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Abstract 
 
Packet classification is crucial to the 

implementation of several advanced services that 
require the capability to distinguish traffic in different 
flows, such as firewalls, intrusion detection systems 
and many QoS implementations. Although hardware 
solutions, such as TCAMs, provide high search rate, 
they do not scale to large rulesets. Instead, some of the 
most promising algorithmic research embraces the 
practice of leveraging the data redundancy in real-life 
rulesets to improve high performance packet 
classification. In this paper, we provide a general 
framework for discerning relationships and 
distinctions of the design-space of existing packet 
classification algorithms. We deeply studied several 
best-known algorithms, such as RFC, HiCuts and 
HyperCuts according to this framework and suggest 
for each algorithm an improved scheme. All algorithms 
we studied, along with their improved version, are 
objectively accessed using both real-life and synthetic 
rulesets. The C source codes we wrote for these 
algorithms are publicly shared on our web-site.1 

 
1. Introduction 

 
As the Internet becomes one of the most critical 

infrastructures of our modern society, keeping network 
operation and information exchange efficient and 
secure is highly desired. Traffic engineering, access 
control, and many other services require a 
discrimination of packets based on the multiple fields 
of packet headers, which is called multidimensional 
packet classification. 

To reach multi-Gbps packet classification rate, there 
are currently only a few ASIC/FPGA products. While 
hardware like Ternary CAMs offers a good solution for 
small rulesets, they may use too much power and board 
area for large rulesets. Thus, hardware solutions 
usually mean higher cost for R&D and production, and 
lower flexibility in term of modify or upgrade. It is 

                                                           
1 This work is sponsored by the Intel IXA University Program. 

worth looking for alternatives to overcome the limits in 
hardware solutions, and the challenge of finding 
efficient algorithmic approaches for packet 
classification to achieve high performance with 
comparatively low hardware requirement still 
motivates the research today. 

In this paper, we provide a general framework for 
discerning relationships and distinctions of the design-
space of existing packet classification algorithms. We 
deeply studied several best-known algorithms, such as 
RFC, HiCuts and HyperCuts, and suggest for each 
algorithm an improved scheme. Main contribution of 
this paper includes: 

Dissectional Analysis: From a generic view of 
space decomposition, we dissect a packet classification 
problem into several procedures according to the 
different processes on the search space. The 
dissectional analysis opens the door for us to develop 
more efficient packet classification algorithms that 
leverage on the advantages of other popular algorithms 
to reach with higher performance. 

Novel Ideas: By careful study of the design and 
implementation of several best-known algorithms, we 
suggest some novel ideas and present three novel 
algorithms to further improve the performance of 
existing schemes.  

Objective Evaluations: Thorough comparisons are 
done with several real-life rulesets, as well as synthetic 
ones.  Experimental results include worst case search 
time, total memory usage, full update times and 
performance stability on large rulesets. 

The rest of the paper is organized as follows. 
Section 2 defines the problem of packet classification; 
Section 3 studies existing algorithms and provides 
improved schemes; Section 4 illustrates the 
experimental results; as a summary, Section 5 states 
our conclusions.  

 
2. Problem Definition 

 
Generic packet classification classifies a packet 

based on multiple fields of its header. Each rule 
specifies a flow that a packet may belong to, based on 



 

 

certain specifications on the F fields of the packet 
header. The flow uniquely determines the action 
associated to the rule R, referred to as R[i], is a regular 
expression on the ith field of the packet header. A 
packet P is said to match a particular rule R, if the ith 
field of the header of P satisfies the regular expression 
R[i], for all 0 i F≤ < . If a packet P matches multiple 
rules, the matching rule with the highest priority is 
returned. 

