

Performance Evaluation and Improvement of Algorithmic Approaches for

Packet Classification

Yaxuan Qi, Jun Li
Research Institute of Information Technology (RIIT)

 Tsinghua University, Beijing, China, 100084
qiyx98@mails.tsinghua.edu.cn

Abstract

Packet classification is crucial to the

implementation of several advanced services that
require the capability to distinguish traffic in different
flows, such as firewalls, intrusion detection systems
and many QoS implementations. Although hardware
solutions, such as TCAMs, provide high search rate,
they do not scale to large rulesets. Instead, some of the
most promising algorithmic research embraces the
practice of leveraging the data redundancy in real-life
rulesets to improve high performance packet
classification. In this paper, we provide a general
framework for discerning relationships and
distinctions of the design-space of existing packet
classification algorithms. We deeply studied several
best-known algorithms, such as RFC, HiCuts and
HyperCuts according to this framework and suggest
for each algorithm an improved scheme. All algorithms
we studied, along with their improved version, are
objectively accessed using both real-life and synthetic
rulesets. The C source codes we wrote for these
algorithms are publicly shared on our web-site.1

1. Introduction

As the Internet becomes one of the most critical

infrastructures of our modern society, keeping network
operation and information exchange efficient and
secure is highly desired. Traffic engineering, access
control, and many other services require a
discrimination of packets based on the multiple fields
of packet headers, which is called multidimensional
packet classification.

To reach multi-Gbps packet classification rate, there
are currently only a few ASIC/FPGA products. While
hardware like Ternary CAMs offers a good solution for
small rulesets, they may use too much power and board
area for large rulesets. Thus, hardware solutions
usually mean higher cost for R&D and production, and
lower flexibility in term of modify or upgrade. It is

1 This work is sponsored by the Intel IXA University Program.

worth looking for alternatives to overcome the limits in
hardware solutions, and the challenge of finding
efficient algorithmic approaches for packet
classification to achieve high performance with
comparatively low hardware requirement still
motivates the research today.

In this paper, we provide a general framework for
discerning relationships and distinctions of the design-
space of existing packet classification algorithms. We
deeply studied several best-known algorithms, such as
RFC, HiCuts and HyperCuts, and suggest for each
algorithm an improved scheme. Main contribution of
this paper includes:

Dissectional Analysis: From a generic view of
space decomposition, we dissect a packet classification
problem into several procedures according to the
different processes on the search space. The
dissectional analysis opens the door for us to develop
more efficient packet classification algorithms that
leverage on the advantages of other popular algorithms
to reach with higher performance.

Novel Ideas: By careful study of the design and
implementation of several best-known algorithms, we
suggest some novel ideas and present three novel
algorithms to further improve the performance of
existing schemes.

Objective Evaluations: Thorough comparisons are
done with several real-life rulesets, as well as synthetic
ones. Experimental results include worst case search
time, total memory usage, full update times and
performance stability on large rulesets.

The rest of the paper is organized as follows.
Section 2 defines the problem of packet classification;
Section 3 studies existing algorithms and provides
improved schemes; Section 4 illustrates the
experimental results; as a summary, Section 5 states
our conclusions.

2. Problem Definition

Generic packet classification classifies a packet

based on multiple fields of its header. Each rule
specifies a flow that a packet may belong to, based on

certain specifications on the F fields of the packet
header. The flow uniquely determines the action
associated to the rule R, referred to as R[i], is a regular
expression on the ith field of the packet header. A
packet P is said to match a particular rule R, if the ith
field of the header of P satisfies the regular expression
R[i], for all 0 i F≤ < . If a packet P matches multiple
rules, the matching rule with the highest priority is
returned.

