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Abstract—Traffic spikes in big data cloud have led to great 
challenges for middlebox management in the behind datacen-
ter networks, especially for load distribution among varieties 
of middleboxes. Contemporary flat load distributing strategies 
are inadequate to handle traffic spikes in terms of time and 
resource efficiency. Based on the spike patterns, a hybrid load 
distributing solution is proposed with hierarchical architec-
ture, which conducts static distributing and dynamic collabo-
rative distributing in respect of flow types. The evaluation 
results from the prototype system and simulation show that 
our solution is superior to existing load distributing strategies 
in terms of both time and resource efficiency. 

Keywords—load distributing; middlebox; big data; datacen-
ter network 

I. INTRODUCTION 

Big data cloud, providing the analysis of huge amount 
of data, has been growing rapidly recently. Applications in 
big data cloud require high throughput and low latency for 
the frequent data transferring [1], imposing huge traffic 
pressure to the behind datacenter networks. On the other 
hand, recent study [2-3] showed that a great amount of traf-
fic in datacenter traverses through middleboxes (MBs), 
which conduct a variety of functionalities such as security, 
caching, compression and encoding. In this case, traffic 
needs to be redirected to MBs before coming to its final 
destination. In order to guarantee the capacity of MBs, load 
distributing is required among MB instances of the same 
functionality. 

In datacenters supporting big data applications, the net-
work is highly dynamic and forms complex traffic pattern. 
One key pattern is “bursty”, which indicates that the traffic 
load varies greatly in seconds or even milliseconds and 
therefore results in traffic spikes. One important cause for 
spikes is the Partition/Aggregate workflow pattern [1] in-
troduced by big data platforms like Hadoop [7], Spark [8], 
etc. These spikes bring about great challenges for middle-
box load distributing, making it hard to achieve low packet 
latency as well as high resource utilization.  

Currently, there are two common load distributing strat-
egies, i.e. static load distributing and global load balanc-
ing. 

Static load distributing strategy collects network con-
figuration (e.g. logical service chain, security policy, and 

QoS) from administrators, and network status from under-
lying infrastructure (e.g. topologies, link utilization, MB 
locations and capacity). Load distributing policies are then 
generated after a series of optimizations, including minimi-
zation of traffic traversing distance and elimination of link 
bottleneck. Load distributing policies are then compiled 
into flow entries in switches, which steers traffic according-
ly. Most of the time, load distributing policies remain static, 
and are only updated when topology or logical connectivity 
changes. Recent studies [3, 4] proposed several techniques 
for better load assignments. With optimal flow assignment, 
static load distributing strategy minimizes the average flow 
latencies. However, it does not consider the spikiness of 
traffic load. As a consequence, it is not flexible enough to 
deal with bursty traffic efficiently. Current implementations 
have to over-provision MB resources to guarantee capacity 
and avoid packet loss.  

Global load balancing aims at scattering the workloads 
among all the MB instances. Mostly, there are several dis-
tributed load balancer in the network, exchanging load in-
formation with a centralized controller. The controller im-
plements the load balancing strategy into each load-
balancer, which actually steers traffic when each flow ar-
rives. This strategy is capable of preventing MB instance 
from being over-whelmed by the bursty traffic. However, 
when massive flows are redirected to remote MB instances, 
latency increase and link congestion become inevitable. 
Moreover, the global load updating of MBs also introduce 
high system overhead. 

In summary, current solutions are not adequate to hand-
le the load distributing task efficiently since they treat all 
the flows equally. This paper proposes a hybrid load dis-
tributing solution, which is able to handle bursty traffic 
with both time and resource efficiency, and hence improves 
overall traffic load distributing performance. The main con-
tributions of this paper are: 

TABLE I. Comparison of Load Distributing Strategies 

 Static Load Dis-
tributing 

Global Load Bal-
ancing 

Time  
Efficiency Short latency Long latency 

Resource 
Efficiency Poorly utilized Highly utilized 

 



Figure 2. Temporary Flow Proportion in Bursty Traffic 

• Studied the burstiness of big data applications and 
revealed that temporary flows with short durations 
contribute to large proportion of traffic spikes, and 
that bursty flows can be classified with high accura-
cy. 