One possible approach is to map the problem into a 
geometric point location problem in a multi-
dimensional space. It has been proved that the best 
bounds for point location in N non-overlapping F-
dimensional hyper-rectangles are 1(log )FO N−  search 
time with ( )O N  storage, or (log )O N search time and 

( )FO N  storage. In packet classification problem, rules 
(hyper-rectangles) may overlap, making classification 
at least as hard as point location (N overlapping rules 
may yield up to (2 1)FN −  non-overlapping hyper-
rectangles). Packet classification is made yet more 
complex by the need to match on ranges as well as 
prefixes. More specific, A W-bit range can be 
represented by at most 2(W-1) prefixes, which means a 
prefix matching algorithm can find ranges with 2W 
times as much storage. Moreover, the large constant 
hidden in the ( )O ⋅  notation also impacts actual 
performance severely in practical implementation. 

Although the theoretical bounds make it impossible 
to design a single algorithm that performs well for all 
cases, fortunately, real-life rulesets have some inherent 
characteristics that can be exploited to reduce the 
complexity both in search time and storage space. In 
literatures [1, 2, 4], a variety of characteristics of real-
life rulesets are presented and exploited in proposed 
algorithms. Some best-known algorithms like RFC, 
HiCuts and HyperCuts achieved encouraging 
improvements in performance compared to prior 
schemes. Their deep thoughts and exhaustive analysis 
point the way out for further understanding and 
improvement of multi-dimensional packet 
classification. 

 
3. Analysis of Existing Algorithms 

 
To unveil the cohering relation lying in different 

algorithms, we use a dissectional methodology to 
analyze the prior work on packet classification. First 
we dissect packet classification problem into two 
generic procedures, then we proceed to the comparison 
and analysis of existing algorithms according to the 
different ideas and techniques adopted by them in each 
procedure.  

 

3.1. Space Decomposition and Data Structures 
 
Most existing algorithms adopt a Divide-and-

Conquer strategy: First divide the original search 
problem into a series of simplified sub-problems by 
space decomposition; then direct the way of search by 
building a corresponding classifier.1 

 
3.1.1. Space Decomposition Schemes 

Space decomposition is to partition the search space 
into certain number of sub-spaces. Each sub-space and 
the corresponding subset of rules make a new search 
problem. By recursive decomposition of the search 
spaces, the complexity of the original classification 
problem is reduced, so the search result can be 
obtained by solving a series of sub-problems in stead 
of doing exhaustive search in the entire search space 
with all rules. Space decomposition schemes in 
existing algorithms can be dissected into three main 
steps: Segmentation, Intersection and Aggregation: 

Segmentation: Space segmentation is implemented 
on a single dimension. The number line of the 
dimension is divided into segments with certain 
number of endpoints. There are two schemes in general: 
one scheme depends on the rule projections 
(projection-based segmentation) while the other applies 
equal-sized segmentation.  

Intersection: In the segmentation step, the search 
space is decomposed into sub-spaces along each 
dimension. Intersection of all these sub-spaces leads to 
more detailed decomposition on multiple dimensions.  

Aggregation: Sub-spaces obtained by segmentation 
and intersection may have spatial redundancy, e.g. 
some sub-spaces may contain the same set of rules. 
Aggregation of such redundant sub-spaces can greatly 
reduce the storage requirement. There are two ways 
involved in space aggregation: one is space 
combination for contiguous sub-spaces, and the other is 
space mapping for both contiguous and discontiguous 
sub-spaces. 

 
3.1.2. Classifier Data Structures 

Each packet classification algorithm generates a 
classifier to direct the way to traverse a series of sub-
spaces. More specifically, the classifier determines 
how to locate a point into its corresponding sub-space 
and how to go from the current search space to the next. 
There are two types of Data Structures adopted by 
different classifiers: One is pointer-based decision trees 
and the other is index-based lookup tables. 

                                                           
1 Classifier in this paper refers to the whole data-structure generated 
by algorithms for packet search. However, in some literature, 
classifier may refer to a set of rules, i.e. the ruleset defined in this 
paper. 



 

 

Decision Trees: Pointer-based decision trees 
algorithms partition the search space into 2w equal-
sized sub-spaces at each space decomposition stage, 
where w is called the stride. Each internal node 
contains a corresponding search space, a set of rules, 
the information for packet search, as well as pointers to 
child nods. The final search results (identifiers of the 
best matching rules) are saved in leaf nodes.  

