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Abstract—Container technology is a light weight back-end
virtualization solution which copes with the growing demand
for internet service concurrency. For security and availability,
network isolation is essential in container network. Label based
network access control policies are employed as a network isola-
tion solution by the famous container orchestrator, Kubernetes.
The large scale and flexibility of container networks implies a
prohibitive complexity, whereas the constant changes of policies
and containers demand a short response time, thus the policy
verification needs to be efficient. However, there is no existing
tool that solves the verification problem of label based network
access control policies. Kano is proposed as the first system to
cover container network policy verification, including incremen-
tal verification. It leverages on a prefiltration algorithm to reduce
the time complexity of reachability matrix calculation from
O(n2) to O(n). With predefined and user-defined constraints
which can be verified quickly with the reachability matrix, Kano
removes potential risk from the container network. Based on the
verification result, Kano provides advices to reinforce the security
and availability of the container network.

Index Terms—Container Networks; Network Verification;
Attribute-Based Access Control

I. INTRODUCTION

Containers are becoming more and more popular to deploy
applications in a quick, cheap, and reliable way. Although
containerization helps to achieve cost-efficient resources shar-
ing, it also raises concerns about security and privacy. For
example, a tenant of a container cloud may raise questions like:
”Are my containers properly isolated from other tenants?” and
a developer may doubt like: ”Can my co-developers access
my containers?” These concerns can be solved by network
access control policies, which plays a critical role in ensuring
network-wide security and availability. Network access control
policies define the reachability between network elements,
such as routers, VMs and in this work, containers.

Among various solutions, Kubernetes [1] label based net-
work access control policies is specially designed for container
networks. It attaches key-value pairs as labels to containers,
and then uses policies to define the connectivity according to
the labels. This mechanism is similar to ABAC [3], which
has been proved of good expressivity and easy maintenance
compared to classical solutions such as the 5-tuple based ACL.

To assure that the network policies are working properly,
verification is necessary. In contrast to traditional networks
whose verification has been studied by many researchers, there
is no existing work on container network policy verification

to the best of our knowledge. Container networks pose unique
challenges to the verification of network policies.

• The large scale. The huge scale of container clusters
implies a prohibitive complexity. According to the GKE
document, the scale of a container cluster can reach 500k
containers [21]. In addition, container networks need to
be verified at container-level, instead of router-level like
most existing control plane verification works.

• Frequent update. The labels in containers and network
policies can be added, deleted, or migrated by any cluster
user. Consequently, instead of verified only once and
offline, the network polices need to be verified repeatedly
or periodically at run-time. The frequent update also
significantly shortens the lifespan of verification results.

• Complex intention. Different from simply isolation be-
tween different tenant in multi-tenant scenes, network
policies are used to express more complicated intention.
A user may expects that the database container can
only be accessed by a few specific containers, but the
web front-end should be accessible by everyone. This
heterogeneous feature brings more complexity to the
container network policies.
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Fig. 1: The structure of a container cluster

Figure 1 shows a motivating example, which is a simplified
view of a container cluster environment. The physical network
insures that all physical servers are connected with each other.
The owner and role are marked on each container.

• Suppose Alice would like her proxy container, Nginx, to
be reachable by everyone, while her front-end container,
Tomcat, to be reachable only by her Nginx container.
Therefore, she activates a policy which indicates that only



TABLE I: The comparison between existing network verification solutions and Kano

Network Solutions Methods
Features Physical vs

Virtual net.
Control vs
Data plane Size of input Verif.

Time(s)
Incr. All pairs

Reach. Phy. Vir. Ctr. Data VMs Routers Rules

Non-
Cloud

HSA [5] Custom algorithms • • - 26 756.5k -
NetPlumber [6] Graph-theoretic • • • • - 52 143k 60

Anteater [7] SAT solver • • - 178 1,627 -
Veriflow [8] Graph-theoretic • • • • - 172 5,000k -

AP verifier [9] Custom algorithms • • • - 58 3,605 -
ARC [10] Graph-theoretic • • - few tens - -

Batfish [11] SMT Solver • • • - 21 - 86,400
ERA [12] Custom Algorithms • • - over 1,600 - -

Minesweeper [13] SMT Solver • • - 405 - about 20
CPC [14] Custom Algorithms • • - 2,000 - 946.4

Jinjing [15] SMT Solver • • • - thousands - 800

Cloud

NoD [16] SMT Solver • • • 100k - 820k 471,600
Plotkin et al. [17] SMT Solver • • • 100k - 820k 7,200
Cloud Radar [18] Graph-theoretic • 30k - - -
Probst et al. [19] Graph-theoretic • • 23 - - -
TenentGuard [20] Custom Algorithms • • • • 100k 1200 850k 1,055.88

Kano Custom Algorithms • • • • 10k - 5k 53.51

Nginx containers can reach Tomcat containers. However,
Bob has a Nginx container, too. Alice becomes aware of
that, and sets another role which isolates all her containers
from others. Unfortunately, the former policy still works,
and Alice’s Tomcat remains accessible by Bob’s Nginx,
while her Nginx becomes unreachable by others.