One possible approach is to map the problem into a
geometric point location problem in a multi-
dimensional space. It has been proved that the best
bounds for point location in N non-overlapping F-
dimensional hyper-rectangles are 1(log)FO N− search
time with ()O N storage, or (log)O N search time and

()FO N storage. In packet classification problem, rules
(hyper-rectangles) may overlap, making classification
at least as hard as point location (N overlapping rules
may yield up to (2 1)FN − non-overlapping hyper-
rectangles). Packet classification is made yet more
complex by the need to match on ranges as well as
prefixes. More specific, A W-bit range can be
represented by at most 2(W-1) prefixes, which means a
prefix matching algorithm can find ranges with 2W
times as much storage. Moreover, the large constant
hidden in the ()O ⋅ notation also impacts actual
performance severely in practical implementation.

Although the theoretical bounds make it impossible
to design a single algorithm that performs well for all
cases, fortunately, real-life rulesets have some inherent
characteristics that can be exploited to reduce the
complexity both in search time and storage space. In
literatures [1, 2, 4], a variety of characteristics of real-
life rulesets are presented and exploited in proposed
algorithms. Some best-known algorithms like RFC,
HiCuts and HyperCuts achieved encouraging
improvements in performance compared to prior
schemes. Their deep thoughts and exhaustive analysis
point the way out for further understanding and
improvement of multi-dimensional packet
classification.

3. Analysis of Existing Algorithms

To unveil the cohering relation lying in different

algorithms, we use a dissectional methodology to
analyze the prior work on packet classification. First
we dissect packet classification problem into two
generic procedures, then we proceed to the comparison
and analysis of existing algorithms according to the
different ideas and techniques adopted by them in each
procedure.

3.1. Space Decomposition and Data Structures

Most existing algorithms adopt a Divide-and-

Conquer strategy: First divide the original search
problem into a series of simplified sub-problems by
space decomposition; then direct the way of search by
building a corresponding classifier.1

3.1.1. Space Decomposition Schemes

Space decomposition is to partition the search space
into certain number of sub-spaces. Each sub-space and
the corresponding subset of rules make a new search
problem. By recursive decomposition of the search
spaces, the complexity of the original classification
problem is reduced, so the search result can be
obtained by solving a series of sub-problems in stead
of doing exhaustive search in the entire search space
with all rules. Space decomposition schemes in
existing algorithms can be dissected into three main
steps: Segmentation, Intersection and Aggregation:

Segmentation: Space segmentation is implemented
on a single dimension. The number line of the
dimension is divided into segments with certain
number of endpoints. There are two schemes in general:
one scheme depends on the rule projections
(projection-based segmentation) while the other applies
equal-sized segmentation.

Intersection: In the segmentation step, the search
space is decomposed into sub-spaces along each
dimension. Intersection of all these sub-spaces leads to
more detailed decomposition on multiple dimensions.

Aggregation: Sub-spaces obtained by segmentation
and intersection may have spatial redundancy, e.g.
some sub-spaces may contain the same set of rules.
Aggregation of such redundant sub-spaces can greatly
reduce the storage requirement. There are two ways
involved in space aggregation: one is space
combination for contiguous sub-spaces, and the other is
space mapping for both contiguous and discontiguous
sub-spaces.

3.1.2. Classifier Data Structures

Each packet classification algorithm generates a
classifier to direct the way to traverse a series of sub-
spaces. More specifically, the classifier determines
how to locate a point into its corresponding sub-space
and how to go from the current search space to the next.
There are two types of Data Structures adopted by
different classifiers: One is pointer-based decision trees
and the other is index-based lookup tables.

1 Classifier in this paper refers to the whole data-structure generated
by algorithms for packet search. However, in some literature,
classifier may refer to a set of rules, i.e. the ruleset defined in this
paper.

Decision Trees: Pointer-based decision trees
algorithms partition the search space into 2w equal-
sized sub-spaces at each space decomposition stage,
where w is called the stride. Each internal node
contains a corresponding search space, a set of rules,
the information for packet search, as well as pointers to
child nods. The final search results (identifiers of the
best matching rules) are saved in leaf nodes.

Lookup Tables: All the entries of an index-based
lookup table are stored in consecutive memories. The
indices of the table are obtained by space mapping.
Each entry corresponds to a particular sub-space and
stores the search result at current stage.