Lookup Tables: All the entries of an index-based 
lookup table are stored in consecutive memories. The 
indices of the table are obtained by space mapping. 
Each entry corresponds to a particular sub-space and 
stores the search result at current stage.  

According to the space decomposition techniques 
and classifier data structures, the following part of this 
section will go deep into the analysis of three packet 
classification algorithms, including RFC, HiCuts and 
HyperCuts, which achieve the best-reported 
performances in existing literatures. 

 
3.2. Recursive Flow Classification (RFC) 

 
Gupta and McKeown introduced a multi-

dimensional algorithm named Recursive Flow 
Classification (RFC), which provides high lookup rates 
at the cost of memory inefficiency [2]. The authors 
performed a rather comprehensive and wildly cited 
study of real-life rulesets and extracted several useful 
characteristics. Specifically, they noted that rule 
overlap is much smaller than the worst-case of ( )FO N . 
RFC attempts to recursively map an S-bit packet 
header to a T-bit action identifier, where T S . At 
each stage the algorithm maps one set of values to a 
smaller set, and in each phase a set of memories return 
a value shorter than the index of the memory access. 

 
3.2.1. Space Decomposition Scheme 

RFC performs independent, parallel searches on 
chunks of the packet header, the result of the chunk 
searches are combined in multiple phases. In the first 
phase, F fields of the packet header are segmented 
according to unique rule-projection intervals into 
multiple chunks (sub-spaces) that are used to index into 
multiple memories. Sub-spaces associated with same 
rules will be labeled with same eqID and then 
aggregated. In subsequent phases, earlier sub-spaces 
obtained from one dimensional segmentation are 
recursively intersected with the sub-spaces obtained 
from other dimensions. In the final phase, the memory 
yields the action. 

 
3.2.2. Classifier Data Structure 

RFC searches in chunk and aggregation utilizes 
index-based lookup tables: the address for the table 

lookup is formed by concatenating the eqIDs from the 
previous stages. The resulting eqID is smaller than the 
address; thus RFC performs a multi-stage reduction to 
a final eqID that specifies the action to apply to the 
packet. 

 
3.2.3. Evaluation and Improvement 

The use of indexing simplifies the lookup process at 
each stage and allows RFC to provide very high 
throughput. Because searches in a indexed table needs 
only one memory access, RFC achieves ( )O F search 
rate (F is on the same order of the number of lookup 
tables). However, this simplicity and performance 
comes at the cost of memory inefficiency. 

In the first phase, RFC uses the number line (all 
possible values in a single dimension) as the indices of 
the lookup tables in pursuit of (1)O search rate. 
Although such a scheme is feasible for 216 port 
numbers and 28 protocol fields, it is impractical for 232 

(for IPv4) IP addresses. Gupta suggested splitting the 
32-bit IP address into two 216-entry independent 
chunks. Such a splitting works well for fast search but 
increases the number of intermediate sub-spaces 
because a single rule may appear twice in the two 216-
entry chunks. Moreover, the coming 128-bits IP 
address will make it more unfeasible to apply RFC to 
IPv6 networks. 

To avoid the excessive number of indices, we 
implement binary searches rather than table lookups on 
source/destination IP fields in the first phase. Because 
N rules lead to at most 2N-1 segments in each 
dimension, a binary search to locate a packet in its 
corresponding sub-space can be performed 
in (log )O N time. Therefore, the binary search scheme 
is independent on the range of IP addresses, and hence 
does not require the huge lookup tables for IP address 
even for IPv6. This idea is adopted by an improved 
version of RFC and has been published in one of our 
technical papers [3]. Experimental results in next 
section show that this approach uses 2 to 20 times less 
memory than RFC, and remains a relatively fast search 
rate. 

