
TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 13/19 pp585-593
Volume 12, Number 5, October 2007

Memory Efficient String Matching Algorithm for
Network Intrusion Management System*

YU Jianming (余建明)1,2, XUE Yibo (薛一波)2,3, LI Jun (李 军)2,3,**

1. Department of Automation, Tsinghua University, Beijing 100084, China;
2. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;

3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University,
Beijing 100084, China

Abstract: As the core algorithm and the most time consuming part of almost every modern network intrusion

management system (NIMS), string matching is essential for the inspection of network flows at the line

speed. This paper presents a memory and time efficient string matching algorithm specifically designed for

NIMS on commodity processors. Modifications of the Aho-Corasick (AC) algorithm based on the distribution

characteristics of NIMS patterns drastically reduce the memory usage without sacrificing speed in software

implementations. In tests on the Snort pattern set and traces that represent typical NIMS workloads, the

Snort performance was enhanced 1.48%-20% compared to other well-known alternatives with an automa-

ton size reduction of 4.86-6.11 compared to the standard AC implementation. The results show that special

characteristics of the NIMS can be used into a very effective method to optimize the algorithm design.

Key words: string matching; network intrusion management system (NIMS); Aho-Corasick (AC) algorithm

Introduction

Network intrusion management systems (NIMSs) are
fundamental security applications that are growing in
popularity in various network environments. The heart
of almost every modern NIMS has a string matching
algorithm. The NIMS uses string matching to compare
the payload of the network packet and/or flow against
the pattern entries of intrusion detection rules[1,2].

String matching requires significant memory and
time costs. For example, the string matching routines
in Snort account for up to 70% of the total execution
time and 80% of the instructions executed on real
traces[3]. The size of the string matching data structure

is more than 150 MB when using the Aho-Corasick
(AC) algorithm[4] and the Snort rule set distributed on
July 27, 2005. Moreover, as the number of potential
threats and their associated patterns continues to grow,
the memory and time costs of string matching are
likely to increase as well.

These challenges motivate research on the design of
string matching algorithms specific to NIMS applica-
tions[5-12]. However, most previous algorithms have not
utilized the specific characteristics of NIMS patterns to
improve the string matching performance. The E2xB[8]
algorithm utilized the characteristics of NIMS input
based on the observation that the input size is relatively
small (on the order of packet size) and the expected
matching probability is also small (which is common
in network intrusion detection system (NIDS)
environments).

Hardware applications have also been proposed in-
cluding field programmable gate array (FPGA) and
application specific integrated circuits (ASIC)[13-20].

﹡

﹡﹡

Received: 2005-12-23; revised: 2006-06-30
Supported by the Juniper Research Grant and Intel IXA Univer-
sity Program
To whom correspondence should be addressed.
E-mail: junl@tsinghua.edu.cn; Tel: 86-10-62796400

Tsinghua Science and Technology, October 2007, 12(5): 585-593 586

The hardware methods can certainly achieve higher
string matching performance, but the rule set cannot be
easily updated, especially with the ASIC method.
Software algorithms are less expensive and more flexi-
ble. With special-purpose, programmable chips tailored
to network devices such as network processors (NPs),
software algorithms can also achieve high performance
and can combine the low cost and flexibility of com-
modity processors with the speed and scalability of
custom silicon (ASIC chips).

In this work the characteristics of NIMS patterns
are used to design a faster string matching algorithm
that takes less memory. An improved AC algorithm,
the character indexed AC (CIAC), was developed to
dramatically reduce the memory requirement.

1 Snort and String Matching
1.1 Snort

Snort is the most popular open source network intru-
sion detection system and its detection model is used
for reference by many commercial products.

Snort captures packets from a network interface
which are preprocessed before sending to the detection
engine. The preprocessing includes layer three IP
fragment reassembly, layer four transmission control
protocol (TCP) session reconstruction, and so forth.
The detection engine checks packet payloads against
the intrusion detection rules. If one or more rules
match, an attack is detected and the corresponding re-
sponse functions are launched.