• A hybrid load distributing solution was proposed, 
which conducts static distributing and dynamic col-
laborative distributing for normal flows and bursty 
flows respectively. 

• Experiment results on a prototype system and simu-
lations demonstrated that the proposed solution is 
able to efficiently deal with bursty traffic in terms of 
processing time and resource utilization. 

The rest of this paper is organized as follows: Section II 
studies traffic burstiness of big data applications and re-
veals the feasibility of distributing traffic spikes. Section III 
and IV elaborate our hybrid load distributing strategy and 
system design. Evaluations based on prototype system and 
simulations are given in section V. And we draw the con-
clusion in section VI. 

II. BURSTY LOAD PATTERNS OF BIG DATA APPLI-
CATIONS 

To obtain more detailed insight of bursty traffic, four 
popular big data applications, i.e. Hadoop[7], Spark[8], 
Shark[14] and Impala[15] have been analyzed. All the ap-
plications run in experimental clusters, where all traffic was 
captured in real time. Figure 1 shows the inter-node traffic 
of each application. It is obvious that all of these applica-
tions have bursty patterns, leading to huge traffic rate fluc-
tuations.  

A. Bursty Traffic Patterns 
When traffic spike occurs, the traffic rate rises rapidly 

within 1~2 seconds, with peak traffic rate around 5000 
packet per second (pbs) and none bursty rate below 100pbs. 
In addition, all of the spikes have short durations, with a 
maximum duration of 10 seconds. According to previous 
studies [5, 6], traffic in datacenters also possess similar 
spike patterns. In [5], it was revealed that more than 80% of 

the flows last less than 10 seconds and forms transient 
spikes, which corresponds to our study. 

Such bursty traffic brings about significant challenges 
for MB load distributing. A sharp leap in traffic rate always 
leads to overfilled MB buffer and packet loss, making 
spikes the primary cause of packet losses [6]. Without care-
ful scheduling, such traffic is extremely prone to severe 
performance decline. 

The compositions of traffic spikes are also studied by 
analyzing the spike traces. We zoomed into the bursty peri-
ods of “Spark-kmeans” (15 flows), “Hadoop-sort” (40 
flows), “Shark-count” (608 flows) and “Impala-count”(75 
flows). Temporary flows, which are established at the very 
beginning of spikes and persist until the spike vanishes, 
occupy a dominant proportion of the traffic bursts. As is 
shown in Figure 2, temporary flows occupy more than 70% 
of the total packets and more than 90% of the total bytes of 
the spike loads. Therefore, it is found that the majority of 
the bursty traffic load resides in temporary flows. This 
finding also reveals the possibility to distribute the bursty 
flows and amortize the load among multiple MBs. 

B. Bursty Flow Signatures 
One key problem of distributing spike loads is whether 

bursty flows can be identified. Taking a further step, we 
studied the unique pattern of the bursty flows and found 
that they always contain explicit signatures, which enables 
fast and accurate classification. By analyzing the spike 
traces, we categorize the bursty flow signatures into two 
classes: 

Flow tuple signatures. It is found that some of the ap-
plications use pre-defined port to transfer the bursty flows. 
For example, Hadoop nodes listens to port 50010 for bursty 
load, therefore, flows with 50010 as source or destination 
port have great probability to carry bursty load. Shark and 
Impala also contain signatures like this. 

Flow payload signatures. Some applications do not use 
pre-defined ports for bursty data. Instead, their nodes nego-
tiate the port number before bursty flows are established. 

 
Figure 1. Bursty Traffic of Big Data Applications 



Nodes of Spark, for instance, will negotiate the port num-
ber of the scheduling bursty flows in format of 
“spark.fileserver.urit..http://[ip]:[port]”, from which the 
bursty port number can be extracted by real-time string 
matching and further added to port number policies for 
flow classification. Therefore, bursty flows can be classi-
fied by inspecting packet headers and payloads. The evalu-
ations in Section 5 will show that our classification module 
is able to identify bursty flows with high accuracy. 