 
3.3. HiCuts and HyperCuts 

 
HiCuts [1] and its improved version HyperCuts [4] 

are seminal techniques provide best time/space 
tradeoffs in existing literatures. HiCuts preprocesses 
the rulesets in order to build a decision tree with leaves 
containing a small number of rules bounded by a 
threshold (binth in [1]). Packet header fields are used to 
traverse the decision tree until a leaf is reached. The 
rules stored in that leaf are then linearly searched for a 
match. HyperCuts improves upon the HiCuts algorithm 



 

 

by applying multi-dimensional space decomposition at 
each internal node.  

 
3.3.1. Space Decomposition Scheme 

HiCuts decomposes the multi-dimensional search 
space guided by heuristics that exploit the 
characteristic of real-life rulesets. At each internal node, 
the current search space is cut (segmented) into certain 
number of equal-sized sub-spaces along a particular 
dimension.  The number of cuttings and the dimension 
to cut is determined by heuristics (see [1] for the 
heuristics used). Different from HiCuts, HyperCuts 
performs segmentation on multiple fields at each 
internal node. The number of cuttings and the fields to 
cut also selected by heuristics (see [4]). The sub-spaces 
obtained on each fields are intersected and each 
intersection generates a child node. Both HiCuts and 
HyperCuts aggregate contiguous sub-spaces if they 
share the same set of rules.  

 
3.3.2. Classifier Data-structure 

HiCuts and HyperCuts build decision trees with 
leaves containing a small list of rules as the classifier’s 
data-structure. Each node of the tree represents the 
current search space. The root node represents the 
entire search space, which is partitioned into smaller 
sub-spaces, represented by is child nodes. Each sub-
space is recursively partitioned until no sub-space has 
more than binth rules, where binth is a tunable 
parameter.  

To link the current node with its children, HiCuts 
stores a pointer array at each node. Each pointer in the 
array corresponds to a sub-space and sequentially 
stored according to the order of the sub-space. Due to 
space aggregation, consecutive pointers may point to a 
single child node. HyperCuts, however, encodes sub-
spaces using pointer matrices, which allows the data-
structure to make multiple cuts in multiple dimensions. 

 
3.3.3. Evaluation and Improvement 

The first advantage of HiCuts and HyperCuts is the 
hierarchical space decomposition scheme. In each 
classification stage, the decision tree just examines w 
of the S bits of the packet header, where w is the 
various stride specifies the number of cuttings. The 
point location in an internal node is virtually 
implemented within a w-bit degenerate space rather 
than the entire search space.  

The second advantage comes from the heuristics 
they used in building the decision tree. By exploring 
the characteristics of rulesets, HiCuts and HyperCuts 
make “intelligent cuttings” that significantly reduce the 
spatial redundancy in corresponding rules.  

 
Figure 1. Decision tree built by HiCuts 

The decision tree build by HiCuts using the sample ruleset has 
15 tree nodes (6 internal nodes and 9 leaf nodes). The depth 
of the decision tree is 4. 

 
Figure 2 . Decision tree built by D-Cuts 

The decision tree build by D-Cuts using the sample ruleset has 
15 tree nodes (5 internal nodes and 10 leaf nodes). The depth 
of the decision tree is 3. Compared to HiCuts, D-Cuts 
improves the search rate by cutting down the (local) depth of 
the decision tree without a significant increase of memory 
usage. 

 
Finally, the hybrid-data structure effectively cuts 

down the storage requirement. Different from the 
complete de-overlapping process in RFC, decision 
trees in HiCuts and HyperCuts perform incomplete 
space decomposition, i.e. the sub-spaces in leaf nodes 
contain more than one possible matching rule. Because 
the de-overlapping even on a small number of rules 
may lead to large number of space partitions ( ( )FO N ), 
the linear search on the final rule-lists greatly reduce 
the spatial complexity. 