According to the space decomposition techniques
and classifier data structures, the following part of this
section will go deep into the analysis of three packet
classification algorithms, including RFC, HiCuts and
HyperCuts, which achieve the best-reported
performances in existing literatures.

3.2. Recursive Flow Classification (RFC)

Gupta and McKeown introduced a multi-

dimensional algorithm named Recursive Flow
Classification (RFC), which provides high lookup rates
at the cost of memory inefficiency [2]. The authors
performed a rather comprehensive and wildly cited
study of real-life rulesets and extracted several useful
characteristics. Specifically, they noted that rule
overlap is much smaller than the worst-case of ()FO N .
RFC attempts to recursively map an S-bit packet
header to a T-bit action identifier, where T S . At
each stage the algorithm maps one set of values to a
smaller set, and in each phase a set of memories return
a value shorter than the index of the memory access.

3.2.1. Space Decomposition Scheme

RFC performs independent, parallel searches on
chunks of the packet header, the result of the chunk
searches are combined in multiple phases. In the first
phase, F fields of the packet header are segmented
according to unique rule-projection intervals into
multiple chunks (sub-spaces) that are used to index into
multiple memories. Sub-spaces associated with same
rules will be labeled with same eqID and then
aggregated. In subsequent phases, earlier sub-spaces
obtained from one dimensional segmentation are
recursively intersected with the sub-spaces obtained
from other dimensions. In the final phase, the memory
yields the action.

3.2.2. Classifier Data Structure

RFC searches in chunk and aggregation utilizes
index-based lookup tables: the address for the table

lookup is formed by concatenating the eqIDs from the
previous stages. The resulting eqID is smaller than the
address; thus RFC performs a multi-stage reduction to
a final eqID that specifies the action to apply to the
packet.

3.2.3. Evaluation and Improvement

The use of indexing simplifies the lookup process at
each stage and allows RFC to provide very high
throughput. Because searches in a indexed table needs
only one memory access, RFC achieves ()O F search
rate (F is on the same order of the number of lookup
tables). However, this simplicity and performance
comes at the cost of memory inefficiency.

In the first phase, RFC uses the number line (all
possible values in a single dimension) as the indices of
the lookup tables in pursuit of (1)O search rate.
Although such a scheme is feasible for 216 port
numbers and 28 protocol fields, it is impractical for 232

(for IPv4) IP addresses. Gupta suggested splitting the
32-bit IP address into two 216-entry independent
chunks. Such a splitting works well for fast search but
increases the number of intermediate sub-spaces
because a single rule may appear twice in the two 216-
entry chunks. Moreover, the coming 128-bits IP
address will make it more unfeasible to apply RFC to
IPv6 networks.

To avoid the excessive number of indices, we
implement binary searches rather than table lookups on
source/destination IP fields in the first phase. Because
N rules lead to at most 2N-1 segments in each
dimension, a binary search to locate a packet in its
corresponding sub-space can be performed
in (log)O N time. Therefore, the binary search scheme
is independent on the range of IP addresses, and hence
does not require the huge lookup tables for IP address
even for IPv6. This idea is adopted by an improved
version of RFC and has been published in one of our
technical papers [3]. Experimental results in next
section show that this approach uses 2 to 20 times less
memory than RFC, and remains a relatively fast search
rate.

3.3. HiCuts and HyperCuts

HiCuts [1] and its improved version HyperCuts [4]

are seminal techniques provide best time/space
tradeoffs in existing literatures. HiCuts preprocesses
the rulesets in order to build a decision tree with leaves
containing a small number of rules bounded by a
threshold (binth in [1]). Packet header fields are used to
traverse the decision tree until a leaf is reached. The
rules stored in that leaf are then linearly searched for a
match. HyperCuts improves upon the HiCuts algorithm

by applying multi-dimensional space decomposition at
each internal node.