III. HYBRID LOAD DISTRIBUTING 

In order to handle the traffic load spikes more efficient-
ly, we propose the hybrid load distributing, which com-
bines static distributing and dynamic collaborative distrib-
uting to deal with normal flows and bursty flows, respec-
tively. This section starts with introducing the components 
of the system, followed by elaborating the proposed hybrid 
load distributing strategy. 

A. System Overview 
Figure 3 shows the high-level flowchart of hybrid load 

distributing system, which includes Load Distributor and 
Load Distributing Controller. 

Load Distributor (LD) is responsible for directing each 
incoming flow to the appropriate MB instance. LDs are 
implemented in data plane using VMs, and conducts real-
time load monitoring for a group of closely located MB 
instances. Thus, each LD maintains the real-time capacity 
of its monitoring MBs. Also, LDs are grouped into “Col-
laborative Load Distributor Groups”, where they exchange 
MB load statistics and distribute load to each other within 
the group.  

Load Distributing Controller (LDC) conducts central-
ized scheduling for load distributing. It collects the traffic 
and MB load statistics periodically from the LDs and de-
cides how LDs are grouped as the “Collaborative Load 
Distributor Group”. Besides, LDC also performs policy 
updating for flow classification as well as static distributing. 

B. Load Distributing Strategy     
MB Load distributing is performed in per-flow granu-

larity, that is, packets of the same flow should be forwarded 
to the same MB. Therefore, each incoming packet is firstly 
inspected in header (e.g. 5 tuples) to see whether it belongs 
to an existing flow in the session table. If so, an entry in the 
session table will be searched out, which contains a MB 
instance id indicating where to steer the packets of this flow. 
If the incoming packet belongs to a new flow, it will be 
further classified by flow classification module as either 
“normal” or “bursty”. Different load distributing strategy 
will be then conducted accordingly.  

Static distributing, is conducted for “Normal flows”. 
Normal flows have less impact to traffic spikes and usually 
maintain a stable amount of traffic rate during their lifetime. 
Therefore, they are statically assigned to appropriate MBs 
and provisioned with enough MB capacity. The static dis-
tributing policies, which specify all static flow assignments, 
are generated by the centralized controller. The policies are 
optimized based on physical topology, link bandwidth, and 
other static network properties, trying to minimize average 
communication overhead. The information above is period-
ically collected and updated when there is modification in 
topology, MB location and capacity. Recently, there are 
also works addressing this topic. In [4], each VM to MB 
path is assigned with corresponding costs, and traffic trav-
ersing the same MB is split into fractions corresponding to 
different MB instances. The traffic distributing task is then 
formulized as a linear programming to calculate minimum 
value of the overall cost. 

Dynamic collaborative distributing, on the other hand, 
copes with the bursty flows by real-time load monitoring 
and flow steering. Temporary flows account for large pro-
portion of the bursts, so they are possible to be scattered 
among more MB instances. Each LD conducts real-time 
load monitoring for a number of MBs. In order to share the 
load statistics, DPs are grouped into separate “collaborative 
load distributing groups”. In the group, DPs are able to 
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exchange load statistics and outsource load to others. The 
grouping result is generated and periodically updated by 
centralized controller. The steering decision of dynamic 
collaborative distributing is to direct new arrival bursty 
flows to the least loaded MB instance. Therefore, it makes 
better utilization of overall MB capacity and helps to elimi-
nate bottleneck. Traffic spikes of different tasks have short 
durations and they are likely to interleave with each other, 
in favor of resource multiplexing among multiple flows. 

After the MB instance is determined for a new flow, the 
5-tuples of flow and the id of designated MB will then be 
stored in a session entry. Subsequent packets of an existing 
flow will match the same session entry and be forwarded to 
the MB associated with it. 

The hybrid load distributing strategy guarantees low la-
tency for normal flows and relieve the bursty pressure. The 
evaluation result in section 5 shows that, the differentiation 
of flows will make better utilization of overall MB capacity 
and dramatically reduce the probability of MBs being 
overwhelmed by load spikes. Also, it eliminates unneces-
sary flow redirection and maintains low flow latencies. 

