
Troubleshooting Blackbox SDN Control Software with
Minimal Causal Sequences

Colin Scott� Andreas Wundsam†? Barath Raghavan? Aurojit Panda�

Andrew Or� Jefferson Lai� Eugene Huang� Zhi Liuø Ahmed El-Hassany?

Sam Whitlock]? H.B. Acharya? Kyriakos Zarifis‡? Scott Shenker�?
�UC Berkeley †Big Switch Networks ?ICSI øTshinghua University ]EPFL ‡USC

ABSTRACT
Software bugs are inevitable in software-defined networking con-
trol software, and troubleshooting is a tedious, time-consuming
task. In this paper we discuss how to improve control software
troubleshooting by presenting a technique for automatically iden-
tifying a minimal sequence of inputs responsible for triggering a
given bug, without making assumptions about the language or in-
strumentation of the software under test. We apply our technique to
five open source SDN control platforms—Floodlight, NOX, POX,
Pyretic, ONOS—and illustrate how the minimal causal sequences
our system found aided the troubleshooting process.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Network operating systems; D.2.5 [Software Engineering]:
Testing and Debugging—Debugging aids

Keywords
Test case minimization; Troubleshooting; SDN control software

1. INTRODUCTION
Software-defined networking (SDN) proposes to simplify net-

work management by providing a simple logically-centralized API
upon which network management programs can be written. How-
ever, the software used to support this API is anything but sim-
ple: the SDN control plane (consisting of the network operat-
ing system and higher layers) is a complicated distributed system
that must react quickly and correctly to failures, host migrations,
policy-configuration changes and other events. All complicated
distributed systems are prone to bugs, and from our first-hand fa-
miliarity with five open source controllers and three major com-
mercial controllers we can attest that SDN is no exception.

When faced with symptoms of a network problem (e.g. a persis-
tent loop) that suggest the presence of a bug in the control plane
software, software developers need to identify which events are
triggering this apparent bug before they can begin to isolate and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626304.

fix it. This act of “troubleshooting” (which precedes the act of de-
bugging the code) is highly time-consuming, as developers spend
hours poring over multigigabyte execution traces.1 Our aim is to re-
duce effort spent on troubleshooting distributed systems like SDN
control software, by automatically eliminating events from buggy
traces that are not causally related to the bug, producing a “minimal
causal sequence” (MCS) of triggering events.

Our goal of minimizing traces is in the spirit of delta debug-
ging [58], but our problem is complicated by the distributed nature
of control software: our input is not a single file fed to a single point
of execution, but an ongoing sequence of events involving multiple
actors. We therefore need to carefully control the interleaving of
events in the face of asynchrony, concurrency and non-determinism
in order to reproduce bugs throughout the minimization process.
Crucially, we aim to minimize traces without making assumptions
about the language or instrumentation of the control software.

We have built a troubleshooting system that, as far as we know,
is the first to meet these challenges (as we discuss further in §8).
Once it reduces a given execution trace to an MCS (or an approxi-
mation thereof), the developer embarks on the debugging process.
We claim that the greatly reduced size of the trace makes it easier
for the developer to figure out which code path contains the under-
lying bug, allowing them to focus their effort on the task of fixing
the problematic code itself. After the bug has been fixed, the MCS
can serve as a test case to prevent regression, and can help identify
redundant bug reports where the MCSes are the same.

Our troubleshooting system, which we call STS (SDN Trou-
bleshooting System), consists of 23,000 lines of Python, and is de-
signed so that organizations can implement the technology within
their existing QA infrastructure (discussed in §5); over the last year
we have worked with a commercial SDN company to integrate
STS. We evaluate STS in two ways. First and most significantly,
we use STS to troubleshoot seven previously unknown bugs—
involving concurrent events, faulty failover logic, broken state ma-
chines, and deadlock in a distributed database—that we found by
fuzz testing five controllers (Floodlight [16], NOX [23], POX [39],
Pyretic [19], ONOS [43]) written in three different languages (Java,
C++, Python). Second, we demonstrate the boundaries of where
STS works well by finding MCSes for previously known and syn-
thetic bugs that span a range of bug types. In our evaluation, we
quantitatively show that STS is able to minimize (non-synthetic)
bug traces by up to 98%, and we anecdotally found that reducing
traces to MCSes made it easy to understand their root causes.

1Software developers in general spend roughly half (49% ac-
cording to one study [21]) of their time troubleshooting and debug-
ging, and spend considerable time troubleshooting bugs that are
difficult to trigger (the same study found that 70% of the reported
concurrency bugs take days to months to fix).

395



2. BACKGROUND
Network operating systems, the key component of SDN soft-

ware infrastructure, consist of control software running on a repli-
cated set of servers, each running a controller instance. Controllers
coordinate between themselves, and receive input events (e.g. link
failure notifications) and statistics from switches (either physical or
virtual), policy changes via a management interface, and possibly
dataplane packets. In response, the controllers issue forwarding
instructions to switches. All input events are asynchronous, and
individual controllers may fail at any time. The controllers either
communicate with each other over the dataplane network, or use a
separate dedicated network, and may become partitioned.

The goal of the network control plane is to configure the switch
forwarding entries so as to enforce one or more invariants, such as
connectivity (i.e. ensuring that a route exists between every end-
point pair), isolation and access control (i.e. various limitations on
connectivity), and virtualization (i.e. ensuring that packets are han-
dled in a manner consistent with the specified virtual network). A
bug causes an invariant to be violated. Invariants can be violated
because the system was improperly configured (e.g. the manage-
ment system [2] or a human improperly specified their goals), or
because there is a bug within the SDN control plane itself. In this
paper we focus on troubleshooting bugs in the SDN control plane
after it has been given a policy configuration.2

In commercial SDN development, software developers work
with a team of QA engineers whose job is to find bugs. The QA
engineers exercise automated test scenarios that involve sequences
of external (input) events such as failures on large (software em-
ulated or hardware) network testbeds. If they detect an invariant
violation, they hand the resulting trace to a developer for analysis.

The space of possible bugs is enormous, and it is difficult and
time consuming to link the symptom of a bug (e.g. a routing loop)
to the sequence of events in the QA trace (which includes both
external events and internal monitoring data), since QA traces con-
tain a wealth of extraneous events. Consider that an hour long QA
test emulating event rates observed in production could contain 8.5
network error events per minute [22] and 500 VM migrations per
hour [49], for a total of 8.5 · 60 + 500 ≈ 1000 inputs.

3. PROBLEM DEFINITION
We represent the forwarding state of the network at a particular

time as a configuration c, which contains all the forwarding en-
tries in the network as well as the liveness of the various network
elements. The control software is a system consisting of one or
more controller processes that takes a sequence of external network
events E = e1→e2→···em (e.g. link failures) as inputs, and pro-
duces a sequence of network configurations C = c1, c2, . . . , cn.

An invariant is a predicate P over forwarding state (a safety con-
dition, e.g. loop-freedom). We say that configuration c violates the
invariant if P (c) is false, denoted P (c).

We are given a log L generated by a centralized QA test orches-
trator.3 The log L contains a sequence of events

τL = e1→ i1→ i2→e2→···em→··· ip
which includes external events EL = e1 , e2 ···em injected by the
orchestrator, and internal events IL = i1 , i2 ··· ip triggered by
the control software (e.g. OpenFlow messages). The events EL

include timestamps {( ek , tk)} from the orchestrator’s clock.

2This does not preclude us from troubleshooting misspecified
policies so long as test invariants [31] are specified separately.

3We discuss how these logs are generated in §5.

A replay of log L involves replaying the external events EL,
possibly taking into account the occurrence of internal events IL
as observed by the orchestrator. We denote a replay attempt by
replay(τ). The output of replay is a sequence of configurations
CR = ĉ1, ĉ2, . . . , ĉn. Ideally replay(τL) reproduces the original
configuration sequence, but this does not always hold.

If the configuration sequence CL = c1, c2, . . . , cn associated
with the log L violated predicate P (i.e. ∃ci∈CL .P (ci)) then we
say replay(·) = CR reproduces that violation if CR contains an
equivalent faulty configuration (i.e. ∃ĉi∈CR .P (ĉi)).

The goal of our work is, when given a log L that exhibited an
invariant violation,3 to find a small, replayable sequence of events
that reproduces that invariant violation. Formally, we define a mini-
mal causal sequence (MCS) to be a sequence τM where the external
events EM ∈ τM are a subsequence of EL such that replay(τM )
reproduces the invariant violation, but for all proper subsequences
EN of EM there is no sequence τN such that replay(τN ) repro-
duces the violation. Note that an MCS is not necessarily globally
minimal, in that there could be smaller subsequences of EL that
reproduce this violation, but are not a subsequence of this MCS.

