
BitCuts: Towards Fast Packet Classification for Order-
Independent Rules

Zhi Liu1, 2, Xiang Wang1, 2, Baohua Yang3 and Jun Li2, 4
1Department of Automation, Tsinghua University, China

2Research Institute of Information Technology, Tsinghua University, China
3IBM China Research Lab, Beijing, China

4Tsinghua National Lab for Information Science and Technology, China
{zhi-liu12, xiang-wang11}@mails.tsinghua.edu.cn, baohyang@cn.ibm.com, junl@tsinghua.edu.cn

CCS Concepts
• Networks~Packet classification

Keywords
Packet Classification; Order-Independent Rules

1. Introduction
Packet classification is required to achieve high throughput
while fitting into a commodity memory hierarchy. Therefore,
fewer memory accesses and a reasonable memory footprint are
the main concerns when designing a packet classification algo-
rithm. Recent work proposed a hybrid packet classification solu-
tion incorporating both software and TCAM-based approaches.
Specifically, SAX-PAC[1] observed that real-life packet classi-
fication rules can be represented by a few groups of order-
independent rules. In each group, any two rules do not intersect
and can possibly be separated on a fraction of fields, reducing
the complexity of the classifier. Consequently, it has been sug-
gested that the order-independent groups be handled by existing
software algorithms, and the rest of the rules (the order-
dependent part) be handled by TCAM. However, SAX-PAC did
not design specific software algorithms for order-independent
rules. For these rules, existing algorithms are still inefficient in
terms of classification speed. Decision-tree algorithms, the state-
of-the-art software approach, always traverse tens of tree nodes
in order to identify the matching rule. Speed is further decreased
when packets need to match multiple order-independent groups.

This paper proposes BitCuts, a bit-level decision-tree algorithm
targeting a promising classification speed on order-independent
rules. Our evaluation shows that BitCuts only requires 30%~40%
of the number of memory accesses of existing algorithms and
still achieves small a memory footprint on large rulesets.

2. Bit-level Separability of Order-
Independent Rules
Consider an example of three order-independent rules in Figure
1, each specifying arbitrary ranges on three fields. These rules
are “order-independent” since each pair of the rules does not
intersect. Also, the first two fields (bits 0-3 and 4-7, as shown in
the dashed boxes) can guarantee this property. Figure 1 also
illustrates how bits classify order-independent rules efficiently.
Field ranges are converted to prefixes for ease of understanding.

It is shown that a classifier based on bits 1 and 5 is sufficient to
separate all of the rules. These bits partition the rules into four
subsets. The resulting subsets are stored in an array of buckets,
where each bucket is indexed by the concatenated bit values and
contains a pointer to the actual rule. It is found that the rules are
“fully separated” in these buckets, meaning that each bucket
contains at most one rule.

For example, to classify a packet with header {0011, 1101,
1111}, the classification process includes: Masking the packet
header fields with {0100, 0100, 0000} and filtering out the bits
at non-zero mask positions, which is “01” in this case; Indexing
to bucket “01” and conducting a “false positive check” with all
fields to verify if it matches with rule R2. In the worst-case, the
classification only requires one access to the root bucket, one to
the leaf, and a final access to the possible matching rule, dramat-
ically reducing the number of memory accesses.
It can be proved that all of the rules in an order-independent
group can be “fully separated” by selecting an appropriate set of
bits [2]. To adopt this property for larger rulesets, a naïve solu-
tion is to find l bits that “fully separates” the rules and construct
the corresponding 2l buckets, as shown in Figure 1. Table 1
shows the number of required bits l to “fully separate” our eval-
uated order-independent rulesets, generated with the heuristic
proposed in [1]. However, the number of required bits is always
prohibitively high, making this solution impractical due to the
memory footprint of the 2l buckets.

3. BitCuts Design
To reduce the number of memory accesses as well as achieve a
moderate memory size, we propose the “BitCuts” approach.
BitCuts fully utilizes the bit-level separability of order-
independent rules and constructs a multi-layer decision-tree to
classify incoming packets. An example of resulting data struc-
ture and classifying procedure is shown in Figure 2. BitCuts first
accesses the root bucket, fetches a bitmask with 10 selected bit
positions, and masks the packet header against this bitmask. The
concatenated bit values index to another intermediate bucket on
the next layer, which contains a bitmask and a bucket array
pointer for the next access. This recursion stops until it reaches a
leaf bucket, and then a false positive check is conducted to get

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
SIGCOMM '15, August 17-21, 2015, London, United Kingdom
ACM 978-1-4503-3542-3/15/08.
http://dx.doi.org/10.1145/2785956.2789998

Figure 1. Example ruleset classified by 2 bits

the final match. In a nutshell, BitCuts’ multi-layer design has the
following advantages over the naïve solution:

Better rule separation. On upper layers, each subset in the
bucket array always requires a different set of bits in order to be
divided further. With the constraint of maintaining a reasonable
memory size, BitCuts’ multi-layer design is able to select the
best bits to divide each subset, thus making use of more bits than
naïve solution.

Smaller memory size. The size of each subset varies among
different buckets. Some of the subsets are relatively small and
might not need additional bits for further dividing, while some
might be large and require more bits. Our multi-layer design will
prevent the space inflation resulting from unnecessarily dividing
very small subsets.

The pseudocode for building BitCuts decision-trees is shown in
Algorithm 1. The algorithm iteratively calls bit_select and adds
the selected bit to the bitmask. Currently, bit_select uses a
greedy strategy: it tries to add one unused bit to the existing
bitmask, splits the ruleset, and gets the maximum size among all
the resulting subsets. After a trail with each unused bit, the
greedy algorithm selects the bit with the lowest maximum size.