• Suppose the cluster has 50k containers. Despite the large
scale, users still wants to monitor their containers and
find out risks in real time. Then they need to verify the
reachability between 50k∗50k∗2 = 5billion of container
pairs every time. Since they knows the verification result
becomes meaningless as soon as the next change is made
to the container cluster, they schedule the verification to
be performed at every configuration update and expects
to see the results within a few seconds.

In this paper, we present Kano, an efficient system for
verifying large scale, container-level network policies at run-
time. To address the aforementioned challenges, our main
ideas are as follows. First, Kano takes advantage of the
sparse reachability relationship between containers to reduce
the performance overhead of verification. Second, instead of
SMT solver or binary tries, Kano uses bitmatrix to keep the
verification time and space cost relatively constant and limited.
Third, Kano supports incremental verification by examining
only parts of the container network affected by the config-
uration change. Finally, Kano provides declarative language
for network operators to express intention besides predefined
constraints. The following summarizes our main contributions:

• An efficient reachability matrix calculation approach.
We propose an approach which can reduce the time
complexity of calculating all pairs reachability matrix to
O(n) from O(n2) of naive algorithm.

• A data structure for incremental verification. We design
a data structure in which containers and policies are
correlated. By this we can identify the portion of the

container network affected by an update quickly.
• A set of constraints expression and verification algorithm.

We propose a set of predefined constraints to represent
risks in container network, and a declarative language
which can express user-specific constraints. By reachabil-
ity matrix, these constraints can be verified conveniently.

• Implementation and integration to Kubernetes. We imple-
ment Kano to find potential risks with container network
configurations and provide advice on how to fix it. Kano
takes Kubernetes configurations files as input, or works
automatically on Kubernetes controllers.

The rest of this paper is organized as follows. Section II
summarizes and analyzes related existing work, and estab-
lishes the value proposition of Kano. Section III proposes a
bipartite graph model for container network, and transforms
it into a reachability matrix to represent network policies and
constrains. Section IV elaborates the algorithm to calculate
the reachability matrix and carry out network verification. The
implementation of Kano is presented in Section V. Section VI
shows the evaluation results of Kano. Section VII concludes
this paper and proposes the future work.

II. RELATED WORKS

The most popular network access control solution used by
container network is label based policies advocated by Google
Kubernetes. Kano is designed to work with the label-based
configurations.

To our best knowledge, so far there is no existing network
verification tool proper to verify Kubernetes label based poli-
cies. Table I summarizes the comparison between existing net-
work verification solutions and Kano. Based on the target en-
vironments, existing works can be divided into two categories,
i.e., either cloud-based or non-cloud networks. It demonstrates
that Kano differs from the existing works as follows. First,
Kano performs verification at a better granularity (i.e., all-pair
container-level vs single-pair router-level). Second, Kano is



more scalable (e.g., it can verify 10k VMs within 53 seconds
and has a linear time complexity). Finally, Kano applies the
IBN philosophy. Besides pre-defined constraint, it provides a
declarative language for network operators to express their
intent. When error is found, Kano also provides fine-grained
configuration modification advice instead of just alert.

III. MODEL

When doing container network verification, the problem we
are going to solve is ”In a container network, do the network
policies violates the network constraints?” Therefore, We need
to explain what are container network, network policies and
network constraints, then model them.

A. Container Network

We model a container network as a bipartite graph. Suppose
the two disjoint and independent sets U and V represent egress
and ingress of all containers, and the edge sets E1 and E2
represent the connections allowed by network policies. E1
represents the connection set allowed by egress policies, and
E2 represents ingress policies. The connections allowed by
both policies can be actually allowed as represent by the joint
connection set E, i.e., E1 ∩ E2.
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(a) Egress connections
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(b) Ingress connections
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(c) Final connections

Fig. 2: Container network reachability matrix model

We express this bipartite graph model by reachability bitma-
trix. The egresses are transformed to rows, and the ingresses
are transformed to columns. If a bit at row x and column y
is set, it means container x is allowed to reach container y. A
reachability matrix is shown in Figure 2 as an example.