We find approximate MCSes by deciding which external events
to eliminate and, more importantly, when to inject external events.
We describe this process in the next section.

4. MINIMIZING TRACES
Given a log L generated from testing infrastructure,3 our goal

is to find an approximate MCS, so that a human can examine the
MCS rather than the full log. This involves two tasks: searching
through subsequences of EL, and deciding when to inject external
events for each subsequence so that, whenever possible, the invari-
ant violation is retriggered.

4.1 Searching for Subsequences
Checking random subsequences of EL would be one viable but

inefficient approach to achieving our first task. We do better by em-
ploying the delta debugging algorithm [58], a divide-and-conquer
algorithm for isolating fault-inducing inputs. We use delta debug-
ging to iteratively select subsequences of EL and replay each sub-
sequence with some timing T . If the bug persists for a given sub-
sequence, delta debugging ignores the other inputs, and proceeds
with the search for an MCS within this subsequence. The delta
debugging algorithm we implement is shown in Figure 1.

The input subsequences chosen by delta debugging are not al-
ways valid. Of the possible inputs sequences we generate (shown
in Table 2), it is not sensible to replay a recovery event without a
preceding failure event, nor to replay a host migration event with-
out modifying its starting position when a preceding host migration
event has been pruned. Our implementation of delta debugging
therefore prunes failure/recovery event pairs as a single unit, and
updates initial host locations whenever host migration events are
pruned so that hosts do not magically appear at new locations.4

These two heuristics account for validity of all network events
4Handling invalid inputs is crucial for ensuring that the delta

debugging algorithm finds a minimal causal subsequence. The al-
gorithm we employ [58] makes three assumptions about inputs:
monotonicity, unambiguity, and consistency. An event trace that
violates monotonicity may contain events that “undo” the invariant
violation triggered by the MCS, and may therefore exhibit slightly
inflated MCSes. An event trace that violates unambiguity may ex-
hibit multiple MCSes; delta debugging will return one of them.
The most important assumption is consistency, which requires that
the test outcome can always be determined. We guarantee neither
monotonicity nor unambiguity, but we guarantee consistency by
ensuring that subsequences are always semantically valid by ap-
plying the two heuristics described above. Zeller wrote a follow-on

396



shown in Table 2. We do not yet support network policy changes
as events, which have more complex semantic dependencies.5

4.2 Searching for Timings
Simply exploring subsequencesES ofEL is insufficient for find-

ing MCSes: the timing of when we inject the external events during
replay is crucial for reproducing violations.
Existing Approaches. The most natural approach to scheduling
external events is to maintain the original wall-clock timing inter-
vals between them. If this is able to find all minimization oppor-
tunities, i.e. reproduce the violation for all subsequences that are
a supersequence of some MCS, we say that the inputs are isolated.
The original applications of delta debugging [6,47,58,59] make this
assumption (where a single input is fed to a single program), as well
as QuickCheck’s input “shrinking” [12] when applied to blackbox
systems like synchronous telecommunications protocols [4].

We tried this approach, but were rarely able to reproduce invari-
ant violations. As our case studies demonstrate (§6), this is largely
due to the concurrent, asynchronous nature of distributed systems;
consider that the network can reorder or delay messages, or that
controllers may process multiple inputs simultaneously. Inputs in-
jected according to wall-clock time are not guaranteed to coincide
correctly with the current state of the control software.

We must therefore consider the control software’s internal
events. To deterministically reproduce bugs, we would need visibil-
ity into every I/O request and response (e.g. clock values or socket
reads), as well as all thread scheduling decisions for each controller.
This information is the starting point for techniques that seek to
minimize thread interleavings leading up to race conditions. These
approaches involve iteratively feeding a single input (the thread
schedule) to a single entity (a deterministic scheduler) [11, 13, 28],
or statically analyzing feasible thread schedules [26].

A crucial constraint of these approaches is that they must keep
the inputs fixed; that is, behavior must depend uniquely on the
thread schedule. Otherwise, the controllers may take a divergent
code path. If this occurs some processes might issue a previously
unobserved I/O request, and the replayer will not have a recorded
response; worse yet, a divergent process might deschedule itself at
a different point than it did originally, so that the remainder of the
recorded thread schedule is unusable to the replayer.

Because they keep the inputs fixed, these approaches strive for a
subtly different goal than ours: minimizing thread context switches
rather than input events. At best, these approaches can indirectly
minimize input events by truncating individual thread executions.

With additional information obtained by program flow analy-
sis [27, 34, 50] however, the inputs no longer need to be fixed.
The internal events considered by these program flow reduction
techniques are individual instructions executed by the programs
(obtained by instrumenting the language runtime), in addition to
I/O responses and the thread schedule. With this information they
can compute program flow dependencies, and thereby remove in-
put events from anywhere in the trace as long as they can prove that
doing so cannot possibly cause the faulty execution path to diverge.

While program flow reduction is able to minimize inputs, these
techniques are not able to explore alternate code paths that still trig-
ger the invariant violation. They are also overly conservative in re-
moving inputs (e.g. EFF takes the transitive closure of all possible
dependencies [34]) causing them to miss opportunities to remove

paper [59] that removes the need for these assumptions, but incurs
an additional factor of n in complexity in doing so.

5If codifying the semantic dependencies of policy changes turns
out to be difficult, one could just employ the more expensive ver-
sion of delta debugging to account for inconsistency [59].

Internal Message Masked Values
OpenFlow messages xac id, cookie, buffer id, stats
packet_out/in payload all values except src, dst, data
Log statements varargs parameters to printf

Table 1: Internal messages and their masked values.

dependencies that actually semantically commute.
Allowing Divergence. Our approach is to allow processes to pro-
ceed along divergent paths rather than recording all low-level I/O
and thread scheduling decisions. This has several advantages. Un-
like the other approaches, we can find shorter alternate code paths
that still trigger the invariant violation. Previous best-effort exe-
cution minimization techniques [14, 53] also allow alternate code
paths, but do not systematically consider concurrency and asyn-
chrony.6 We also avoid the performance overhead of recording
all I/O requests and later replaying them (e.g. EFF incurs ~10x
slowdown during replay [34]). Lastly, we avoid the extensive ef-
fort required to instrument the control software’s language runtime,
needed by the other approaches to implement a deterministic thread
scheduler, interpose on syscalls, or perform program flow analysis.
By avoiding assumptions about the language of the control soft-
ware, we were able to easily apply our system to five different con-
trol platforms written in three different languages.
Accounting for Interleavings. To reproduce the invariant viola-
tion (wheneverES is a supersequence of an MCS) we need to inject
each input event e only after all other events, including internal
events, that precede it in the happens-before relation [33] from the
original execution ({i | i→ e }) have occurred [51].

The internal events we consider are (a) message delivery events,
either between controllers (e.g. database synchronization mes-
sages) or between controllers and switches (e.g. OpenFlow mes-
sages), and (b) state transitions within controllers (e.g. a backup
node deciding to become master). Our replay orchestrator obtains
visibility into (a) by interposing on all messages within the test en-
vironment (to be described in §5). It optionally obtains partial vis-
ibility into (b) by instrumenting controller software with a simple
interposition layer (to be described in §5.2).

Given a subsequence ES , our goal is to find an execution that
obeys the original happens-before relation. We do not control the
occurrence of internal events, but we can manipulate when they are
delivered through our interposition layer,7 and we also decide when
to inject the external events ES . The key challenges in choosing a
schedule stem from the fact that the original execution has been
modified: internal events may differ syntactically, some expected
internal events may no longer occur, and new internal events may
occur that were not observed at all in the original execution.
Functional Equivalence. Internal events may differ syntactically
(e.g. sequence numbers of control packets may all differ) when re-
playing a subsequence of the original log. We observe that many
internal events are functionally equivalent, in the sense that they
have the same effect on the state of the system with respect to trig-
gering the invariant violation. For example, flow_mod messages
may cause switches to make the same change to their forwarding
behavior even if their transaction ids differ.

We apply this observation by defining masks over semantically
extraneous fields of internal events.8 We show the fields we mask

6PRES explores alternate code paths in best-effort replay of
multithreaded executions, but does not minimize executions [45].

7In this way we totally order messages. Without interposition
on process scheduling however, the system may still be concurrent.

8One consequence of applying masks is that bugs involving
masked fields are outside the purview of our approach.