As shown in line 8, the bit selection stops when the fraction of
“inseparable” subsets, which will be explained later, exceeds the
pre-defined threshold. If L bits are selected at this point, the
algorithm checks each of the resulting 2L subsets. If the subset is
“inseparable”, the algorithm constructs the corresponding leaf
bucket. If not, the subset needs to be divided further by con-
structing a bitmask and bucket array for the next layer.

The goal of calculating the fraction of “inseparable” subsets
(insep_fraction_calculate) is to determine when to stop the bit
selection on the current layer, which is fundamental to achieve a

good trade-off between classification speed and memory size.
To figure out whether a subset is “inseparable”, an obvious cri-
terion is that buckets with no more than 1 rule are naturally “in-
separable”. On the other hand, adding one additional bit to fur-
ther divide small subsets is not efficient since it doubles the
bucket number on the current layer but provides limited savings
in the number of memory accesses. Currently we judge a subset
as “inseparable” if its size is no more than 2.

4. Evaluation
We evaluate BitCuts on order-independent groups generated by
the algorithm proposed in [1] and compare the performance with
two other decision-tree algorithms, HyperCuts [3] and Hyper-
Split [4]. Table 1 shows the memory access count and the size of
the resulting data structure. It’s shown that BitCuts greatly re-
duce the number of memory accesses. In the worst case, the
BitCuts memory access count is ~42% that of HyperSplit and
~30% that of HyperCuts. On average, the BitCuts memory ac-
cess count is only ~35% that of HyperSplit and ~40% that of
HyperCuts. When comparing memory size, BitCuts is 2.3x that
of HyperSplit and 1.6x that of HyperCuts, on average. For the
evaluated 10k rules, the memory size is still reasonable and the
data structures could easily fit into the cache. For rulesets that
require fewer bits (e.g. order-independent groups 0 and 1 of
fw10k), BitCuts achieves the lowest memory size because it
requires much fewer intermediate nodes.

5. Conclusion and Future Work
To accelerate software-based classification for order-
independent rules, this work proposes BitCuts, a bit-level deci-
sion-tree algorithm for fast packet classification. BitCuts is
proved promising to achieve much fewer memory accesses
compared to existing algorithms while maintaining a reasonable
memory footprint. Our future work includes efforts to improve
the efficiency of the bit selection algorithm, and further evalua-
tions on real traffic.

6. References
[1] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P.

Eugster. SAX-PAC (Scalable And eXpressive PAcket Classifica-
tion). In ACM SIGCOMM 2014.

[2] B. Yang, J. Fong, W. Jiang, Y. Xue and J. Li. Practical Multituple
Packet Classification Using Dynamic Discrete Bit Selection. In
IEEE TRANSACTIONS ON COMPUT-ERS, VOL. 63, NO. 2.

[3] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet Classifi-
cation using Multidimensional Cutting. In ACM SIGCOMM 2003.

[4] Y. Qi, L. Xu, B. Yang, Y. Xue and J. Li. Packet Classification
Algorithms: From Theory to Practice. In IEEE INFOCOM, 2009.

Algorithm 1 – BitCuts_Tree_Build
1 function!BitCuts_Tree_Build(ruleset)!
2 bitmask!=!all_zeros()!
3 do:!
4 bit!=!bit_select(ruleset,!bitmask)!
5 bitmask!=!bitmask.add(bit)!
6 subsets!=!partition(ruleset,!bitmask)!
7 While(insep_fraction_calculate(subsets)!>!threshold)!
8 !!L!=!bitmask.number_selected_bits!
9 !!bucket_array!=!initialize(pow(2,!L))!

10 for.each.i.in.subsets.indexes:!
11 if!inseparable(subsets[i]):!
12 bucket_array[i].is_leaf!=!True!
13 bucket_array[i].ptr!=!get_ptr(subsets[i])!
14 else:.
15 p_next_layer_bucket_array,!bitmask!=!!

 BitCuts_tree_build(subsets[i])!
16 bucket_array[i].is_leaf!=!False!
17 bucket_array[i].bitmask!=!bitmask.
18 bucket_array[i].ptr!=!p_next_layer_bucket_array!
19 return!addr(bucket_array),!bitmask!

Ruleset Coverage # of
bits

BitCuts HyperCuts HyperSplit
Max Avg Size

(KB)
Max Avg Size

(KB)
Max Avg Size

(KB)
acl5k_0 72.45% 70 6 4.2 102 19 9.1 51 16 12.1 65

acl5k_1 18.08% 49 7 3.9 155 35 10.4 20 13 10.2 16

acl10k_0 78.69% 55 7 4.0 278 19 11.0 199 16 13.2 149

acl10k_1 10.49% 30 6 3.9 16 17 9.6 10 12 10.2 19

fw5k_0 68.30% 53 6 4.1 41 18 10.4 88 15 11.9 62

fw5k_1 24.54% 23 5 4.2 16 17 10.4 42 12 10.4 22

fw10k_0 74.61% 12 4 3.7 43 18 11.3 252 14 13.0 135

fw10k_1 24.27% 11 5 4.1 33 17 11.3 97 13 11.3 44

ipc5k_0 52.74% 79 7 4.1 191 19 9.7 184 16 11.7 48

ipc5k_1 24.21% 62 6 4.1 58 21 9.7 29 13 10.6 23

ipc10k_0 53.46% 86 7 3.8 300 21 10.4 307 16 12.7 99

ipc10k_1 26.24% 66 6 4.2 103 24 10.3 71 15 11.7 51

Table 1. Memory access count (worst-case and average-case) and memory size
comparison on order-independent groups of ClassBench rulesets

Figure 2. Data structure and packet classification procedure of BitCuts