We choose this reachability bitmatrix model due to the
following advantages.

• Low storage consumption. The reachability bitmatrix can
record an edge with a single bit, which costs much fewer
space than using integer set [9] or string [2].

• Fast calculation. The matrix calculation and the verifica-
tion procedure can be done by bitwise operation, which
is much faster than integer and string calculation.

• Easy verification. The policies and constraints can be
easily translated into matrix expression. We will define
the constraints subsequently.

B. Network Policies

In the Kubernetes label based policies, a container has some
labels and each label consists of a key and a value. A policy
can be roughly divided into four parts - select part, allow part,
direction part and protocol part.

• Select part. The select part uses label to identify which
containers this policy is applied to. A policy only takes
effect to the containers which meet all label restrictions,
i.e., all keys appearing in the select part of a policy should
appear in the selected containers, and their corresponding
values should all match.

• Allow part. The allow part uses label to judge which
containers are allowed to access. The identify mechanism
is similar to the select part.

• Direction part. The direction part decides whether this
policy is for ingress or egress control of the applied
containers.

• Protocol part. The protocol part indicates the particular
protocol to be allowed - UDP or TCP - and the allowed
port of this policy.
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Fig. 3: An example of how policy works

An example is shown in Figure 3. If more than one policy
select a same container, and the allow part is different, the
final allowed containers are the union of all policies. It can be
calculated by bitwise OR operation.

C. Network Constraints

We extract some constraints from the real production envi-
ronment. Their violations is shown as follows. Each of them
may cause serious risk, like data leak and improper isolation.

• All reachable. A container can be reached by all contain-
ers.

• All isolated. A container cannot be reached by any
container.

• User cross. A container can reach other user’s container
in the container network.

• System isolation. A container is isolated with certain
container, usually the kube-system container.

• Policy shadow. The connections built by a policy are
completely covered by another policy, then this policy
may be redundant.

• Policy conflict. The connections built by a policy are
totally contradict the connections built by another.

• Other user-defined constraints which can be expressed by
reachability.

The network constraints can be checked against the reach-
ability matrix, and the exact procedure will be introduced in
subsequent sections.



IV. ALGORITHM

In a typical container network, containers and network
policies may be changed frequently, due to new service
deployment, and dynamic traffic management, and so on.
To ensure configuration update correctness, network service
continuity, and quick trouble shooting, network verification
needs to be conducted in a fast snapshot manner.

A. Reachability Bitmatrix Calculation

If reachability bitmatrix is calculated intuitively, the poli-
cies should be traversed. For each policy, we traverse every
container to figure out whether it is selected and allowed by
the policy. Suppose there are m policies and n containers, the
time complexity of brute-force algorithm will be O(mn). In
practice, m and n usually have the same order of magnitude.
As mentioned before, the scale of a container cluster can reach
500k containers [21], therefore a faster algorithm is demanded.

Despite the large number of containers and their policies
in a cluster, the keys and values of the labels are scattered,
thus the reachability matrix is usually sparse. The reachability
bitmatrix calculation can be accelerated with a prefiltration to
drop the impossible matching procedure between containers
and policies. Therefore, the following prefiltration algorithm
is proposed based on bitset mapping.

Firstly, hash the keys to a hashmap to associate every key
to its bitset where each bit represents a container, as shown
in Figure 4. Then, map keys of all the containers to there
corresponding bitsets, so that the index of the containers are
fully populated in the bitsets. Because each container has
limited labels, the time complexity of this procedure is O(n).

Container A

Labels:

  app: myApp

  role: DB

Hashmap

0 1 2 3 4 5

Container list

Index:

hash: role

001000...

011000...

Bitset

Fig. 4: Prefiltration of container labels

Secondly, hash the selector/allow keys of each policy to a
bitset, then AND all resulting bitsets to obtain representation
of containers, as shown in Figure 5. The time complexity of
this procedure is O(m).

Finally, traverse all set bit of the bitset. Determine whether
the corresponding container is selected/allowed by the policy.
This step is done by brutally comparing strings in labels
and selectors. If matched, set the corresponding bit in the
reachability matrix. Because the reachability matrix is sparse,
there is few bits to be set, so the time complexity of this
procedure is O(1).

The complete algorithm is shown as Algorithm 1, with
overall time complexity O(m + n).