The detection rules form a rule set with all the pat-
tern entries of the rules forming a pattern set. For
newer versions above Snort version 2.0, the detection
rules are divided into many groups, referred to as sub-
rule sets in this paper. The pattern entries of each sub-
rule set form a sub-pattern set. For example, the TCP
and user datagram protocol (UDP) rules are divided
into sub-rule sets by the source and destination port
numbers. When a TCP or UDP packet arrives, its des-
tination and source port number are used to find the
appropriate sub-rule sets to be checked. Then a string
matching algorithm, such as AC, is used to compare
the packet payload with the corresponding sub-pattern
sets. If there are matching patterns, the rules that con-
tain the matching patterns are checked to confirm
whether an attack is occurring.

1.2 String matching algorithm

String matching consists of finding one, or more gen-
erally, of all the occurrences of a search string in an in-
put string. In NIMS applications, the pattern is the
search string, while the payload is the input string. If
more than one search string simultaneously matches
against the input string, this is called multiple pattern
matching. Otherwise, it is called single pattern matching.
1.2.1 Boyer-Moore (BM) algorithm
The BM algorithm[21] is the most well-known single
pattern matching algorithm. The BM algorithm utilizes
two heuristics, bad character and good suffix, to reduce
the number of comparisons. Both heuristics are trig-
gered on a mismatch. The BM algorithm takes the far
most shift caused by the two heuristics.

Horspool proposed a variation of the BM algorithm,
the BM-Horspool (BMH) algorithm[22], which utilizes
only an improved bad character heuristic. BMH is
simpler to implement than BM, which preserves the
average performance of BM.
1.2.2 Maximum weighted matching (MWM) algo-

rithm
The MWM algorithm[23] uses the bad character heuris-
tic like the BM algorithm but with a two-byte shift ta-
ble. The MWM algorithm also performs a hash on the
two-byte prefix of the current substring of the input
string to index into a group of search strings. The
MWM algorithm can efficiently deal with large
amounts of search strings. However, its performance
depends on the length of the shortest search string and
the characteristic of the input string.
1.2.3 AC_BM and SBMH algorithms
The set-wise Boyer-Moore-Horspool (SBMH) algo-
rithm[5] is regarded as the first NIDS-specific string
matching algorithm. This algorithm adopts heuristics
like BM to simultaneously search for multiple search
strings. Coit et al.[6] independently proposed a similar
algorithm called AC_BM.
1.2.4. E2xB algorithm
The E2xB algorithm[8] is an exclusion-based algorithm
specific to NIDS applications. This algorithm is based
on the observation that if there is at least one character
of the search string that is not contained in the input
string, then the search string is not a substring of the
input string. E2xB first checks the input string for miss-
ing fixed size substrings of the search string. If all the
substrings of the search string can be found, a standard

YU Jianming (余建明) et al：Memory Efficient String Matching Algorithm for … 587

string matching algorithm, such as BM, is launched to
determine whether actual matching occurs.
1.2.5 Fast string-matching (FNP) algorithm
The FNP algorithm[10] is a multiple pattern matching
algorithm implemented over the network processor.
This algorithm utilizes the NP hardware-accelerated
hashing engine to identify matching patterns via a link
list in the event of hash collision to save the processor
power.

2 AC and Its Variations

The AC algorithm is one of the most popular multiple
pattern matching algorithms. This algorithm accepts
all search strings simultaneously to make up of a fi-
nite state automaton (FSA) so that every prefix is rep-
resented by only one state, even if the prefix belongs
to multiple search strings. The AC algorithm deals
with the input string characters one by one and has
proven linear performance to the length of the input
string, regardless of the number and length of the
search strings.

Considering that an attacker could intentionally pro-
vide input that will knowingly cause the worst case
performance of an algorithm, the automaton-based al-
gorithms such as AC are preferred robust algorithms
for NIMS. The CIAC algorithm presented in this paper
is such an algorithm.