397



Input: T8 s.t. T8 is a trace and test(T8) = 8. Output: T ′8 = ddmin(T8) s.t. T ′8 ⊆ T8, test(T ′8) = 8, and T ′8 is minimal.

ddmin(T8) = ddmin2(T8, ∅) where

ddmin2(T ′8, R) =


T ′8 if |T ′8| = 1 (“base case”)
ddmin2

(
T1, R

)
else if test(T1 ∪R) = 8 (“in T1”)

ddmin2

(
T2, R

)
else if test(T2 ∪R) = 8 (“in T2”)

ddmin2

(
T1, T2 ∪R

)
∪ ddmin2

(
T2, T1 ∪R

)
otherwise (“interference”)

where test(T ) denotes the state of the system after executing the trace T , 8 denotes an invariant violation,
T1 ⊂ T ′8, T2 ⊂ T ′8, T1 ∪ T2 = T ′8, T1 ∩ T2 = ∅, and |T1| ≈ |T2| ≈ |T ′8|/2 hold.

Figure 1: Automated Delta Debugging Algorithm from [58]. ⊆ and ⊂ denote subsequence relations.

Input Type Implementation
Switch failure/recovery TCP teardown
Controller failure/recovery SIGKILL
Link failure/recovery ofp_port_status
Controller partition iptables
Dataplane packet injection Network namespaces
Dataplane packet drop Dataplane interposition
Dataplane packet delay Dataplane interposition
Host migration ofp_port_status
Control message delay Controlplane interposition
Non-deterministic TCAMs Modified switches

Table 2: Input types currently supported by STS.

procedure PEEK(input subsequence)
inferred← [ ]
for ei in subsequence

checkpoint system
inject ei
∆← |ei+1.time− ei.time|+ ε
record events for ∆ seconds
matched← original events & recorded events
inferred← inferred+ [ei] +matched
restore checkpoint

return inferred

Figure 2: PEEK determines which internal events from the original
sequence occur for a given subsequence.

in Table 1. Note that these masks only need to be specified once,
and can later be applied programmatically.

We then consider an internal event i′ observed in replay equiva-
lent (in the sense of inheriting all of its happens-before relations) to
an internal event i from the original log if and only if all unmasked
fields have the same value and i occurs between i′’s preceding and
succeeding inputs in the happens-before relation.
Handling Absent Internal Events. Some internal events from the
original log that “happen before” some external input may be ab-
sent when replaying a subsequence. For instance, if we prune a link
failure, the corresponding notification message will not arise.

To avoid waiting forever we infer the presence of internal
events before we replay each subsequence. Our algorithm (called
PEEK()) for inferring the presence of internal events is depicted in
Figure 2. The algorithm injects each input, records a checkpoint9

of the network and the control software’s state, allows the system to
proceed up until the following input (plus a small time ε), records
the observed events, and matches the recorded events with the func-
tionally equivalent internal events observed in the original trace.10

9We discuss the implementation details of checkpointing in 5.3.
10In the case that, due to non-determinism, an internal event oc-

curs during PEEK() but does not occur during replay, we time out
on internal events after ε seconds of their expected occurrence.

Handling New Internal Events. The last possible induced change
is the occurrence of new internal events that were not observed in
the original log. New events present multiple possibilities for where
we should inject the next input. Consider the following case: if i2
and i3 are internal events observed during replay that are both in
the same equivalence class as a single event i1 from the original
run, we could inject the next input after i2 or after i3.

In the general case it is always possible to construct two state
machines that lead to differing outcomes: one that only leads to the
invariant violation when we inject the next input before a new in-
ternal event, and another only when we inject after a new internal
event. In other words, to be guaranteed to traverse any state transi-
tion suffix that leads to the violation, we must recursively branch,
trying both possibilities for every new internal event. This implies
an exponential worst case number of possibilities to be explored.

Exponential search over these possibilities is not a practical op-
tion. Our heuristic is to proceed normally if there are new internal
events, always injecting the next input when its last expected prede-
cessor either occurs or times out. This ensures that we always find
state transition suffixes that contain a subsequence of the (equiv-
alent) original internal events, but leaves open the possibility of
finding divergent suffixes that lead to the invariant violation.
Recap. We combine these heuristics to replay each subsequence
chosen by delta debugging: we compute functional equivalency for
all internal events intercepted by our test orchestrator’s interposi-
tion layer (§5), we invoke PEEK() to infer absent internal events,
and with these inferred causal dependencies we replay the input
subsequence, waiting to inject each input until each of its (func-
tionally equivalent) predecessors have occurred while allowing new
internal events through the interposition layer immediately.

4.3 Complexity
The delta debugging algorithm terminates after Ω(logn) invoca-

tions of replay in the best case, and O(n) in the worst case, where
n is the number of inputs in the original trace [58]. Each invocation
of replay takes O(n) time (one iteration for PEEK() and one itera-
tion for the replay itself), for an overall runtime of Ω(n logn) best
case andO(n2) worst case replayed inputs. The runtime can be de-
creased by parallelizing delta debugging: speculatively replaying
subsequences in parallel, and joining the results. Storing periodic
checkpoints of the system state throughout testing can also reduce
runtime, as it allows us to replay starting from a recent checkpoint
rather than the beginning of the trace.

5. SYSTEMS CHALLENGES
Thus far we have assumed that we are given a faulty execution

trace. We now provide an overview of how we obtain traces, and
then describe our system for minimizing them.
Obtaining Traces. All three of the commercial SDN companies

398



Figure 3: STS runs mock network devices, and interposes on all
communication channels.

that we know of employ a team of QA engineers to fuzz test their
control software on network testbeds. This fuzz testing infrastruc-
ture consists of the control software under test, the network testbed
(which may be software or hardware), and a centralized test or-
chestrator that chooses input sequences, drives the behavior of the
testbed, and periodically checks invariants.

We do not have access to such a QA testbed, and instead built our
own. Our testbed mocks out the control plane behavior of network
devices in lightweight software switches and hosts (with support
for minimal dataplane forwarding). We then run the control soft-
ware on top of this mock network and connect the switches to the
controller(s). The mock network manages the execution of events
from a single location, which allows it to record a serial event order-
ing. This design is similar to production software QA testbeds, and
is depicted in Figure 3. One distinguishing feature of our design is
that the mock network interposes on all communication channels,
allowing it to delay or drop messages to induce failure modes that
might be seen in real, asynchronous networks.

We use our mock network to find bugs in control software. Most
commonly we generate random input sequences based on event
probabilities that we assign (cf. §6.8), and periodically check in-
variants on the network state.11 We also run the mock network in-
teractively so that we can examine the state of the network and
manually induce event orderings that we believe may trigger bugs.
Performing Minimization. After discovering an invariant viola-
tion, we invoke delta debugging to minimize the recorded trace.
We use the testing infrastructure itself to replay each intermedi-
ate subsequence. During replay the mock network enforces event
orderings as needed to maintain the original happens-before rela-
tion, by using its interposition on message channels to manage the
order (functionally equivalent) messages are let through, and wait-
ing until the appropriate time to inject inputs. For example, if the
original trace included a link failure preceded by the arrival of a
heartbeat message, during replay the mock network waits until it
observes a functionally equivalent ping probe to arrive, allows the
probe through, then tells the switch to fail its link.

STS is our realization of this system, implemented in more than
23,000 lines of Python in addition to the Hassel network invari-
ant checking library [31]. STS also optionally makes use of Open
vSwitch [46] as an interposition point between controllers. We have
made the code for STS publicly available at ucb-sts.github.com/sts.
Integration With Existing Testbeds. In designing STS we aimed

11We currently support the following invariants: (a) all-to-all
reachability, (b) loop freeness, (c) blackhole freeness, (d) controller
liveness, and (e) POX ACL compliance.

to make it possible for engineering organizations to implement the
technology within their existing QA test infrastructure. Organiza-
tions can add delta debugging to their test orchestrator, and option-
ally add interposition points throughout the testbed to control event
ordering during replay. In this way they can continue running large
scale networks with the switches, middleboxes, hosts, and routing
protocols they had already chosen to include in their QA testbed.

We avoid making assumptions about the language or instrumen-
tation of the software under test in order to facilitate integration
with preexisting software. Many of the heuristics we describe be-
low are approximations that might be made more precise if we had
more visibility and control over the system, e.g. if we could deter-
ministically specify the thread schedule of each controller.

5.1 Coping with Non-Determinism
Non-determinism in concurrent executions stems from differ-

ences in system call return values, process scheduling decisions
(which can even affect the result of individual instructions, such
as x86’s interruptible block memory instructions [15]), and asyn-
chronous signal delivery. These sources of non-determinism can
affect whether STS is able to reproduce violations during replay.