Hashmap

hash: role

001011...

011010...

Bitset
Policy A

Allow:

Labels:

  app: myApp

  role: DB

Selector:

Labels:

  project: Web  

AND

001010...

Fig. 5: Prefiltration of policies

Algorithm 1 Reachability bitmatrix calculation algorithm

Input:Container list C, policy list P
Output:Reachability bitmatrix M

1: n = sizeof(C)
2: m = sizeof(P)
3: HashMap<String,BitSet> labelHash
4: for i = 0 to n do
5: for label in C[i].Labels do
6: labelHash.hash(label.key).set(i)
7: for i = 0 to m do
8: BitSet SelectSet = new BitSet(1,n)
9: for label in P[i].selectLabels do

10: SelectSet = SelectSet&&labelHash.hash(label.key)
11: BitSet AllowSet = new BitSet(1,n)
12: for label in P[i].allowLabels do
13: AllowSet = AllowSet&&labelHash.hash(label.key)
14: for SetIndex in SelectSet do
15: if !P[i] selects C[SetIndex] then
16: SelectSet.clear(SetIndex)
17: for SetIndex in AllowSet do
18: if !P[i] allows C[SetIndex] then
19: AllowSet.clear(SetIndex)
20: for SetIndex in SelectSet do
21: M.getRow(SetIndex) =

M.getRow(SetIndex)||AllowSet
22: return M

The space complexity of this algorithm is O(n2). Take the
final bitmatrix as an example, the storage size it needs when
the cluster size reaches the max - 500k containers - can be
calculated as Equation 1.

S = 500000 ∗ 500000(bit) = 250Gb = 31.25GB (1)

It is a reasonable memory cost for clusters which can
support 500k containers, for example, cloud data centers.

B. violation Check

With the reachability matrix, all of the constraint violations
listed in in Section III C can be checked quickly. The violation
check algorithm of each constrain violation, shown in Figure
6, is described respectively as follows.
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(d) System isolation
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Fig. 6: Container network reachability bitmatrix model

• All reachable. This constraint violation can be found
if there is a all-1-column in the reachability bitma-
trix(Figure 6a). The algorithm is shown as Algorithm 2.
Theoretically, the time complexity is O(n2). However,
the bitwise operation can be done in batch mode, so in
most cases, the time complexity is O(n).

Algorithm 2 All reachable check

Input:Reachability matrix M
Output:All reachable container list C

1: n = sizeof(M)
2: for i = 0 to n do
3: VeriSet = BitSet(1,n)//(0,n) for all isolated
4: VeriSet = VeriSet∧M.getColumn(i)//|| for all isolated
5: if VeriSet == ∅ then
6: C.add(i)
7: return C

• All isolated. This constraint violation can be found if
there is a all-0-column in the reachability matrix (Figure
6b). The algorithm is similar with the all reachable check
procedure (As the annotation in Algorithm 2 shows), and
has the same time complexity, O(n).

• User cross. This constraint violation can be validated by
comparing each row of the reachability bitmatrix with
the user hash bitset with all bits corresponding to the
containers belonging to the same user is set and the others
clear. The user hash bitsets is calculated according to the
user label. All containers should have the same user label,
whose value differs according to the container owner.
The user hash bitsets calculating algorithm is shown as
Algorithm 3, and its time complexity is O(n). The user
cross check algorithm is shown as Algorithm 4, and its
time complexity is O(n).

• System isolation. This constraint violation can be found

Algorithm 3 User hash bitsets calculating

Input:Container list C, user label Key
Output:User hash bitsets map H

1: n = sizeof(C)
2: HashMap<String,BitSet> H
3: for i = 0 to n do
4: H.hash(C[i].getValue(Key)).set(i)
5: return H

Algorithm 4 User cross check

Input:Reachability matrix M , User hash map H , Container
List C
Output:User cross list U

1: n = sizeof(M)
2: for i = 0 to n do
3: VeriSet = H.Hash(C.userLabel)
4: VeriSet = !VeriSet
5: VeriSet = VeriSet&M.getColumn(i)
6: if VeriSet == ∅ then
7: U.add(i)
8: return U

if a specified row has 0. The algorithm is shown as
Algorithm 5, and its time complexity is O(n).

Algorithm 5 System isolation check

Input:Reachability matrix M , Container index i
Output:System isolate list C

1: n = sizeof(M)
2: VeriSet = BitSet(1,n)
3: VeriSet = VeriSet∧M.getRow(i)
4: if VeriSet != ∅ then
5: for each set bit j in VeriSet do
6: C.add(j)
7: return C

Container B

Select policies: 0000...