3.3.1. Space Decomposition Scheme

HiCuts decomposes the multi-dimensional search
space guided by heuristics that exploit the
characteristic of real-life rulesets. At each internal node,
the current search space is cut (segmented) into certain
number of equal-sized sub-spaces along a particular
dimension. The number of cuttings and the dimension
to cut is determined by heuristics (see [1] for the
heuristics used). Different from HiCuts, HyperCuts
performs segmentation on multiple fields at each
internal node. The number of cuttings and the fields to
cut also selected by heuristics (see [4]). The sub-spaces
obtained on each fields are intersected and each
intersection generates a child node. Both HiCuts and
HyperCuts aggregate contiguous sub-spaces if they
share the same set of rules.

3.3.2. Classifier Data-structure

HiCuts and HyperCuts build decision trees with
leaves containing a small list of rules as the classifier’s
data-structure. Each node of the tree represents the
current search space. The root node represents the
entire search space, which is partitioned into smaller
sub-spaces, represented by is child nodes. Each sub-
space is recursively partitioned until no sub-space has
more than binth rules, where binth is a tunable
parameter.

To link the current node with its children, HiCuts
stores a pointer array at each node. Each pointer in the
array corresponds to a sub-space and sequentially
stored according to the order of the sub-space. Due to
space aggregation, consecutive pointers may point to a
single child node. HyperCuts, however, encodes sub-
spaces using pointer matrices, which allows the data-
structure to make multiple cuts in multiple dimensions.

3.3.3. Evaluation and Improvement

The first advantage of HiCuts and HyperCuts is the
hierarchical space decomposition scheme. In each
classification stage, the decision tree just examines w
of the S bits of the packet header, where w is the
various stride specifies the number of cuttings. The
point location in an internal node is virtually
implemented within a w-bit degenerate space rather
than the entire search space.

The second advantage comes from the heuristics
they used in building the decision tree. By exploring
the characteristics of rulesets, HiCuts and HyperCuts
make “intelligent cuttings” that significantly reduce the
spatial redundancy in corresponding rules.

Figure 1. Decision tree built by HiCuts

The decision tree build by HiCuts using the sample ruleset has
15 tree nodes (6 internal nodes and 9 leaf nodes). The depth
of the decision tree is 4.

Figure 2 . Decision tree built by D-Cuts

The decision tree build by D-Cuts using the sample ruleset has
15 tree nodes (5 internal nodes and 10 leaf nodes). The depth
of the decision tree is 3. Compared to HiCuts, D-Cuts
improves the search rate by cutting down the (local) depth of
the decision tree without a significant increase of memory
usage.

Finally, the hybrid-data structure effectively cuts

down the storage requirement. Different from the
complete de-overlapping process in RFC, decision
trees in HiCuts and HyperCuts perform incomplete
space decomposition, i.e. the sub-spaces in leaf nodes
contain more than one possible matching rule. Because
the de-overlapping even on a small number of rules
may lead to large number of space partitions (()FO N),
the linear search on the final rule-lists greatly reduce
the spatial complexity.

Although HiCuts and, especially HyperCuts, are
superior to most existing algorithms, they still have
some inherent disadvantages and can be further
improved. First, they only exploit the static
characteristics in the real-life rulesets while assume all
incoming packets are distributed uniformly in the
search space. However, it is unlikely that the traffic in
a certain network uniformly spread over all IP
addresses and/or port numbers. Each network has its
own traffic patterns, and the packet classification
process is affected by the dynamic characteristics to a
certain extend. We improved the original HiCuts by
introducing dynamic characteristics of network traffic
in building the decision tree. The proposed algorithm
D-Cuts [6] elegantly refines the space allocation
function in HiCuts by introducing traffic statistics,
which makes the number of cuttings not only in
proportion to the number of rules, but also to the
volume of traffic that “flows” through the current
search space. Figure 1 and Figure 2 depict the different
decision trees built by HiCuts and D-Cuts respectively.

Figure 3. Pointer Matrix

The 4x4 pointer matrix maps
each of the 16 sub-spaces
into corresponding child
nodes.

Figure 4. ID Index
The two 4-entry Space ID
arrays replaces the 4x4
pointer matrix.