The QA testing frameworks we are trying to improve do not
mitigate non-determinism. STS’s main approach to coping with
non-determinism is to replay each subsequence multiple times.
If the non-deterministic bug occurs with probability p, we can
model12 the probability13 that we will observe it within r replays as
1− (1− p)r . This exponential works strongly in our favor; for ex-
ample, even if the original bug is triggered in only 20% of replays,
the probability that we will not trigger it during an intermediate
replay is approximately 1% if we replay 20 times per subsequence.

5.2 Mitigating Non-Determinism
When non-determinism is acute, one might seek to prevent it al-

together. However, as discussed in §4.2, deterministic replay tech-
niques [15, 20] force the minimization process to stay on the origi-
nal code path, and incur substantial performance overhead.

Short of ensuring full determinism, we place STS in a position
to record and replay all network events in serial order, and ensure
that all data structures within STS are unaffected by randomness.
For example, we avoid using hashmaps that hash keys according to
their memory address, and sort all list return values.

We also optionally interpose on the controller software itself.
Routing the gettimeofday() syscall through STS helps ensure
timer accuracy.1415 When sending data over multiple sockets, the
operating system exhibits non-determinism in the order it sched-
ules I/O operations. STS optionally ensures a deterministic order
of messages by multiplexing all sockets onto a single true socket.
On the controller side STS currently adds a shim layer atop the
control software’s socket library,16 although this could be achieved
transparently with a libc shim layer [20].

STS may need visibility into the control software’s internal state
transitions to properly maintain happens-before relations during
replay. We gain visibility by making a small change to the control

12See §6.5 for an experimental evaluation of this model.
13This probability could be improved by guiding the thread

schedule towards known error-prone interleavings [44, 45].
14When the pruned trace differs from the original, we make a

best-effort guess at what the return values of these calls should be.
For example, if the altered execution invokes gettimeofday()
more times than we recorded in the initial run, we interpolate the
timestamps of neighboring events.

15Only supported for POX and Floodlight at the moment.
16Only supported for POX at the moment.

399

http://ucb-sts.github.com/sts


software’s logging library15: whenever a control process executes a
log statement, which indicates that an important state transition is
about to take place, we notify STS. Such coarse-grained visibility
into internal state transitions does not handle all cases, but we find
it suffices in practice.17 We can also optionally use logging inter-
position as a synchronization barrier, by blocking the process when
it executes logging statements until STS unblocks it.

5.3 Checkpointing
To efficiently implement the PEEK() algorithm depicted in Fig-

ure 2 we assume the ability to record checkpoints (snapshots) of
the state of the system under test. We currently implement check-
pointing for the POX controller18 by telling it to fork() itself and
suspend its child, transparently cloning the sockets of the parent
(which constitute shared state between the parent and child pro-
cesses), and later resuming the child. This simple mechanism does
not work for controllers that use other shared state such as disk.
To handle other shared state one could checkpoint processes within
lightweight Unix containers [1]. For distributed controllers, one
would also need to implement a consistent cut algorithm [9], which
is available in several open source implementations [3].

If developers do not choose to employ checkpointing, they can
use our implementation of PEEK() that replays inputs from the be-
ginning rather than a checkpoint, thereby increasing replay runtime
by a factor of n. Alternatively, they can avoid PEEK() and solely
use the event scheduling heuristics described in §5.4.

Beyond its use in PEEK(), snapshotting has three advantages. As
mentioned in §4.3, only considering events starting from a recent
checkpoint rather than the beginning of the execution decreases the
number of events to be minimized. By shortening the replay time,
checkpointing coincidentally helps cope with the effects of non-
determinism, as there is less opportunity for divergence in timing.
Lastly, checkpointing can improve the runtime of delta debugging,
since many of the subsequences chosen throughout delta debug-
ging’s execution share common input prefixes.

5.4 Timing Heuristics
We have found three heuristics useful for ensuring that invari-

ant violations are consistently reproduced. These heuristics may be
used alongside or instead of PEEK().
Event Scheduling. If we had perfect visibility into the internal
state transitions of control software, we could replay inputs at pre-
cisely the correct point. Unfortunately this is impractical.

We find that keeping the wall-clock spacing between replay
events close to the recorded timing helps (but does not alone suf-
fice) to ensure that invariant violations are consistently reproduced.
When replaying events, we sleep() between each event for the
same duration that was recorded in the original trace, less the time
it takes to replay or time out on each event.
Whitelisting keepalive messages. We observed during some of
our experiments that the control software incorrectly inferred that
links or switches had failed during replay, when it had not done
so in the original execution. Upon further examination we found
in these cases that LLDP and OpenFlow echo packets periodically
sent by the control software were staying in STS’s buffers too long
during replay, such that the control software would time out on
them. To avoid these differences, we added an option to always
pass through keepalive messages. The limitation of this heuristic is
that it cannot be used on bugs involving keepalive messages.

17We discuss this limitation further in §5.6.
18We only use the event scheduling heuristics described in §5.4

for the other controllers.

Whitelisting dataplane events. Dataplane forward/drop events
constitute a substantial portion of overall events. However, for
many of the controller applications we are interested in, data-
plane forwarding is only relevant insofar as it triggers control plane
events (e.g. host discovery). We find that allowing dataplane for-
ward events through by default, i.e. never timing out on them dur-
ing replay, can greatly decrease skew in wall-clock timing.

5.5 Root Causing Tools
Throughout our experimentation with STS, we often found that

MCSes alone were insufficient to pinpoint the root causes of bugs.
We therefore implemented a number of complementary root caus-
ing tools, which we use along with Unix utilities to finish the de-
bugging process. We illustrate their use in §6.
OFRewind. STS supports an interactive replay mode similar to
OFRewind [56] that allows troubleshooters to query the network
state, filter events, check additional invariants, and even induce new
events that were not part of the original event trace.
Packet Tracing. Especially for controllers that react to flow events,
we found it useful to trace the path of individual packets through
the network. STS includes tracing instrumentation similar to Net-
Sight [25] for this purpose.
OpenFlow Reduction. The OpenFlow commands sent by con-
troller software are often redundant, e.g. they may override routing
entries, allow them to expire, or periodically flush and later repop-
ulate them. STS includes a tool for filtering out such redundant
messages and displaying only those commands that are directly rel-
evant to triggering invalid network configurations.
Trace Visualization. We often found it informative to visualize the
ordering of message deliveries and internal state transitions. We
implemented a tool to generate space-time diagrams [33], as well
as a tool to highlight ordering differences between multiple traces,
which is especially useful for comparing intermediate delta debug-
ging replays in the face of acute non-determinism.

5.6 Limitations
Having detailed the specifics of our approach we now clarify the

scope of our technique’s use.
Partial Visibility. Our event scheduling algorithm assumes that it
has visibility into the occurrence of relevant internal events. For
some software this may require substantial instrumentation beyond
preexisting log statements, though as we show in §6, most bugs we
encountered can be minimized without perfect visibility.
Non-determinism. Non-determinism is fundamental in networks.
When non-determinism is present STS (i) replays multiple times
per subsequence, and (ii) employs software techniques for mitigat-
ing non-determinism, but it may nonetheless output a non-minimal
MCS. In the common case this is still better than the tools develop-
ers employ in practice. In the worst case STS leaves the developer
where they started: an unpruned log.
Lack of Guarantees. Due to partial visibility and non-
determinism, we do not provide guarantees on MCS minimality.
Bugs Outside the Control Software. Our goal is not to find the
root cause of individual component failures in the system (e.g. mis-
behaving routers, link failures). Instead, we focus on how the dis-
tributed system as a whole reacts to the occurrence of such inputs.
Interposition Overhead. Performance overhead from interposing
on messages may prevent STS from minimizing bugs triggered by
high message rates.19 Similarly, STS’s design may prevent it from
minimizing extremely large traces, as we evaluate in §6.

19Although this might be mitigated with time warping [24].

400



Correctness vs. Performance. We are primarily focused on cor-
rectness bugs, not performance bugs.

6. EVALUATION
We first demonstrate STS’s viability in troubleshooting real

bugs. We found seven new bugs by fuzz testing five open source
SDN control platforms: ONOS [43] (Java), POX [39] (Python),
NOX [23] (C++), Pyretic [19] (Python), and Floodlight [16] (Java),
and debugged these with the help of STS. Second, we demonstrate
the boundaries of where STS works well and where it does not by
finding MCSes for previously known and synthetic bugs that span
a range of bug types encountered in practice.

Our ultimate goal is to reduce effort spent on troubleshooting
bugs. As this is difficult to measure,20 since developer skills and
familiarity with code bases differs widely, we instead quantitatively
show how well STS minimizes logs, and qualitatively relay our
experience using MCSes to debug the newly found bugs.