2.1 Implementation of AC

The AC automaton could be a non-deterministic finite
automaton (NFA) or a deterministic finite automaton
(DFA) which is converted from the NFA. The imple-
mentation of AC can be divided into preprocessing and
searching stages. The AC preprocessing stage con-
structs the NFA or DFA. The NFA behavior is dictated
by the goto function, failure function, and output func-
tion. Suppose that the pattern set is P = {hers, she, his,
he} and the alphabet is Σ . The NFA for pattern set P
is shown in Fig. 1. The symbol “^{h, s}” means all the
characters of Σ except “h” and “s”.

The NFA goto function g() works as: next_state =
g(current_state, input_character). For example, from
Fig. 1a, g(1, “e”)=2. The input string is processed
character by character with a next_state value calcu-
lated for each character.

When there is no valid next_state value for a cur-
rent_state and input_character pair, the output of g is

Fig. 1 NFA of pattern set P

marked as FAIL, for example, g(1, “s”) = FAIL. With
g(current_state, input_character)=FAIL, the failure
function f(current_state) is used recursively to calcu-
late the new current_state until there is a valid
next_state for g(f(current_state), input_character). For
example, because g(4, “s”) = FAIL, the NFA state tran-
sition procedure is: g(4, “s”)=FAIL => g(f(4), “s”)=
g(7, “s”)=FAIL => g(f(7), “s”)=g (0, “s”)=7. The out-
put function output(current_state) determines if there
are matching patterns at the current state. For example,
output(2) = “he”.

The goto and failure functions can be merged by us-
ing the failure function to pre-compute the next state
for every character from every state in NFA. The out-
put function and the optimized goto function construct
a DFA.

The NFA and DFA data structures for each state, re-
ferred to as nodes in this paper are shown in Fig. 2
where σ is the alphabet size. The next_state [σ] matrix
contains σ entries indicating the values of the goto
function for all possible input characters.

struct NFA_Node
{
 struct ac_state * next_state[σ];

struct ac_state * fail;
struct detection_pattern * matchlist;

}
struct DFA_Node
{
 struct ac_state * next_state[σ];

struct detection_pattern * matchlist;
}

Fig. 2 DFA and NFA state data structure

Tsinghua Science and Technology, October 2007, 12(5): 585-593 588

Because DFA requires only one memory reference
for each input character to calculate next_state, it can
owe better performance. The implementation of the AC
algorithm in Snort uses DFA. The AC implementation
for the pattern set P = {hers, she, his, he} is shown in
Fig. 3. Each DFA state node contains 256 next_state
values: NS ,0 255λ λ≤ ≤ . For example, if the current
state is 0 and the current input character is “h”, then

104NS of state 0 is “1” where 104 is the ASCII value
for the character “h”. The index table contains 10
pointers to the 10 state nodes.

The standard AC DFA search procedure is shown in
Fig. 4.

2.2 Variations of AC

The AC automaton requires a huge amount of memory.
Many papers have been published analyzing the space
complexity of automatons. Norton[7] proposed a
“banded-row format” to store data efficiently in Snort.
The “state 0” node in Fig. 3 will be used as an example,
as shown in Fig. 5a. The “banded-row format node” is
converted as shown in Fig. 5b which stores elements
from the first non-zero value to the last non-zero value,
“100 000 000 007”. The first entry “12” is the number
of next_state values stored. The second entry “104” is
the position of the first non-zero next_state in the origi-
nal standard DFA node, i.e., the ASCII value of charac-
ter “h”.

Fig. 3 DFA implementation in Snort

current_state = 0; // Searching starts from state 0
i = 0;
while (i<m) //m is the length of input text
{
 //Get the node address according the value of current_state
 Step 1: State_Table = Index Table [current_state];
 //Determinate the next_state according to input character T[i];

 //T represents the input text
 Step 2: next_state = State_Table [T[i]];
 Step 3: current_state = next_state;
}

Fig. 4 Standard AC DFA search procedure

Fig. 5 DFA node data structure of banded-row format

YU Jianming (余建明) et al：Memory Efficient String Matching Algorithm for … 589

Although the memory usage can be reduced, the
banded-row format automaton node cannot be ran-
domly accessed. This incurs additional computational
costs.