Another disadvantage lies in the pointer arrays,

especially the pointer matrices in HyperCuts. Each
internal node has a pointer matrix that
stores 2 fw pointers, where f is the number of cutting
dimensions and w is the stride. To limit the size of such
a pointer matrix, HyperCuts bounds the stride by space
allocation function. However, smaller strides in
internal nodes tend to increase the depth of the decision
tree, and hence result in a slower search rate. In our
research, we significantly reduce the memory
requirement by replacing the 2 fw pointers
with *2wf space IDs. The idea of this technique is
briefly shown in Figure 3 and Figure 4. More details
can be found in another technical paper [9].

4. Experimental Results

The algorithms in the comparison experiments

include RFC, HSM, HiCuts, D-Cuts, HyperCuts and
sBits. We make our best effort to make sure the
fairness of our result analysis. Experimental results
show that our codes achieved nearly the same
performance compared to the results reported in [4].

4.1. Rulesets

Evaluations are done on real-life firewall and core

router rulesets obtained from enterprise networks and
major ISPs. Firewall rulesets are named FW1, FW2,
FW3 and Core router rulesets are named CR1, CR2,
CR3, CR4. All rules are 5-dimensional with 32-bit
source/destination IP addresses represented as prefixes,
16-bit source/destination port numbers represented as
ranges and an 8-bit protocol.

4.2. Metrics

All the algorithms in our experiment are written in

C codes and running in a PC with Pentium4 2.4GHz
CUP. We examine, for each ruleset, the number of

memory accesses (Time) and the amount of memory
usage (Space). Different from [4] (where one memory
access is a single 32-bit word access) one memory
access here refers to reading a certain number (1~8) of
continuous memory words. This is because today’s
most on-chip SRAM support burst mode reading, i.e.
the time spent in reading continuous memory is very
close to that of reading a single word.

4.3. Performance Comparison

Table 1 shows the memory comparison of RFC and

HSM on real-life rulesets. We can see from the table
that, for all firewall rulesets, HSM achieves outstanding
performance, using approximately 5~20 times less
memory than RFC. For the larger core router rulesets,
HSM is still superior to RFC, using 40% ~ 60% less
memories than RFC.

Search speed of both RFC and HSM are on the same
order. It is reported in [2] that RFC uses 12 memory
accesses for 4-field core router sets. In comparison,
HSM uses 15~25 memory access for all our rulesets,
and in the worst-case, HSM uses less than 30 memory
accesses for 4-field rulesets with up to 4000 rules.

Memory comparison between HiCuts and D-Cuts is
shown in Table 2. D-Cuts uses about 50% memory of
that of Hi-Cuts while keeps the same search rate (even
faster in the average-case). Although the performance
of D-Cuts depends on the stability of network traffics
and the accuracy of the sampling statistics, in our study
we might assume that these dynamic characteristics are
“good enough” as well, because network statistic and
modeling are other topics in network research.

Table 3 is the memory usage comparison of HiCuts,
HyperCuts and sBits. Compared to the best-reported
algorithm HyperCuts, sBits uses about 20~80 times
less memory than HyperCuts. This outstanding
performance results from the matrix-to-index
conversion, which significantly reduces the memory
usage caused by the redundant pointer matrices.
Because sBits chooses a relatively large stride, it also
has superior performance in search speed (see Table 4).

More heuristics are used in algorithms, more
preprocessing time is needed. Algorithms like RFC and
HiCuts both consume a lot of preprocessing time in
building the classifiers. sBits significantly reduces the
preprocessing time by simplification of the heuristics
used in space aggregation and segmentations (see [9]
for more details). Table 5 gives the preprocessing time
for sBits, in comparison with RFC and HiCuts.