We show a high-level overview of our results in Table 3. Interac-
tive visualizations and replayable event traces for all of these case
studies are publicly available at ucb-sts.github.com/experiments.

6.1 New Bugs
Pyretic Loop. We discovered a loop when fuzzing Pyretic’s hub
module, whose purpose is to flood packets along a minimum span-
ning tree. After minimizing the execution (runtime in Figure 4a),
we found that the triggering event was a link failure at the begin-
ning of the trace followed some time later by the recovery of that
link. After roughly 9 hours over two days of examining Pyretic’s
code (which was unfamiliar to us), we found what we believed to
be the problem in its logic for computing minimum spanning trees:
it appeared that down links weren’t properly being accounted for,
such that flow entries were installed along a link even though it was
down. When the link recovered, a loop was created, since the flow
entries were still in place. The loop seemed to persist until Pyretic
periodically flushed all flow entries.

We filed a bug report along with a replayable MCS to the devel-
opers of Pyretic. They found after roughly five hours of replaying
the trace with STS that Pyretic told switches to flood out all links
before the entire network topology had been learned (including the
down link). By adding a timer before installing entries to allow for
links to be discovered, the developers were able to verify that the
loop no longer appeared. A long term fix for this issue is currently
being discussed by the developers of Pyretic.
POX Premature PacketIn. During a POX fuzz run,
the l2_multi routing module failed unexpectedly with a
KeyError. The initial trace had 102 input events, and STS re-
duced it to an MCS of 2 input events as shown in Figure 4b.

We repeatedly replayed the MCS while adding instrumentation.
The root cause was a race condition in POX’s handshake state ma-
chine. The OpenFlow standard requires a 2-message handshake.
POX, however, requires an additional series of message exchanges
before notifying applications of its presence via a SwitchUp event.

The switch was slow in completing the second part of the hand-
shake, causing the SwitchUp to be delayed. During this window,
a PacketIn (LLDP packet) was forwarded to POX’s discovery
module, which in turned raised a LinkEvent to l2_multi, which
then failed because it expected SwitchUp to occur first. We verified
with the lead developer of POX that is a true bug.

This case study demonstrates how even a simple handshake state
machine can behave in a manner that is hard to understand without
being able to repeat the experiment with a minimal trace. Making

20We discuss this point further in §7.

heavy use of the MCS replay, a developer unfamiliar with the two
subsystems was able to root-cause the bug in ~30 minutes.
POX In-Flight Blackhole. We found a persistent blackhole while
POX was bootstrapping its discovery of link and host locations.
There were initially 27 inputs. The initial trace was affected by
non-determinism and only replayed successfully 15/20 times. We
were able to reliably replay it by employing multiplexed sockets,
overriding gettimeofday(), and waiting on logging messages.
STS returned a 11 input MCS (runtime shown in Figure 4c).

We provided the MCS to the lead developer of POX. Primarily
using the console output, we were able to trace through the code
and identify the problem within 7 minutes, and were able to find
a fix for the race condition within 40 minutes. By matching the
console output with the code, he found that the crucial triggering
events were two in-flight packets (set in motion by prior traffic in-
jection events): POX first incorrectly learned a host location as a re-
sult of the first in-flight packet showing up immediately after POX
discovered that port belonged to a switch-switch link—apparently
the code had not accounted for the possibility of in-flight packets
directly following link discovery—and then as a result the second
in-flight packet POX failed to return out of a nested conditional that
would have prevented the blackhole from being installed.
POX Migration Blackhole. We noticed after examining POX’s
code that there might be some corner cases related to host migra-
tions. We added host migrations to the randomly generated inputs
and checked for blackholes. Our initial input size was 115 inputs.
STS produced a 3 input MCS (shown in Figure 4d): a packet in-
jection from a host (‘A’), followed by a packet injection by another
host (‘B’) towards A, followed by a host migration of A. This made
it immediately clear what the problem was. After learning the lo-
cation of A and installing a flow from B to A, the routing entries
in the path were never removed after A migrated, causing all traffic
from B to A to blackhole until the routing entries expired.
NOX Discovery Loop. Next we tested NOX on a four-node
mesh, and discovered a routing loop between three switches within
roughly 20 runs of randomly generated inputs.

Our initial input size was 68 inputs, and STS returned an 18 input
MCS (Figure 4e). Our approach to debugging was to reconstruct
from the minimized trace how NOX should have installed routes,
then compare how NOX actually installed routes. This case took
us roughly 10 hours to debug. Unfortunately the final MCS did not
reproduce the bug on the first few tries, and we suspect this is due to
the fact NOX chooses the order to send LLDP messages randomly,
and the loop depends crucially on this order. We instead used the
console output from the shortest subsequence that did produce the
bug (21 inputs, 3 more than the MCS) to debug this trace.

The order in which NOX discovered links was crucial: at the
point NOX installed the 3-loop, it had only discovered one link to-
wards the destination. Therefore all other switches routed through
the one known neighbor switch. The links adjacent to the neighbor
switch formed 2 of the 3 links in the loop.

The destination host only sent one packet, which caused NOX
to initially learn its correct location. After NOX flooded the packet
though, it became confused about its location. One flooded packet
arrived at another switch that was currently not known to be at-
tached to anything, so NOX incorrectly concluded that the host had
migrated. Other flooded packets were dropped as a result of link
failures in the network and randomly generated packet loss. The
loop was then installed when the source injected another packet.
Floodlight Loop. Next we tested Floodlight’s routing application.
In about 30 minutes, our fuzzing uncovered a 117 input sequence
that caused a persistent 3-node forwarding loop. In this case, the

401

http://ucb-sts.github.com/experiments


Bug Name Topology Runtime (s) Input Size MCS Size MCS WI MCS Helpful?
N

ew
ly

Fo
un

d
Pyretic Loop 3 switch mesh 266.2 36 1 2 Yes
POX Premature PacketIn 4 switch mesh 249.1 102 2 NR Yes
POX In-Flight Blackhole 2 switch mesh 1478.9 27 11 NR Yes
POX Migration Blackhole 4 switch mesh 1796.0 29 3 NR Yes
NOX Discovery Loop 4 switch mesh 4990.9 150 18 NR Indirectly
Floodlight Loop 3 switch mesh 27930.6 117 13 NR Yes
ONOS Database Locking 2 switch mesh N/A 1 1 1 N/A

K
no

w
n Floodlight Failover 2 switch mesh - 202 2 - Yes

ONOS Master Election 2 switch mesh 2746.0 20 2 2 Yes
POX Load Balancer 3 switch mesh 2396.7 106 24 (N+1) 26 Yes

Sy
nt

he
tic

Delicate Timer Interleaving 3 switch mesh N/A 39 NR NR No
Reactive Routing Trigger 3 switch mesh 525.2 40 7 2 Indirectly
Overlapping Flow Entries 2 switch mesh 115.4 27 2 3 Yes
Null Pointer 20 switch FatTree 157.4 62 2 2 Yes
Multithreaded Race Condition 10 switch mesh 36967.5 1596 2 2 Indirectly
Memory Leak 2 switch mesh 15022.6 719 32 (M+2) 33 Indirectly
Memory Corruption 4 switch mesh 145.7 341 2 2 Yes

Table 3: Overview of Case Studies. ‘WI’ denotes ‘Without Interposition’, and ‘NR’ denotes ‘Not Replayable’.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0  1  2  3  4  5  6  7  8

N
um

be
r o

f R
em

ai
ni

ng
 In

pu
ts

Number of Replays Executed

(a) Pyretic Loop.

 0

 20

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6

N
um

be
r o

f R
em

ai
ni

ng
 In

pu
ts

Number of Replays Executed

(b) POX Premature PacketIn.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30  35  40  45

N
um

be
r o

f R
em

ai
ni

ng
 In

pu
ts

Number of Replays Executed

(c) POX In-Flight Blackhole.

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25

N
um

be
r o

f R
em

ai
ni

ng
 In

pu
ts

Number of Replays Executed

(d) POX Migration Blackhole.

 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20  25  30  35  40

N
um

be
r o

f R
em

ai
ni

ng
 In

pu
ts

Number of Replays Executed

(e) NOX Discovery Loop.

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300  350

N
um

be
r o

f R
em

ai
ni

ng
 In

pu
ts

Number of Replays Executed

(f) Floodlight Loop.

Figure 4: Minimization runtime behavior.

controller exhibited significant non-determinism, which initially
precluded STS from efficiently reducing the input size. We worked
around this by increasing the number of replays per subsequence to
10. With this, STS reduced the sequence to 13 input events in 324
replays and 8.5 hours (runtime shown in Figure 4f).