3 CIAC Algorithm

Because the DFA search speed is higher than that of
NFA, only the DFA is used in this work. But the opti-
mization method can also be applied to NFA.

3.1 Central idea

In the CIAC algorithm, the alphabet of all possible
characters is Σ and the characters which appear in the
patterns form Σ ′ ; therefore Σ Σ Σ .′′ ′= − In most
cases, Σ ′ is a small subset of Σ . Defining the num-
ber of characters in Σ as σ , then for single-byte
coding schemes for western scripts 82 256σ = = . The
number of characters in Σ ′ is θ , then θ σ< .

The number of characters appeared in each Snort
sub-pattern set is counted with the results shown in Ta-
ble 1, where NC represents the number of characters in
a sub-pattern set and NR represents the number of sub-
sets which have NC different characters. Again, the
Snort rule set used is that distributed on July 27, 2005.

Table 1 Number distribution of characters in Snort
sub-pattern sets

NC 9 11 12 16 22 30 47 60 79
NR 1 1 8 1 4 1 1 1 17

NC 80 81 82 83 84 85 90 92 107
NR 8 4 6 3 2 3 1 1 77

NC 108 109 110 111 112 113 114 115 116
NR 22 8 7 1 1 2 1 2 1

NC 120 121 126 133 134 136 144 152 total
NR 2 2 1 1 1 1 1 1 195

The statistical data show that the largest number of
characters in a sub-set is 152, so in every Snort sub-
pattern set θ σ< , where σ in this case is 256. Actu-
ally, Table 1 shows that most of the sub-sets have less
than half the number of possible characters.

When using DFA, all the next state entries corre-
sponding to the characters belong to Σ ′′ are 0 in all
state nodes. While using NFA, all the next state entries
corresponding to the characters belong to Σ ′′ are
FAIL in all state nodes. The data structure of each state

node can be regarded as a one-dimensional matrix. All
the state nodes together can be regarded as a virtual
two-dimensional matrix as shown in Fig. 3. The col-
umns corresponding to the characters belonging to
Σ ′′ all have the same value, so these columns can be
merged into one.

Suppose that there are n state nodes with θ charac-
ters, the memory required for the standard DFA is
O(256n). If all the (256−θ) columns corresponding to
the characters belonging to Σ ′′ all combined into one
column, the required memory decreases to O((1)nθ +).
As shown by the data in Table 1, in real systems

256θ << , so the space complexity can be dramatically
reduced.

3.2 Preprocessing

The preprocessing stage of CIAC based on DFA is as
follows.

Step 1 Construct a standard AC DFA as shown in
Fig. 3.

Step 2 Scan the standard DFA to find the columns
which equal a zero matrix.

Step 3 Transpose the matrix to the standard AC
DFA which translates the state node in Fig. 3 into the
character node in Fig. 6. Each character node contains
n next state entries corresponding to all the states.

Step 4 The columns equal to zero are converted to
rows. Refer to the results in Step 2 to merge these zero
rows into one row.

Step 5 A character indexed table with 256 pointers
to all the character nodes is used as shown in Fig. 6.

Fig. 6 CIAC automaton implementation

Tsinghua Science and Technology, October 2007, 12(5): 585-593 590

The merged row corresponding to all the characters be-
long to Σ ′′ is represented by the node “other”.

The output functions for the standard NFA, DFA,
and CIAC are all the same.

3.3 Searching

The CIAC search procedure is as follows.
Step 1 Read one input character which is used to

get the pointer to the corresponding CIAC DFA charac-
ter node by checking the character index table.

Step 2 Read the current state which is used to get
the transfer to the next state value by checking the
character node determined in Step 1.

Step 3 Set the next state value determined in Step
2 as the current state.