Table 1. Memory usage comparison
RFC & HSM (Unit: 32-bit word)

 No. Rules RFC HSM
FW1 68 200,652 10,223
FW2 136 209,602 27,657
FW3 340 296,382 65,581
CR1 500 264,987 29,814
CR2 1000 530,539 230,716
CR3 1530 863,476 486,857
CR4 1945 1,580,005 989,161

Table 2. Memory usage comparison

HiCuts & D-Cuts (Unit: 32-bit word)
 No. Rules HiCuts D-Cuts

FW2 136 10,779 5,752
FW3 340 24,645 16,231
CR1 500 29,409 15,163
CR2 1000 979,736 507,930

Table 3. Memory usage comparison

HiCuts, HyperCuts and sBits (Unit: 32-bit word)
 No. Rules HiCuts HyperCuts sBits

FW1 68 5,443 35,401 420
FW2 136 10,779 69,782 924
FW3 340 24,645 172,932 2,331
CR1 500 29,409 89,005 3,612
CR2 1000 979,736 871,541 28,287
CR3 1530 13,606,858* 480,225 29,204
CR4 1945 5,928,724* 672,442 43,183

Table 4. Worst case search time comparison
sBits vs. HiCuts/HyperCuts. (Unit: Memory Access)
 No. Rules HiCuts HyperCuts sBits

FW1 68 19 16 15
FW2 136 20 16 15
FW3 340 20 16 15
CR1 500 24 17 16
CR2 1000 30 17 16
CR3 1530 36 18 16
CR4 1945 34 18 17

Table 5. Preprocessing time comparison

sBits vs. RFC & HiCuts (Unit: milliseconds)
 No. Rules RFC HiCuts sBits

FW1 68 1,492 73 1
FW2 136 1,762 211 22
FW3 340 3,185 465 40
CR1 500 4,597 409 56
CR2 1000 12,929 7661 261
CR3 1530 37,754 22,522 281
CR4 1945 67,087 21,248 350

5. Conclusion

In this paper, we first make a dissectional analysis

for existing algorithms to find their cohering relations,
and then proposed improved schemes for three best-
known algorithms, including RFC, HiCuts and
HyperCuts. Experimental results show that our

schemes outperform the best results of the original
algorithms. We use the incisive conclusion by Gupta in
[1] as a summary for the development of packet
classification algorithms: “The theoretical bounds tell
us that it is not possible to arrive at a practical worst
case solution. Fortunately, we don't have to; No single
algorithm will perform well for all cases. Hence a
hybrid scheme might be able to combine the
advantages of several different approaches.”

Future work can be conducted to introduce network
traffic statistics into other packet classification
algorithms. Future work also includes the
implementation of the proposed algorithms on new
generation network processors. The codes we wrote for
RFC, HSM, HiCuts, D-Cuts, HyperCuts and sBits will
be publicly available to encourage experimentation
with classification algorithms.

6. References

[1] P. Gupta and N. McKeown, “Packet classification using
hierarchical intelligent cuttings,” Proc. Hot Interconnects,
1999

[2] P. Gupta and N. McKeown, “Packet classification on
multiple fields,” Proc. ACM SIGCOMM 99, 1999.

[3] Bo Xu, Dongyi Jiang, Jun Li, “HSM: A Fast Packet
Classification Algorithm”, The IEEE 19th International
Conference on Advanced Information Networking and
Applications (AINA), Taiwan, 2005.

[4] S. Singh, F. Baboescu, G. Varghese and J. Wang, "Packet
classification Using Multidimensional Cutting," Proc. ACM
SIGCOMM, 2003.

[5] F. Baboescu, S. Singh, and G. Varghese, “Packet
classification for core routers: Is there an alternative to
CAMs?” Proc. INFOCOM, 2003.

[6] Yaxuan Qi, Jun Li, “Dynamic Cuttings: Packet
Classification with Network Traffic Statistics”, The 3rd
International Trusted Internet Workshop (TIW), India, 2004.

[7] P. Gupta, and N. McKewon, “Algorithms for Packet
Classification, ” IEEE Network, March/April 2001, 2001.

[8] David E. Taylor “Survey & Taxonomy of Packet
Classification Techniques”, Washington University in Saint-
Louis, US, 2004.

[9] Yaxuan Qi and Jun Li, “Multidimensional Packet
Classification with Shifting Bits”, Submitted to Proc. of 14th
International conference on computer communications and
networks (ICCCN), San Diego, California USA, October 17-
19, 2005.

