”, Proc. ACM SIGCOMM, 1999.

[17] B. Xu, D. Jiang and J. Li, “HSM: A Fast Packet Classification

Algorithm”, Proc. of the 19th International Conference on

Advanced Information Networking and Applications (AINA),

2005.

[18] S. Singh, F. Baboescu, G. Varghese and J. Wang, “Packet

Classification Using Multidimensional Cutting”, Proc. of ACM

SIGCOMM, 2003.

[19] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A. T.

Campbell, “Directions in Packet Classification for Network

Processors”, Proc. of the 2nd Workshop on Network Processors

(NP2), 2003.

[20] D. E. Taylor, “Survey & Taxonomy of Packet Classification

Techniques”, Technical Report, Washington University in

Saint-Louis, USA, 2004.

[21] Y. X. Qi, B. Xu, F. He, X. Zhou, J. M. Yu, and Jun Li,

“Towards Optimized Packet Classification Algorithms for

Multi-Core Network Processors”, Proc. of the 2007

International Conference on Parallel Processing (ICPP), 2007.

[22] P. Gupta and N. McKewon, “Algorithms for Packet

Classification”, IEEE Network, March/April, 2001.

[23] Y. Qi, B. Xu, F. He, B. H. Yang. J. M. Yu and J. Li, “Towards

High-performance Flow-level Packet Processing on Multi-core

Network Processors”, Proc. of ACM/IEEE Symposium on

Architectures for Networking and Communications Systems

(ANCS), 2007.

[24] Intel Corporation, “Intel IXP2400 and IXP2800 Network

Processor Programmer’s Reference Manual”, 2004.

578580