Step 4 Check the output function output (cur-
rent_state) to determine if a match is found.

Step 5 If there are more input characters, return to
Step 1.

The implementation of the CIAC search procedure
is shown in Fig. 7.

current_state = 0; //searching starts from state 0
i = 0;
while (i<m) // m is the length of input text
{
 //Get the pointer to the appropriate character node
 according input character T[i];

 //T represent the input text
 Step 1: ptr_node = Character Index Table [T[i]];

 //Determine the next_state according the value of
 current_state;
 Step 2: next_state = ptr_node [current_state];
 Step 3: current_state = next_state;
}

Fig. 7 CIAC search procedure

CIAC allows for fast random access to the DFA data
structure (Step 1 and Step 2 in Fig. 7), in the same way
as the standard AC implementation (Step 1 and Step 2
in Fig. 4). No additional search costs are incurred,
while the memory size is reduced dramatically.

4 Experimental Evaluation

4.1 Experimental environments

The CIAC algorithm was implemented and patched
into Snort to compare its performance with the other
best alternatives in Snort, AC-STD (standard AC im-
plementation), AC-FULL (standard AC optimized for

speed, as shown in Fig. 3), AC-BANDED (the banded-
row format AC), MWM, and E2xB. The E2xB source
code was taken from the author’s website[24]. For the
other algorithms, the algorithm implementations dis-
tributed with Snort 2.4.2 were used.

The MWM algorithm in Snort is not an exact im-
plementation, but utilizes a pattern matcher selection
heuristics. If the number of patterns in the sub set of
rules is less than 5, the BM algorithm is used. Other-
wise, when the minimum pattern length within the
rules sub set is 1, the MWM version without a BM bad
character or a bad word shift is used. For other situa-
tions, the version with the bad word or bad character
shift is used.

The experiments used a PC with an Intel® Pentium
4A processor running at 2.4 GHz, with an L1 cache of
8 KB and an L2 cache of 512 KB, and 512 MB of
main memory. The host operating system was Linux
(Kernel version 2.4.20-8smp, RedHat 9). The tests
used Snort version 2.4.2 compiled with gcc version
3.2.2. All the experiments used the default Snort
configuration.

4.2 Space performance

The space performances of CIAC and AC-STD were
compared using four different Snort rule sets: R040811
(Snort rule set distributed in Aug. 11, 2004), R050125,
R050916, and R060515. The results are shown in
Fig. 8. The horizontal axis represents different rule sets,
while the vertical axis represents the total memory us-
age. The experimental results show that CIAC automa-
ton size is 4.86-6.11 times smaller than that of the
standard AC, for the various Snort rule sets.

Fig. 8 Space performances of CIAC and AC-STD

The CIAC space efficiency compared to other best

YU Jianming (余建明) et al：Memory Efficient String Matching Algorithm for … 591

alternatives in Snort with the latest Snort rule set
R060515 is shown in Fig. 9. The results show that
CIAC is one of the most memory efficient algorithms
with memory usage only a little larger than MWM. As
mentioned earlier, CIAC has better time performance.

Fig. 9 Space performance of CIAC and other best
alternatives in Snort

4.3 Time performance

Two data package, red.cctf.tar.gz and orange.cctf.tar.gz,
from the latest DEFCON[25] “capture the flag” data-set
(DEFCON10) were used to evaluate the time perform-
ance. There are several full packet traces in each data
package. In this work, all the full packet traces in each
data package were merged into one file. The finally
testing data red.cap (containing all the traces in data
package red.cctf.tar.gz) and orange.cap were used in
the experiments. The red.cap was 42.35 MB, while the
orange.cap was 365.05 MB. For simplicity, the traces
are read from a local file using the appropriate Snort
option, which is passed to the underlying libpcap li-
brary. (Replaying traces from another host provided
similar results.)

The results are shown in Fig. 10. Figure 10a shows
the Snort performance improvements. The horizontal
axis represents the various algorithms, while the verti-
cal axis represents the ratio of [(the running time of
each algorithm / the running time of CIAC)−1]×100%.