IV. IMPLEMENTATION DISCUSSIONS 

A. Load Distributing Control Plane and Data Plane 
To accomplish real-time load distributing, especially 

for spike flows, the system should be able to achieve both 
fast load distributing decision and optimized load assign-
ment. Therefore, the control plane and data plane should be 
carefully designed to support traffic burst with intensive 
flow set up rate. Aster*x [12] proposed a framework to 
assign flows by setting up flow entries reactively. And [13] 
accomplished further improvement by introducing wildcard 
flow entries and provide more efficient policy implementa-
tion and updating. However, when dealing with bursty traf-
fic, the inevitable latency of reactive solutions will end in 
high performance penalty, which is fatal for real-time load 
distributing. Therefore, we propose a proactive solution and 
decouple the fine-grained operations from coarse-grained 
operations. 

In the hierarchical architecture, the lower layer LDs are 
responsible for fine-grained operations, including packet 
classifying, forwarding, load monitoring and load statistics 
exchanging. On the other hand, the upper layer LDC con-
ducts coarse-grained periodical policy generation and up-
dating. Therefore, the high complexity, time-consuming 
higher layer computation will not affect the real-time op-
erations of the lower layer, which ensures the scalability of 
the entire system with low overhead. 

B. Grouping Strategy 
The grouping strategy of LDC determines how Load 

Distributors share their load statistics and capacity. Basical-
ly, the larger the Load Distributor Group is, the more avail-
able capacity it provides. However, larger Load Distributor 
Group also introduces more load statistics exchanging 

overhead. Therefore, the grouping algorithm largely de-
pends on the datacenter network conditions. For instance, 
inter-rack traffic overhead in some datacenters is prohibi-
tively high. In this case, the grouping could be performed 
separately for Load Distributors in each server rack. Cur-
rently, a simple global grouping algorithm is adopted in our 
design. There are two parameters for the algorithm: the 
capacity threshold specifies the expected average ratio of 
available processing capacity for each group; the maximum 
group size prevents getting bulky groups, thus limits the 
intra-group communication overhead. In the grouping algo-
rithm, all the LDs are initially treated as a size-1 group and 
sorted by their capacity (the total capacity of MBs the LD 
monitors). If the LD with least resource is below capacity 
threshold, it will be grouped with the most capable one. If 
the size of new group stays below maximum group size, it 
will continue the grouping circulation with other LDs, oth-
erwise it will be excluded from the following grouping. 
Evaluation result shows that our algorithm is adequate for 
effective LD collaboration. 

V. EVALUATION 

A. Flow Classification Performance 
We first evaluated the performance of bursty flow clas-

sification. The flow classification in LD consists of a pack-
et classification module for tuple signatures and a string 
matching module for payload signatures. The tests include 
4 traces from popular big data applications, i.e. “Spark- π 
calculation” (51 flows), “Hadoop-sort” (40 flows), “Shark-
count (608 flows)” and “Impala-count” (75 flows). Flows 
with higher rate than 1Mbps are manually tagged as bursty 
flows, and compared against the output of the flow classifi-
cation module. Table II shows the result for each trace 
measured by precision and recall.  

It is shown that, the precision of all the traces are higher 
than 90%, which means that at least 90% of the flows clas-
sified as bursty are correctly identified. In addition, the 
recalls achieve 100% for all the traces, meaning that our 
classification method guarantees a zero misclassification 
for bursty flows. 

B. Load Distributing Performance 
To verify the effectiveness of hybrid distributing strate-

gy, we built a prototype system and compare hybrid load 

 
Figure 4. Prototype System Implementation 



distributing with two common load distributing strategies, 
i.e. static load distributing and global load balancing. 

Figure 4 shows the topology of our prototype system. It 
is implemented in 2 HP Z220 hosts, each with a 4-core 
Intel Xeon E3-1225 processor and 10G memory. Each host 
contains a total of 5 VMs, including a cluster of 3 nodes, 1 
middlebox and 1 Load Distributor. The VMs are intercon-
nected by Open vSwitch within the host. A third host run-
ning Open vSwitch acts as a core switch, interconnecting 
the two clusters. The maximum bandwidth of the core 
switch is configured by QoS to simulate the overhead of 
load outsourcing.  