Although HiCuts and, especially HyperCuts, are 
superior to most existing algorithms, they still have 
some inherent disadvantages and can be further 
improved. First, they only exploit the static 
characteristics in the real-life rulesets while assume all 
incoming packets are distributed uniformly in the 
search space. However, it is unlikely that the traffic in 
a certain network uniformly spread over all IP 
addresses and/or port numbers. Each network has its 
own traffic patterns, and the packet classification 
process is affected by the dynamic characteristics to a 
certain extend. We improved the original HiCuts by 
introducing dynamic characteristics of network traffic 
in building the decision tree. The proposed algorithm 
D-Cuts [6] elegantly refines the space allocation 
function in HiCuts by introducing traffic statistics, 
which makes the number of cuttings not only in 
proportion to the number of rules, but also to the 
volume of traffic that “flows” through the current 
search space. Figure 1 and Figure 2 depict the different 
decision trees built by HiCuts and D-Cuts respectively. 



 

 

 
Figure 3. Pointer Matrix 

The 4x4 pointer matrix maps 
each of the 16 sub-spaces 
into corresponding child 
nodes. 

Figure 4. ID Index 
The two 4-entry Space ID 
arrays replaces the 4x4 
pointer matrix.  

 
Another disadvantage lies in the pointer arrays, 

especially the pointer matrices in HyperCuts. Each 
internal node has a pointer matrix that 
stores 2 fw pointers, where f is the number of cutting 
dimensions and w is the stride. To limit the size of such 
a pointer matrix, HyperCuts bounds the stride by space 
allocation function. However, smaller strides in 
internal nodes tend to increase the depth of the decision 
tree, and hence result in a slower search rate. In our 
research, we significantly reduce the memory 
requirement by replacing the 2 fw pointers 
with *2wf space IDs. The idea of this technique is 
briefly shown in Figure 3 and Figure 4. More details 
can be found in another technical paper [9]. 

 
4. Experimental Results 

 
The algorithms in the comparison experiments 

include RFC, HSM, HiCuts, D-Cuts, HyperCuts and 
sBits. We make our best effort to make sure the 
fairness of our result analysis. Experimental results 
show that our codes achieved nearly the same 
performance compared to the results reported in [4]. 

 
4.1. Rulesets 

 
Evaluations are done on real-life firewall and core 

router rulesets obtained from enterprise networks and 
major ISPs. Firewall rulesets are named FW1, FW2, 
FW3 and Core router rulesets are named CR1, CR2, 
CR3, CR4. All rules are 5-dimensional with 32-bit 
source/destination IP addresses represented as prefixes, 
16-bit source/destination port numbers represented as 
ranges and an 8-bit protocol.  

 
4.2. Metrics 

 
All the algorithms in our experiment are written in 

C codes and running in a PC with Pentium4 2.4GHz 
CUP. We examine, for each ruleset, the number of 

memory accesses (Time) and the amount of memory 
usage (Space). Different from [4] (where one memory 
access is a single 32-bit word access) one memory 
access here refers to reading a certain number (1~8) of 
continuous memory words. This is because today’s 
most on-chip SRAM support burst mode reading, i.e. 
the time spent in reading continuous memory is very 
close to that of reading a single word.  

 
4.3. Performance Comparison 

 
Table 1 shows the memory comparison of RFC and 

HSM on real-life rulesets. We can see from the table 
that, for all firewall rulesets, HSM achieves outstanding 
performance, using approximately 5~20 times less 
memory than RFC. For the larger core router rulesets, 
HSM is still superior to RFC, using 40% ~ 60% less 
memories than RFC. 

Search speed of both RFC and HSM are on the same 
order. It is reported in [2] that RFC uses 12 memory 
accesses for 4-field core router sets. In comparison, 
HSM uses 15~25 memory access for all our rulesets, 
and in the worst-case, HSM uses less than 30 memory 
accesses for 4-field rulesets with up to 4000 rules. 

Memory comparison between HiCuts and D-Cuts is 
shown in Table 2. D-Cuts uses about 50% memory of 
that of Hi-Cuts while keeps the same search rate (even 
faster in the average-case). Although the performance 
of D-Cuts depends on the stability of network traffics 
and the accuracy of the sampling statistics, in our study 
we might assume that these dynamic characteristics are 
“good enough” as well, because network statistic and 
modeling are other topics in network research.  