The memory usage and processing times are shown
in Figs. 10b and 10c. The horizontal axis represents the
processing time in seconds, while the vertical axis
represents the memory usage in MB.

The results show that the CIAC method improves
the Snort performance by 1.48%-20%, comparing to
other popular algorithms currently used in Snort with

Fig. 10 Performance comparisons of CIAC and the
other best alternatives in Snort

only the MWM performance with the red.cap trace be-
ing 1.29% faster because the MWM performance is
more sensitive to the input trace. CIAC allows fast
random access to automaton node data, so it is faster
than AC_BANDED. The automaton size reduction also
improves the cache performance so that CIAC is faster
than AC_STD and AC_FULL. The traces have many
attack flows, so the performance of the exclusion-
based algorithm E2xB is not good.

Tsinghua Science and Technology, October 2007, 12(5): 585-593 592

5 Conclusions and Future Work

As link speeds increase and pattern sets become larger,
there is greater pressure to improve the performance of
NIMS pattern matching algorithms. Software algo-
rithms are less expensive and more flexible than hard-
ware methods. Efficient software algorithms combined
with chips tailored to construct network devices such
as network processors can also provide high perform-
ance pattern matching.

Previous string matching algorithms specific to
NIMS did not fully utilize the special characteristics of
NIMS patterns. None of these algorithms have studied
and leveraged the character distribution of NIMS
patterns.

This work describes a memory efficient string
matching algorithm for NIMS based on the observation
that the number of characters in a pattern set is less
than the total number of characters.

Compared to other well known algorithms, the
CIAC enables fast random accesses with no additional
costs incurred in the search time. Test results show that
the CIAC automaton size is 4.86-6.11 times smaller
than for other algorithms depending on the Snort rule
set. In the tests, the CIAC Snort performance was
1.48%-20% faster than the other methods based on full
packet traces taken from DEFCON10. CIAC is the best
algorithm considering the overall performance includ-
ing both the space and time efficiencies.

Future work will include further analysis of the
Snort rules to identify more intrinsic characteristics to
design better algorithms more suitable to NIMS appli-
cations. Another valuable research direction is the use
of these characteristics to design hybrid algorithms
which adapt to different sub-set patterns. The CIAC
algorithm will be optimized on an Intel network proc-
essor to construct a higher performance NIMS detec-
tion engine.

Acknowledgements

The authors thank the anonymous reviewers for providing use-
ful comments on this paper. We also thank our colleagues at the
Network Security Laboratory, Research Institute of Information
Technology, Tsinghua University, for their comments and
enlightening discussions.

References

[1] Roesch M. Snort: Lightweight intrusion detection for net-
works. In: Proceedings of the 13th System Administration
Conference and Exhibition (LISA’1999). Berkeley, CA,
USA: USENIX Assoc., 1999: 229-238.

[2] Norton M, Roelker D. The new Snort. Computer Security
Journal, 2003, 19(3): 37-47.

[3] Antonatos S, Anagnostakis K G, Markatos E P. Generating
realistic workloads for network intrusion detection systems.
Software Engineering Notes, 2004, 29(1): 207-215.

[4] Aho A, Corasick M. Fast pattern matching: An aid to bib-
liographic search. Communications of the ACM, 1975,
18(6): 333-340.

[5] Fisk M, Varghese G. An analysis of fast string matching
applied to content-based forwarding and intrusion detec-
tion. Technical Report CS2001-0670. San Diego: Univer-
sity of California, 2002.

[6] Coit C J, Staniford S, McAlerney J. Towards faster string
matching for intrusion detection or exceeding the speed of
Snort. In: Proceedings of the DARPA Information Surviv-
ability Conference and Exposition II (DISCEX’01). Los
Alamitos, CA, USA: IEEE Comput. Soc., 2001, 1: 367-
373.

[7] Norton M. Optimizing pattern matching for intrusion de-
tection. http://www.NIDSresearch.org, 2004.