To emulate the situation that MB might be over-
whelmed under high load pressure, we provision MB A 
with capacity of ~3800 packets per second, which is lower 
than the peak throughput of task traffic. Note that this ca-
pacity is not a hard limitation since MB processing cost of 
each packet is not unified. MB B does not process local 
traffic load, and possesses spare capacity. In our test, we 
only run “Hadoop Sort” on Cluster A and repeated the task 
with each of three distributing strategies, in order to com-
pare their flow distributing effects. For simplicity, it is as-
sumed that all the flows need to traverse its local LD (i.e. 
LD in Cluster A) and then should be steered to either MB A 
or MB B according to the distributing strategy. 

For static load distributing, LD in Cluster A distributes 
the incoming load to MB A and do not outsource any traf-
fic. LDs with strategy of global load balancing, though, 
steer each flow to the least loaded instance of the two MBs. 

For hybrid load distributing strategy, LD in Cluster A only 
outsources the bursts to MB B when there is insufficient 
local capacity.  

Figure 5 shows the load output of middlebox A and B. 
Among three solutions, hybrid load distributing achieves 
shortest task execution time (47.8 seconds). As shown in 
Figure 5(a), the Load Distributor in cluster A outsources 
much of the exceeding bursty flows to MB B, which elimi-
nates the capacity bottleneck. Compared with static load 
distributing in Figure 5(c), hybrid load distributing reduces 
the execution time by 3 seconds. In Figure 5(b), global load 
balancing also outsourced load from MB A to MB B. How-
ever, without differentiating flows, global load balancing 
redirected both ordinary and spike traffic, introducing extra 
latency overhead and resulting longer execution time than 
hybrid distributing. 

The study above shows that the hybrid distributing 
strategy is superior to static load distributing and global 
load balancing in terms of time efficiency. 

C. Large Scale Simulation 
We also evaluate our solution for large scale networks 

through simulation. The simulation is implemented by py-
thon, and mainly aimed at studying how static load distrib-
uting, global load balancing and hybrid load distributing 
perform in terms of resource efficiency. During the simula-
tion, we used the term “logic round”, to simulate time-
related processes, such as traffic fluctuation, flow estab-
lishment and vanish. The simulating system consists of 600 
middleboxes and 30LDs, with each LD monitoring 20 mid-
dleboxes and distributing the flows according to the real-
time load statistics.  
1) Traffic Generation 

To generate both normal flows and bursty flows for 
each MB, we use several parameters to specify the traffic 
generator and control the pattern of generated flows. Each 
parameter acts as a random variable for each logical round, 
controlling the resulting traffic patterns. Some of the pa-
rameters are listed in Table III. 
2) Middlebox Capacity Calculation 

 
Figure 5. Comparison of Three Load Distributing Strategies on Prototype System 

Table II. Evaluation of flow classification module 

Trace Precision Recall 

Hadoop-sort 95.4% 100.0% 

Impala-count 92.0% 100.0% 

Shark-count 90.0% 100.0% 

Spark-π calculation 100.0% 100.0% 

 



The capacity of each MB is then calculated by simula-
tor based on flow rates of both normal flows and bursty 
flows. For each middlebox MBi, the Capacity! is defined 
by following formula:  
Capacity! = max !"#$%$&"'&(#)**%+,)&"!

+ !×!"#(!"#$%&'&(!&'))*+,'-"!) 
Normal flows, according to our strategy, should be for-

warded to its default MB. Therefore normal flows are re-
garded as partial workload of its corresponding MB. For 
bursty flows, pre-defined rate r is used to represent the ex-
tent of resource over-provision for traffic bursts. 