We repeatedly replayed the 13 event MCS while successively
adding instrumentation and increasing the log level each run. After
15 replay attempts, we found that the problem was caused by inter-
ference of end-host traffic with ongoing link discovery packets. In
our experiment, Floodlight had not discovered an inter-switch link
due to dropped LLDP packets, causing an end-host to flap between
perceived attachment points.

While this behavior cannot strictly be considered a bug in Flood-
light, the case-study nevertheless highlights the benefit of STS over
traditional techniques: by repeatedly replaying the MCS, we were
able to diagnose the root cause—a complex interaction between the
LinkDiscovery, Forwarding, and DeviceManager modules.
ONOS Database Locking. When testing ONOS, a distributed
open-source controller, we noticed that ONOS controllers would

occasionally reject switches’ attempts to connect. The initial trace
was already minimized, as the initial input was the single event
of the switches connecting to the controllers with a particular tim-
ing. When examining the logs, we found that the particular timing
between the switch connects caused both ONOS controllers to en-
counter a “failed to obtain lock” error from their distributed graph
database. We suspect that the ONOS controllers were attempting
to concurrently insert the same key, which causes a known error.
We modified ONOS’s initialization logic to retry when inserting
switches, and found that this eliminated the bug.

6.2 Known bugs
Floodlight Failover. We were able to reproduce a known prob-
lem [17] in Floodlight’s distributed controller failover logic with
STS. In Floodlight switches maintain one hot connection to a mas-
ter controller and several cold connections to replica controllers.
The master holds the authority to modify the configuration of
switches, while the other controllers are in backup mode and do
not change the switch configurations. If a link fails shortly after the

402



master controller has died, all live controllers are in the backup role
and will not take responsibility for updating the switch flow table.
At some point when a backup notices the master failure and ele-
vates itself to the master role it will proceed to manage the switch,
but without ever clearing the routing entries for the failed link, re-
sulting in a persistent blackhole.

We ran two Floodlight controller instances connected to two
switches, and injected 200 extraneous link and switch failures, with
the controller crash and switch connect event21 that triggered the
blackhole interleaved among them. We were able to successfully
isolate the two-event MCS: the controller crash and the link failure.
ONOS Master Election. We reproduced another bug, previously
reported in earlier versions and later fixed, in ONOS’s master elec-
tion protocol. If two adjacent switches are connected to two sep-
arate controllers, the controllers must decide between themselves
who will be responsible for tracking the liveness of the link. They
make this decision by electing the controller with the higher ID
as the master for that link. When the master dies, and later re-
boots, it is assigned a new ID. If its new ID is lower than the other
controllers’, both will incorrectly believe that they are not respon-
sible for tracking the liveness of the link, and the controller with
the prior higher ID will incorrectly mark the link as unusable such
that no routes will traverse it. This bug depends on initial IDs cho-
sen at random, so we modified ONOS to hardcode ID values. We
were able to successfully minimize the trace to the master crash
and recovery event, although we were also able to do so without
any interposition on internal events.
POX Load Balancer. We are aware that POX applications do
not always check error messages sent by switches rejecting in-
valid packet forwarding commands. We used this to trigger a bug
in POX’s load balancer application: we created a network where
switches had only 25 entries in their flow table, and proceeded to
continue injecting TCP flows into the network. The load balancer
application proceeded to install entries for each of these flows.
Eventually the switches ran out of flow entry space and responded
with error messages. As a result, POX began randomly load bal-
ancing each subsequent packet for a given flow over the servers,
causing session state to be lost. We were able to minimize the MCS
for this bug to 24 elements (there were two preexisting flow entries
in each routing table, so 24 additional flows made the 26 (N+1) en-
tries needed to overflow the table). A notable aspect of this MCS
is that its size is directly proportional to the flow table space, and
developers would find across multiple fuzz runs that the MCS was
always 24 elements.

6.3 Synthetic bugs
Delicate Timer Interleaving. We injected a crash on a code path
that was highly dependent on internal timers firing within POX.
This is a hard case for STS, since we have little control of internal
timers. We were able to trigger the code path during fuzzing, but
were unable to reproduce the bug during replay after five attempts.
This is the only case where we were unable to replay the trace.
Reactive Routing Trigger. We modified POX’s reactive routing
module to create a loop upon receiving a particular sequence of dat-
aplane packets. This case is difficult for two reasons: the routing
module’s behavior depends on the (non-deterministic) order these
links are discovered in the network, and the triggering events are
multiple dataplane packet arrivals interleaved at a fine granular-
ity. We found that the 7 event MCS was inflated by at least two
events: a link failure and a link recovery that we did not believe

21We used a switch connect event rather than a link failure event
for logistical reasons, but both can trigger the race condition.

were relevant to triggering the bug. We noticed that after PEEK()
inferred expected internal events, our event scheduler still timed
out on some link discovery messages–those that happened to occur
during the PEEK() run but did not show up during replay due to
non-determinism. We suspected that these timeouts were the cause
of the inflated MCS, and confirmed our intuition by turning off in-
terposition on internal events altogether, which yielded a 2 event
MCS (although this MCS was still affected by non-determinism).
Overlapping Flow Entries. We ran two modules in POX: a ca-
pability manager in charge of providing upstream DoS protection
for servers, and a forwarding application. The capabilities man-
ager installed drop rules upstream for servers that requested it, but
these rules had lower priority than the default forwarding rules in
the switch. We were able to minimize 27 inputs to the two traffic
injection inputs necessary to trigger the routing entry overlap.
Null Pointer. On a rarely used code path we injected a null pointer
exception, and were able to successfully minimize a fuzz trace of
62 events to the expected triggering conditions: control channel
congestion followed by decongestion.
Multithreaded Race Condition. We created a race condition be-
tween multiple threads that was triggered by any packet I/O, re-
gardless of input. With 5 replays per subsequence, we were able to
minimize a 1596 input in 10 hours to a replayable 2 element fail-
ure/recovery pair. The MCS itself though may have been somewhat
misleading to a developer (as expected), as the race condition was
triggered randomly by any I/O, not just these two inputs events.
Memory Leak. We created a case that would take STS very long
to minimize: a memory leak that eventually caused a crash in
POX. We artificially set the memory leak to happen quickly af-
ter allocating 30 (M) objects created upon switch handshakes, and
interspersed 691 other input events throughout switch reconnect
events. The final MCS found after 4 hours 15 minutes was ex-
actly 30 events, but it was not replayable. We suspect this was be-
cause STS was timing out on some expected internal events, which
caused POX to reject later switch connection attempts.
Memory Corruption. We created a case where the receipt of a
link failure notification on a particular port causes corruption to one
of POX’s internal data structures. This causes a crash much later
when the data structure is accessed during the corresponding port
up. These bugs are hard to debug, because considerable time can
pass between the event corrupting the data structure and the event
triggering the crash, making manual log inspection or source level
debugging ineffective. STS proved effective in this case, reducing
a larger trace to exactly the 2 events responsible for the crash.

6.4 Overall Results & Discussion
We show our overall results in Table 3. We note that with the ex-

ception of Delicate Timer Interleaving and ONOS Database Lock-
ing, STS was able to significantly reduce input traces.

The MCS WI column, showing the MCS sizes we produced
when ignoring internal events entirely, indicates that our tech-
niques for interleaving events are often crucial. In one case
however—Reactive Routing Trigger—non-determinism was par-
ticularly acute, and STS’s interposition on internal events actu-
ally made minimization worse due to timeouts on inferred inter-
nal events that did not occur after PEEK(). In this case we found
better results by simply turning off interposition on internal events.
For all of the other case studies, either non-determinism was not
problematic, or we were able to counteract it by replaying multiple
times per subsequence and adding instrumentation.

The cases where STS was most useful were those where a devel-
oper would have started from the end of the trace and worked back-

403



��

���

���

���

���

���

���

�	�

�� �� �� �� �� �� �	 �
 �� ���

��
��
��
���
�	

�
��

�

������������������������������������� �

Figure 5: Effectiveness of replaying subsequences multiple times
in mitigating non-determinism.

wards, but the actual root cause lies many events in the past (as in
Memory Corruption). This requires many re-iterations through the
code and logs using standard debugging tools (e.g. source level de-
buggers), and is highly tedious on human timescales. In contrast, it
was easy to step through a small event trace and manually identify
the code paths responsible for a failure.

Bugs that depend on fine-grained thread-interleaving or timers
inside of the controller are the worst-case for STS. This is not sur-
prising, as they do not directly depend on the input events from
the network, and we do not directly control the internal schedul-
ing and timing of the controllers. The fact that STS has a difficult
time reducing these traces is itself indication to the developer that
fine-grained non-determinism is at play.