Allow policies: 0100...

Container A

Select policies: 0100...

Allow policies: 0000...

Container list:

0

1

Policy Y

Select pod: 1000...

Allow pod: 0100...

Policy X

Policy list:

0

1

 ...2

 ...2

Fig. 7: Bidirectional container policy map

To find shadow and conflict among policies, a data structure
named Bidirectional Container Policy Map (BCP map, Fig-
ure 7) is employed to record the corresponding relationship
between containers and policies. The containers use bitsets
to record ingress and egress allowed containers, and the
policies select them. The policies use bitsets to record selected
containers and allowed containers. The space complexity of



the bitsets is O(n2+mn). To store the reachability matrix, the
space complexity is at least O(n2). So the space complexity
of the bitsets has the same order of magnitudes with the
reachability matrix. To generate this data structure, when
generating reachability matrix, we store its selected containers
and the allowed containers in each policy, and store the
policies which select and allow itself in each container. The
BCP map enables the system to handle incremental policy
updates.

• Policy shadow. This constraint violation can be dis-
covered by traversing all containers and comparing the
selected and allowed containers among the policies which
select the same container. If the coverage area of a policy
can be covered by another one, then they are a policy
shadow pair. The algorithm is shown in Algorithm 6, and
its time complexity is O(n).

Algorithm 6 Policy shadow check

Input:Reachability matrix M , Policy List P , Container List
C, BCP map D
Output:Policy shadow list PCList

1: n = sizeof(M)
2: for i = 0 to n do
3: polList = C.get(i).getSelectPolList()
4: m = sizeof(polList)
5: for j = 0 to m do
6: for k = 0 to m do
7: if j == k then
8: continue
9: SetA = polList.get(j).getAllowC()

10: SetA = SetA&polList.get(k).getAllowC()
11: SetA = SetA∧polList.get(k).getAllowC()
12: // For policy conflict check, replace the 3 lines

of code above with
13: //SetA = polList.get(j).getAllowC()
14: //SetA = !SetA
15: //SetA = SetA&polList.get(k).getAllowC()
16: //SetA = SetA∧polList.get(k).getAllowC()
17: if SetA == ∅ then
18: C.add([j,k])
19: return C

• Policy conflict. The algorithm is similar with policy
shadow. If the coverage area of a policy can be covered by
the complementary set of another, then they are a policy
conflict pair. The algorithm is shown as the annotations
in Algorithm 6, and its time complexity is O(n).

In conclusion, all predefined constraints can be verified with
reasonable time complexity. Other user-defined constraints are
all about reachability between limited number of specified
containers, so the time complexity is also limited.

V. IMPLEMENTATION

We implemented a prototype of Kano based on Kubernetes.
It consists of three components, namely matrix calculator,

violation checker and fix advisor. The system framework is
shown in Figure 8. The implementation details of each part
are elaborated as follows.

                 Matrix

                 Calculator

Config

Files

Config

Resolver
or

Kubectl

Info

Violation

Checker

Fix

Advisor

Problems

And 

Policy

Fix

Advice

System OutputInput

Fig. 8: System structure

The system is implemented by Java, and can be used as a
library. A simple verification example is shown as follows.

Kano kano = new kano ( ” / examples / t e s t ” ) ;
kano . g e n e r a t e M a t r i x ( ) ;
kano . a l l V e r i f y ( ) ;

In this example, the program loads configuration files from
a dictionary, then calculates the reachability bitmatrix and use
it to check all constraint violations and provides fix advice.

A. Matrix Calculator
The matrix calculator takes the configuration files as input

or get the configurations automatically by kubectl commands.
After input, the configurations are resolved and transformed to
system native data structures. Then the reachability bitmatrix
will be calculated by the algorithm we mentioned before. Here
are some details to deal with the Kubernetes features.

• Kubernetes Namespaces. The namespaces also have la-
bels, and a namespace corresponds to many pods. The
policies also select pods by namespaces. So we do the
same prefiltration based on namespace selector first. Then
cast namespace to pods to reduce computing time.

• Default Reachable. If a pod is not selected by any
policy, it is all reachable. So we store every row of the
reachability in the pod data structure. Set all bits to 1. At
the first time a pod selected, we first set all bits to 0, and
then do other operations.