Table 3 is the memory usage comparison of HiCuts, 
HyperCuts and sBits. Compared to the best-reported 
algorithm HyperCuts, sBits uses about 20~80 times 
less memory than HyperCuts. This outstanding 
performance results from the matrix-to-index 
conversion, which significantly reduces the memory 
usage caused by the redundant pointer matrices. 
Because sBits chooses a relatively large stride, it also 
has superior performance in search speed (see Table 4).  

More heuristics are used in algorithms, more 
preprocessing time is needed. Algorithms like RFC and 
HiCuts both consume a lot of preprocessing time in 
building the classifiers. sBits significantly reduces the 
preprocessing time by simplification of the heuristics 
used in space aggregation and segmentations (see [9] 
for more details). Table 5 gives the preprocessing time 
for sBits, in comparison with RFC and HiCuts.



 

 

Table 1. Memory usage comparison  
RFC & HSM (Unit: 32-bit word) 

 No. Rules RFC HSM 
FW1 68 200,652 10,223
FW2 136 209,602 27,657
FW3 340 296,382 65,581
CR1 500 264,987 29,814
CR2 1000 530,539 230,716
CR3 1530 863,476 486,857
CR4 1945 1,580,005 989,161

 
Table 2. Memory usage comparison 

HiCuts & D-Cuts (Unit: 32-bit word) 
 No. Rules HiCuts D-Cuts

FW2 136 10,779 5,752 
FW3 340 24,645 16,231
CR1 500 29,409 15,163
CR2 1000 979,736 507,930

 
Table 3. Memory usage comparison 

HiCuts, HyperCuts and sBits (Unit: 32-bit word) 
 No. Rules HiCuts HyperCuts sBits

FW1 68 5,443 35,401 420 
FW2 136 10,779 69,782 924 
FW3 340 24,645 172,932 2,331
CR1 500 29,409 89,005 3,612
CR2 1000 979,736 871,541 28,287
CR3 1530 13,606,858* 480,225 29,204
CR4 1945 5,928,724* 672,442 43,183

 
Table 4. Worst case search time comparison 
sBits vs. HiCuts/HyperCuts. (Unit: Memory Access) 
 No. Rules HiCuts HyperCuts sBits

FW1 68 19 16 15 
FW2 136 20 16 15 
FW3 340 20 16 15 
CR1 500 24 17 16 
CR2 1000 30 17 16 
CR3 1530 36 18 16 
CR4 1945 34 18 17 

 
Table 5. Preprocessing time comparison 

sBits vs. RFC & HiCuts (Unit: milliseconds) 
 No. Rules RFC HiCuts sBits

FW1 68 1,492 73 1 
FW2 136 1,762 211 22 
FW3 340 3,185 465 40 
CR1 500 4,597 409 56 
CR2 1000 12,929 7661 261
CR3 1530 37,754 22,522 281
CR4 1945 67,087 21,248 350

 
5. Conclusion 

 
In this paper, we first make a dissectional analysis 

for existing algorithms to find their cohering relations, 
and then proposed improved schemes for three best-
known algorithms, including RFC, HiCuts and 
HyperCuts. Experimental results show that our 

schemes outperform the best results of the original 
algorithms. We use the incisive conclusion by Gupta in 
[1] as a summary for the development of packet 
classification algorithms: “The theoretical bounds tell 
us that it is not possible to arrive at a practical worst 
case solution. Fortunately, we don't have to; No single 
algorithm will perform well for all cases. Hence a 
hybrid scheme might be able to combine the 
advantages of several different approaches.” 

Future work can be conducted to introduce network 
traffic statistics into other packet classification 
algorithms. Future work also includes the 
implementation of the proposed algorithms on new 
generation network processors. The codes we wrote for 
RFC, HSM, HiCuts, D-Cuts, HyperCuts and sBits will 
be publicly available to encourage experimentation 
with classification algorithms. 
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