6.5 Coping with Non-determinism
Recall that STS optionally replays each subsequence multiple

times to mitigate the effects of non-determinism. We evaluate
the effectiveness of this approach by varying the maximum num-
ber of replays per subsequence while minimizing a synthetic non-
deterministic loop created by Floodlight. Figure 5 demonstrates
that the size of the resulting MCS decreases with the maximum
number of replays, at the cost of additional runtime; 10 replays per
subsequence took 12.8 total hours, versus 6.1 hours without retries.

6.6 Instrumentation Complexity
For POX and Floodlight, we added shim layers to the con-

trol software to redirect gettimeofday(), interpose on logging
statements, and demultiplex sockets. For Floodlight we needed 722
lines of Java, and for POX we needed 415 lines of Python.

6.7 Scalability
Mocking the network in a single process potentially prevents

STS from triggering bugs that only appear at large scale. We ran
STS on large FatTree networks to see where these scaling limits
lie. On a machine with 6GB of memory, we ran POX as the con-
troller, and measured the time to create successively larger FatTree
topologies, complete the OpenFlow handshakes for each switch,
cut 5% of links, and process POX’s response to the link failures. As
shown in Figure 6, STS’s processing time scales roughly linearly
up to 2464 switches (a 45-pod FatTree). At that point, the machine
started thrashing, but this limitation could easily be removed by
running on a machine with >6GB of memory.

Note that STS is not designed for high-throughput dataplane traf-
fic; we only forward what is necessary to exercise the controller
software. In proactive SDN setups, dataplane events are not rele-
vant for the control software, except perhaps for host discovery.

��

���

����

����

����

����

�� ���� ����� ����� ����� ����� �����

��
�
��
��
��
��
	�

�

��	
�������������

������������������

��� �!������������

"����#�������$�#�������%����

Figure 6: Runtime for bootstrapping FatTree networks, cutting 5%
of links, and processing the controller’s response.

6.8 Parameters
We found throughout our experimentation that STS leaves open

several parameters that need to be set properly.
Setting fuzzing parameters. STS’s fuzzer allows the user to set
the rates different event types are triggered at. In our experiments
with STS we found several times that we needed to set these param-
eters such that we avoided bugs that were not of interest to develop-
ers. For example, in one case we discovered that a high dataplane
packet drop rate dropped too many LLDP packets, preventing the
controller from discovering the topology. Setting fuzzing parame-
ters remains an important part of experiment setup.
Differentiating persistent and transient violations. In networks
there is a fundamental delay between the initial occurrence of an
event and the time when other nodes are notified of the event. This
delay implies that invariant violations such as loops or blackholes
can appear before the controller(s) have time to correct the network
configuration. In many cases such transient invariant violations are
not of interest to developers. We therefore provide a threshold pa-
rameter in STS for how long an invariant violation should persist
before STS reports it as a problem. In general, setting this thresh-
old depends on the network and the invariants of interest.
Setting ε. Our algorithm leaves an open question as to what value
ε should be set to. We experimentally varied ε on the POX In-
Flight Blackhole bug. We found that the number of events we timed
out on while isolating the MCS became stable for values above 25
milliseconds. For smaller values, the number of timed out events
increased rapidly. We currently set ε to 100 milliseconds.

7. DISCUSSION
How much effort do MCSes really save? Based on conversations
with engineers and our own industrial experience, two facts seem
to hold. First, companies dedicate a substantial portion of their
best engineers’ time on troubleshooting bugs. Second, the larger
the trace, the more effort is spent on debugging, since humans can
only keep a small number of facts in working memory [41]. As
one developer puts it, “Automatically shrinking test cases to the
minimal case is immensely helpful” [52].
Why do you focus on SDN? SDN represents both an opportunity
and a challenge. In terms of a challenge, SDN control software—
both proprietary and open source—is in its infancy, which means
that bugs are pervasive.

In terms of an opportunity, SDN’s architecture facilitates the im-
plementation of systems like STS. The interfaces between compo-
nents (e.g. OpenFlow for switches [40] and OpenStack Neutron for
management [2]) are well-defined, which is crucial for codifying

404



functional equivalencies. Moreover, the control flow of SDN con-
trol software repeatedly returns to a quiescent state after processing
inputs, which means that many inputs can be pruned.

Although we focus on SDN control software, we are currently
evaluating our technique on other distributed systems, and believe
it to be generally applicable.
Enabling analysis of production logs. STS does not currently
support minimization of production (as opposed to QA) logs. Pro-
duction systems would need to include Lamport clocks on each
message [33] or have sufficiently accurate clock synchronization to
obtain a happens-before relation. Inputs would also need to need
to be logged in sufficient detail for STS to replay a synthetic ver-
sion. Finally, without care, a single input event may appear mul-
tiple times in the distributed logs. The most robust way to avoid
redundant input events would be to employ perfect failure detec-
tors [8], which log a failure iff the failure actually occurred.

8. RELATED WORK
Our primary contribution, techniques for interleaving events,

made it possible to apply input minimization algorithms (cf. Delta
Debugging [58, 59] and domain-specific algorithms [12, 47, 55]) to
blackbox distributed systems. We described the closest work to us,
thread schedule minimization and program flow reduction, in §4.2.

We characterize the other troubleshooting approaches as (i) in-
strumentation (tracing), (ii) bug detection (invariant checking), (iii)
replay, and (iv) root cause analysis (of network device failures).
Instrumentation. Unstructured log files collected at each node are
the most common form of diagnostic information. The goal of trac-
ing frameworks [5, 10, 18, 25, 48] is to produce structured logs that
can be easily analyzed, such as DAGs tracking requests passing
through the distributed system. An example within the SDN space
is NetSight [25], which allows users to retroactively examine the
paths dataplane packets take through OpenFlow networks. Tools
like NetSight allow developers to understand how, when, and where
the dataplane broke. In contrast, we focus on making it easier for
developers to understand why the control software misconfigured
the network in the first place.
Bug Detection. With instrumentation available, it becomes pos-
sible to check expectations about the system’s state (either of-
fline [36] or online [37]), or about the paths requests take through
the system [48]. Within the networking community, this research
is primarily focused on verifying routing tables [30–32, 38] or for-
warding behavior [60, 61]. We use bug detection techniques (in-
variant checking) to guide delta debugging’s minimization process.
It is also possible to infer performance anomalies by building prob-
abilistic models from collections of traces [5, 10]. Our goal is to
produce exact minimal causal sequences, and we are primarily fo-
cused on correctness instead of performance.
Model checkers [7, 42] seek to proactively find safety and liveness
violations by analyzing all possible code paths. After identifying a
bug with model checking, finding a minimal code path leading to
it is straightforward. However, the testing systems we aim to im-
prove do not employ formal methods such as model checking, in
part because model checking usually suffers from exponential state
explosion when run on large systems,22 and because large systems
often comprise multiple (interacting) languages, which may not be
amenable to formal methods. Nonetheless, we are currently explor-
ing the use of model checking to provide provably minimal MCSes.

22For example, NICE [7] took 30 hours to model check a net-
work with two switches, two hosts, the NOX MAC-learning con-
trol program (98 LoC), and five concurrent messages between the
hosts.

Replay. Crucial diagnostic information is often missing from
traces. Record and replay techniques [20, 35] instead allow users
to step through (deterministic) executions and interactively exam-
ine the state of the system in exchange for performance overhead.
Within SDN, OFRewind [56] provides record and replay of Open-
Flow channels between controllers and switches. Manually exam-
ining long system executions can be tedious, and our goal is to
minimize such executions so that developers find it easier to iden-
tify the problematic code through replay or other means.
Root Cause Analysis. Without perfect instrumentation, it is often
not possible to know exactly what events are occurring (e.g. which
components have failed) in a distributed system. Root cause analy-
sis [29,57] seeks to reconstruct those unknown events from limited
monitoring data. Here we know exactly which events occurred, but
seek to identify a minimal sequence of events.
It is worth mentioning another goal outside the purview of dis-
tributed systems, but closely in line with ours: program slicing [54]
is a technique for finding the minimal subset of a program that
could possibly affect the result of a particular line of code. This
can be combined with delta debugging to automatically generate
minimal unit tests [6]. Our goal is to slice the temporal dimension
of an execution rather than the code dimension.

9. CONCLUSION
SDN aims to make networks easier to manage. SDN does this,

however, by pushing complexity into SDN control software itself.
Just as sophisticated compilers are hard to write, but make pro-
gramming easy, SDN control software makes network management
easier, but only by forcing the developers of SDN control software
to confront the challenges of asynchrony, partial failure, and other
notoriously hard problems inherent to all distributed systems.