B. Violation Checker
The violation checker uses the reachability matrix to check

whether the constraints are all satisfied. If there is constraint
violation, it will record the objects which cause the violation.
Considering the production environment, Kano supports users
to define new constraints by declarative language. A few
possible options are shown as follows.

• User Label Definition. By default, Kano views different
namespaces as different users, but users can choose other
labels to represent pod user by the following code.

kano . s e t U s e r L a b e l ( ” User ” ) ;

• Link Constraint. Users can add isolation/link constraint
based on labels. If the link is built/not built, the system
will warn about it. It can be added by the following code.

kano . addLink ( ” k1 ” , ” v1 ” , ” k2 ” , ” v2 ” ) ;
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Fig. 9: The relationship between reachability bitmatrix calculation time and pod number, policy number or key number

C. Fix Advisor

According to the violation check result, the fix advisor gives
advices to cluster operators about how to correct the problems.

Although generate policy to fix potential risk can be simple,
it may spoil the expressivity of the policies written manually.
So the system does not directly modify the configurations, but
give advice. The advices are shown as follows.

• Show all reachable and all isolated pods.
• Show policies which cause reachability between different

users and isolation with kube-system.
• Advise deleting policies to solve policy shadow.
• Show conflicting policy pairs.
• Warn about other user defined constraints.

VI. EVALUATION

The data set used for the evaluation of Kano is randomly
generated by a Java program. The variable parameters are
shown as follows.

• Pod number
• Namespace number.
• Policy number.
• Pod label limit. The maximum number of the labels

attached to a pod.
• Ns label limit. The maximum number of labels which

attached to a namespace.
• Key limit. The number of different keys.
• Value limit. The number of different values of each key.
• Selected label limit. The maximum number of select

labels in a policy.
• Allow ns label limit. The maximum number of namespace

allow labels in a policy.
• Allow pod label limit. The maximum number of pod allow

labels in a policy.
To induce the relationship between pod/policy number and

the cost time of reachability bitmatrix calculation, we first
use the data sets whose policy number or pod number is
variable and other parameters are fixed to do reachability
bitmartix calculation. The result is shown in Figure 9a and
Figure 9b. We can see that the calculating time grows linearly
as the pod number or policy number grows. It differs with
the theoretical analysis which indicates the time complexity is
O(m+n). However, when we keep the pod number and policy

number fixed, and modify the key number, the cost time also
changes (Figure 9c). The key number affects the probability

TABLE II: The parameters of the dataset

Pod num 100 500 1000 5000 10000
Namespace num 5 10 20 50 100
Policy num 50 200 500 2000 5000
Pod label limit 5 5 5 5 5
Ns label limit 5 5 5 5 5
Key limit 5 10 20 50 100
Value limit 10 10 10 10 10
User limit 5 5 5 5 5
Selected label limit 3 3 3 3 3
Allow ns label limit 3 3 3 3 3
Allow pod label limit 3 3 3 3 3

of correlation between policies and pods. In practice the key
number grows naturally when container cluster scales, and it
significantly affects the calculation time.

So we generate experiment data sets with the parameters
shown in the TABLE II. We keep the ratio of the number of
policies and pods, and increases the number of possible key
and value to keep the reachability matrix sparse. The time cost
of reachability calculation is shown in Figure 10, and the space
cost in Figure 11. All experiments are done on a CentOS server
whose CPU is Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
with 20GB’s RAM.
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Fig. 10: Time cost of reachability matrix calculation

The time consumption of the naive algorithm has quadratic
relationship with the cluster scale, and for the prefiltration
algorithm is linear relationship, which proves the theoretical
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Fig. 11: Space cost of reachability matrix calculation
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Fig. 12: Time cost of constraint verification

result. The prefiltration algorithm works much faster than the
naive one, with a space complexity of the same order of
magnitude. The reachability matrix of a 10,000-pod cluster
can be calculated in a second with the prefiltration algorithm.
Compared to the reachability bitmatrix calculation, the con-
straint verification procedure costs much less time (Figure 12).

VII. CONCLUSION

In this work, a label-based container network policy verifi-
cation system, Kano, is proposed and evaluated for label based
container network. Kano is implemented it for Kubernetes to
establish as well as update reachability matrix in seconds,
carry out network verification with predefined and user-defined
constraints, and come up with fix advice.

In the future, we plan to design a distributed system
based on this work to increase its speed and scalability.
The distributed system will be integrated to the Kubernetes
clusters and make Kano a pre-installed toolkit when deploying
Kubernetes on new servers. Infrastructure verification can also
be considered to make Kano a complete solution of container
cluster network verification.
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