It is worth noting that r is always less than 0.5 since 
bursts are sparse over time and traffic peaks tends to inter-
leave with each other. Moreover, higher over-provision rate 
also brings about higher costs and lower resource utiliza-
tion. 
3) Evaluating Results 

Overall, the simulator compares three load distributing 
strategies in terms of “packet loss rate” and also compare 
with different over-provision rate. Each load distributing 
strategy runs 200 testing traces with r ranging from 0.0 to 
0.4. And for hybrid load distributing, the maximum group 
size is set to 5. 

From the evaluating results in Figure 6, it is shown that 
the proposed hybrid load distributing solution achieves far 
less loss rate than static load distributing, which is less than 
1% in all cases. Compared with global load balancing, hy-
brid load distributing is proved to achieve approximately 
optimal load distributing, with less overhead of redirecting 
flows. Meanwhile, as VM capacity declines, there is only 
minor increase in the packet loss rate. Therefore, the evalu-
ation results showed that our solution is beneficial to reduc-
ing packet loss with less resource provision. 

VI. CONCLUSION 

In summary, we initially proposed hybrid load distrib-
uting solution, which differentiates normal flows from 
bursty flows and conducts load distributing strategies ac-
cordingly. Evaluations with prototype system have proved 
that hybrid load distributing can distribute the exceeding 
spike traffic with better time efficiency. Moreover, large-

scale simulation results showed that the hybrid load distrib-
uting is able to achieve approximately optimal load distrib-
uting while dramatically reducing the packet loss with low 
over-provision rate. 

ACKNOWLEDGMENT 

This work has been supported by 2013 IBM Global 
Shared University Research (SUR) 

REFERENCES 
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, et al. “Data center tcp 

(dctcp)”. In Proc. of SIGCOMM, 2010. 
[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, V. 

Sekar, “Making middleboxes someone else's problem: network pro-
cessing as a cloud service”. In Proc. of SIGCOMM, 2012. 

[3] Z. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu, “SIMPLE-
fying Middlebox Policy Enforcement Using SDN”. In Proc. of 
SIGCOMM, 2013.  

[4] A. Gember, A. Krishnamurthy, S. St. John, R. Grandl, X. Gao, A. 
Anand, T. Benson, A. Akella, and V. Sekar. TR. Stratos: a network-
aware orchestration layer for middleboxes in the cloud, 2013.  

[5] S. Kandula, S. Sengupta, A. Greenberg, “The Nature of Datacenter 
Traffic: Measurements & Analysis”, In Proc. of IMC, 2009 

[6] T. Benson, A. Akella, D.A. Maltz, “Network Traffic Characteristics 
of Data Centers in the Wild”, In Proc. of IMC, 2010 

[7] Apache Hadoop. http://hadoop.apache.org/ 
[8] Apache Spark. http://spark.apache.org/ 
[9] K. Shvachko, H. Kuang, S. Radia, R. Chansler, “The Hadoop Dis-

tributed File System”. MSST, 2010 
[10] A. Metwally, D. Agrawal, and A. Abbadi, �An Integrated Efficient 

Solution for Computing Frequent and Top-k Elements in Data 
Streams,” ACM Transactions on Database Systems, vol. 31, no. 3, 
pp. 1095–1133, 2006 

[11] Y. Shao, B. Yang, J. Jang, Y. Xue and J. Li, “Emilie: Enhance the 
Power of Traffic Identification”, in Proc. of ICNC, 2014. 

[12] N. Handigol, M. Flajslik, S. Seetharaman, Nick McKeown, “Aster*x: 
Load-Balancing as a Network Primitive”, 2010 

[13] R. Wang, D. Butnariu, J. Rexford, “OpenFlow-Based Server Load 
Balancing Gone Wild”. In Proc. of Hot-ICE, 2011. 

[14] Shark. http://shark.cs.berkeley.edu/ 
[15] Impala. http://impala.io/

 

Figure 6. Comparison of three load distributing strategies 

Table III. Parameters of Different Traffic Generators 

 Normal flow 
Generator 

Bursty flow Gen-
erator 

Flow duration Long Short 

New flow number Low High 

Burst probability Low High 
Average burst 

amplitude 
Low High 

Burst amplitude 
variance 

Low High 

 