Current techniques for troubleshooting SDN control software
are primitive; they essentially involve manual inspection of logs in
the hope of identifying the triggering inputs. Here we developed
a technique for automatically identifying a minimal sequence of
inputs responsible for triggering a given bug, without making
assumptions about the language or instrumentation of the software
under test. While we focused on SDN control software, we believe
our techniques are applicable to general distributed systems.

Acknowledgments. We thank our sheperd Nate foster and the
anonymous reviewers for their comments. We also thank Shivaram
Venkataraman, Sangjin Han, Justine Sherry, Peter Bailis, Radhika
Mittal, Teemu Koponen, Michael Piatek, Ali Ghodsi, and An-
drew Ferguson for providing feedback on earlier versions of this
text. This research is supported by NSF CNS 1040838, NSF CNS
1015459, and an NSF Graduate Research Fellowship.

10. REFERENCES
[1] Linux kernel containers. linuxcontainers.org.
[2] OpenStack Neutron. http://tinyurl.com/qj8ebuc.
[3] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent

Checkpointing for Cluster Computations and the Desktop.
IPDPS ’09.

[4] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing
Telecoms Software with Quviq QuickCheck. Erlang ’06.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for Request Extraction and Workload Modelling.
OSDI ’04.

[6] M. Burger and A. Zeller. Minimizing Reproduction of
Software Failures. ISSTA ’11.

[7] M. Canini, D. Venzano, P. Peresini, D. Kostic, and
J. Rexford. A NICE Way to Test OpenFlow Applications.
NSDI ’12.

405

linuxcontainers.org
http://tinyurl.com/qj8ebuc


[8] T. Chandra and S. Toueg. Unreliable Failure Detectors for
Reliable Distributed Systems. JACM ’96.

[9] K. M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems. ACM
TOCS ’85.

[10] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, O. Fox, and
E. Brewer. Pinpoint: Problem Determination in Large,
Dynamic Internet Services. DSN ’02.

[11] J. Choi and A. Zeller. Isolating Failure-Inducing Thread
Schedules. SIGSOFT ’02.

[12] K. Claessen and J. Hughes. QuickCheck: a Lightweight Tool
for Random Testing of Haskell Programs. ICFP ’00.

[13] K. Claessen, M. Palka, N. Smallbone, J. Hughes,
H. Svensson, T. Arts, and U. Wiger. Finding Race Conditions
in Erlang with QuickCheck and PULSE. ICFP ’09.

[14] J. Clause and A. Orso. A Technique for Enabling and
Supporting Debugging of Field Failures. ICSE ’07.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. OSDI ’02.

[16] Floodlight Controller.
http://tinyurl.com/ntjxa6l.

[17] Floodlight FIXME comment. Controller.java, line 605.
http://tinyurl.com/af6nhjj.

[18] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica.
X-Trace: A Pervasive Network Tracing Framework. NSDI
’07.

[19] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A Network
Programming Language. ICFP ’11.

[20] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
Debugging For Distributed Applications. ATC ’06.

[21] P. Godefroid and N. Nagappan. Concurrency at Microsoft -
An Exploratory Survey. CAV ’08.

[22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network, Sec. 3.4.
SIGCOMM ’09.

[23] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System For Networks. CCR ’08.

[24] D. Gupta, K. Yocum, M. Mcnett, A. C. Snoeren, A. Vahdat,
and G. M. Voelker. To Infinity and Beyond: TimeWarped
Network Emulation. NSDI ’06.

[25] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and
N. McKeown. I Know What Your Packet Did Last Hop:
Using Packet Histories to Troubleshoot Networks. NSDI ’14.

[26] J. Huang and C. Zhang. An Efficient Static Trace
Simplification Technique for Debugging Concurrent
Programs. SAS ’11.

[27] J. Huang and C. Zhang. LEAN: Simplifying Concurrency
Bug Reproduction via Replay-Supported Execution
Reduction. OOPSLA ’12.

[28] N. Jalbert and K. Sen. A Trace Simplification Technique for
Effective Debugging of Concurrent Programs. FSE ’10.

[29] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye,
and P. Bahl. Detailed Diagnosis in Enterprise Networks.
SIGCOMM ’09.

[30] P. Kazemian, M. Change, H. Zheng, G. Varghese,
N. McKeown, and S. Whyte. Real Time Network Policy
Checking Using Header Space Analysis. NSDI ’13.

[31] P. Kazemian, G. Varghese, and N. McKeown. Header Space
Analysis: Static Checking For Networks. NSDI ’12.

[32] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. VeriFlow:
Verifying Network-Wide Invariants in Real Time. NSDI ’13.

[33] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. CACM ’78.

[34] K. H. Lee, Y. Zheng, N. Sumner, and X. Zhang. Toward
Generating Reducible Replay Logs. PLDI ’11.

[35] C.-C. Lin, V. Jalaparti, M. Caesar, and J. Van der Merwe.
DEFINED: Deterministic Execution for Interactive
Control-Plane Debugging. ATC ’13.

[36] X. Liu. WiDs Checker: Combating Bugs in Distributed
Systems. NSDI ’07.

[37] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
M. F. Kaashoek, and Z. Zhang. D3S: Debugging Deployed
Distributed Systems. NSDI ’08.

[38] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey,
and S. T. King. Debugging the Data Plane with Anteater.
SIGCOMM ’11.

[39] J. Mccauley. POX: A Python-based OpenFlow Controller.
http://www.noxrepo.org/pox/about-pox/.

[40] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM CCR ’08.

[41] G. A. Miller. The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information. Psychological Review ’56.

[42] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and Reproducing Heisenbugs in
Concurrent Programs. SOSP ’08.

[43] ON.Lab. Open Networking Operating System.
http://onlab.us/tools.html.

[44] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity
Violation Bugs from their Hiding Places. ASPLOS ’09.

[45] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu. PRES: Probabilistic Replay with Execution
Sketching on Multiprocessors. SOSP ’09.

[46] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and
S. Shenker. Extending Networking into the Virtualization
Layer. HotNets ’09.

[47] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang.
Test-case Reduction for C Compiler Bugs. PLDI ’12.

[48] P. Reynolds, C. Killian, J. L. Winer, J. C. Mogul, M. A.
Shah, and A. Vadhat. Pip: Detecting the Unexpected in
Distributed Systems. NSDI ’06.

[49] V. Soundararajan and K. Govil. Challenges in Building
Scalable Virtualized Datacenter Management. OSR ’10.

[50] S. Tallam, C. Tian, R. Gupta, and X. Zhang. Enabling
Tracing of Long-Running Multithreaded Programs via
Dynamic Execution Reduction. ISSTA ’07.

[51] G. Tel. Introduction to Distributed Algorithms. Thm. 2.21.
Cambridge University Press, 2000.

[52] A. Thompson. http://tinyurl.com/qgc387k.
[53] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:

Diagnosing Production Run Failures at the User’s Site. SOSP
’07.

[54] M. Weiser. Program Slicing. ICSE ’81.
[55] A. Whitaker, R. Cox, and S. Gribble. Configuration

Debugging as Search: Finding the Needle in the Haystack.
SOSP ’04.

[56] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.
OFRewind: Enabling Record and Replay Troubleshooting
for Networks. ATC ’11.

[57] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. A
Survey of Fault Localization Techniques in Computer
Networks. Science of Computer Programming ’04.

[58] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? ESEC/FSE ’99.

[59] A. Zeller and R. Hildebrandt. Simplifying and Isolating
Failure-Inducing Input. IEEE TSE ’02.

[60] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. CoNEXT ’12.

[61] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu,
N. McKeown, and A. Vahdat. Libra: Divide and Conquer to
Verify Forwarding Tables in Huge Networks. NSDI ’14.

406

http://tinyurl.com/ntjxa6l
http://tinyurl.com/af6nhjj
http://www.noxrepo.org/pox/about-pox/
http://onlab.us/tools.html
http://tinyurl.com/qgc387k

	Introduction
	Background
	Problem Definition
	Minimizing Traces
	Searching for Subsequences
	Searching for Timings
	Complexity

	Systems Challenges
	Coping with Non-Determinism
	Mitigating Non-Determinism
	Checkpointing
	Timing Heuristics
	Root Causing Tools
	Limitations

	Evaluation
	New Bugs
	Known bugs
	Synthetic bugs
	Overall Results & Discussion
	Coping with Non-determinism
	Instrumentation Complexity
	Scalability
	Parameters

	Discussion
	Related Work
	Conclusion
	References