[8] Anagnostakis K G, Markatos E P, Antonatos S, Poly-
chronakis M. E2xB: A domain-specific string matching al-
gorithm for intrusion detection. In: Proceedings of the 18th
IFIP International Information Security Conference
(SEC2003). Athens, Greece: Kluwer Acadamic Pubhishers,
2003: 217-228.

[9] Huang J, Tian J, Du R, Zhai J. Research of pattern match-
ing in intrusion detection. In: Proceedings of the 2003 In-
ternational Conference on Machine Learning and Cyber-
netics. Piscataway, NJ, USA: IEEE, 2003, 3: 1877-1882.

[10] Liu R T, Huang N F, Chen C H, Kao C N. A fast string-
matching algorithm for network processor-based intrusion
detection system. ACM Transactions on Embedded Com-
puting Systems, 2004, 3(3): 614-633.

[11] Jiang W B, Song H, Dai Y Q. Real-time intrusion detec-
tion for high speed networks. Computers and Security,
2005, 24(4): 287-294.

YU Jianming (余建明) et al：Memory Efficient String Matching Algorithm for … 593

[12] Yu J M, Li J. A parallel NIDS pattern matching engine and
its implementation on network processor. In: Proceedings
of the 2005 International Conference on Security and
Management. Las Vegas, USA: CSREA Press, 2005: 375-
381.

[13] Yusuf S, Luk W. Bitwise optimized CAM for network
intrusion detection systems. In: Proceedings of the 2005
International Conference on Field Programmable Logic
and Applications. Tampere, Finland: IEEE, 2005: 444-
449.

[14] Baker Z K, Prasanna V K. A computationally efficient en-
gine for flexible intrusion detection. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2005, 13(10):
1179-1189.

[15] Attig M, Lockwood J. A framework for rule processing in
reconfigurable network systems. In: Proceedings of the
13th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. Napa, CA, USA: IEEE,
2005: 225-234.

[16] Janardhan S, Bu L, Chandy J A. A signature match proces-
sor architecture for network intrusion detection. In: Pro-
ceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machine. Napa, CA,
USA: IEEE, 2005: 235-242.

[17] Nilsen G, Torresen J, Sorasen O. A variable word-width
content addressable memory for fast string matching. In:
Proceedings of the 22nd Norchip Conference. Osio,
Norway: IEEE, 2004: 214-217.

[18] Dharmapurikar S, Krishnamurthy P, Sproull T, Lockwood
J. Deep packet inspection using parallel Bloom filters. In:
Proceedings of the 11th Symposium on High Performance
Interconnects. Stanford, CA, USA: IEEE, 2003: 44-51.

[19] Baker Z K, Prasanna V K. Time and area efficient pattern
matching on FPGAs. In: Proceedings of the 12th ACM In-
ternational Symposium on Field-Programmable Gate Ar-
rays. Monterey, CA, USA: ACM, 2004: 223-232.

[20] Tuck N, Sherwood T, Calder B, Varghese G. Determinis-
tic memory-efficient string matching algorithms for intru-
sion detection. In: Proceedings of IEEE INFOCOM 2004.
Piscataway, NJ, USA: IEEE, 2004, 4: 2628-2639.

[21] Boyer R, Moore J. A fast string searching algorithm.
Communications of the ACM, 1977, 20(10): 762-772.

[22] Horspool R N. Practical fast searching in strings. Software
Practice and Experience, 1980, 10(6): 501-506.

[23] Wu S, Manber U. A fast algorithm for multi-pattern
searching. Technical Report TR-94-17, University of
Arizona, 1994.

[24] E2xB algorithm patch for Snort version 2.4.2.
http://dcs.ics.forth.gr/Activities/Projects/snort.html, 2005.

[25] Cowan C, Arnold S, Beattie S, Wright C, Viega J. DEF-
CON capture the flag: Defending vulnerable code form in-
tense attack. In: Proceedings of the DARPA DISCEX III
Conference. Washington D C, USA, 2003.

