
Multi-Core HTB for Bandwidth Sharing

Chengjun Jia† Zhe Fu† Xiaohe Hu† Shui Cao∗ Liang Wang∗ Jun Li† ♢
† Tsinghua University ∗ Huawei Technologies

♢ Beijing National Research Center for Information Science and Technology
ABSTRACT
Rate limiting with bandwidth-sharing is important and widely
used in various scenarios such as multi-tenant cloud. We pro-
pose a new rate limiting architecture which fully utilizes the
parallel computing capabilities on the multi-core platforms.
With Bandwidth Allocator allocating the bandwidth to Rate
Limiters, we expand HTB into mHTB, which could provide
scalable and flexible rate limiting on multi-core platforms.
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1 INTRODUCTION
In cloud networks, it is important to control the rate of differ-
ent classes of network flows and make full use of bandwidth
resources for the providers in the meanwhile. It is similar
with the tradeoff between QoS (Quality of Service) and link-
sharing in traditional networks. Hierarchical link sharing al-
gorithms, such as CBQ[5], H-PFQ[4] and HFS[10], can help.
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However, 10Gbps/40Gbps NICs are common in datacen-
ters at present and 100Gbps NICs will be large-scale deployed
in the future. Single 2-3GHz CPU core is not competent for
the high bandwidth[3], and thus network processing with
multi-core platforms becomes prevailing. With the usage of
lock-free FIFOs, HTB (Hierarchical Token Buckets) [1], a
certain H-PFQ algorithm, turns into a 2-stage pipeline on the
multi-core platform, with throughput improving from 0.5Gbps
to 2Gbps[6].

Apart from the pipeline design, RTC (Run To Completion)
can take full advantage of the performance of multi-core plat-
forms meanwhile. We can use multiple rate limiters for per-
formance improvement, while constraints exist between rate
limiters for the shared bandwidth. In the other word, there
is a resource sharing problem among multiple rate limiters.
The typical methods to allocate the resource are:

(1) Uniform Allocation. A central unified scheduler al-
locates the resources to each node. For example, the
shared bandwidth of parent node is assigned to the chi-
dren node by WFQ with priority in HTB.

(2) Distributed Competition. With the design of nodes’
competition strategy, the expected allocation scheme
can be achieved. For example, TCP traffic control, band-
width allocation in cloud [7] [8] and the qos_sched of
DPDK[2] are designed in this way.

Although distributed competition is easy to expand, it is
inflexbile to implement customized traffic control strategies
and to ensure the effectiveness of bandwidth allocation. In
this paper, we extend the rate limiting method to multi-core
platform with uniform allocation (scalability due to lock-free
design) and realize mHTB (multi-core HTB) by decompos-
ing HTB tree structure in the allocator (flexibility due to hi-
erarchical sharing). We elaborate our design in next section.

2 DESIGN
As shown in Figure 1, our design has two kinds of modules:

(1) Rate Limiter: Reorganizing the sequence the received
packets and limiting the traffic rate.

(2) Bandwidth Allocator: Collecting the information from
the Rate limiters and delivering the configuration.

To achieve the basic features of HTB, mHTB works as
following:
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Figure 1: The architecture of multi-core rate limiting

(1) Rate Limiter handles traffic with DRR[9].
(2) Rate Limiter maintains a sensor to get the actual net-

work traffic rate with EWMA.
(3) Bandwidth Allocator issues commands to some Rate

Limiters based on the information of the past, of the
allocation scheme and of Rate limiters.

We assume four parameters for each node in the HTB tree
for the calculation of bandwidth allocation:

(1) D (Demand rate): Actual network traffic rate.
(2) S (Supply rate): The allocation of bandwidth.
(3) AR (Assured Rate): The guaranteed bandwidth.
(4) CR (Ceil Rate): The upper bandwidth limit.

Figure 2: The HTB tree example

With the HTB tree in Figure 2 as an example, define A =
{21, 22, 23, 24},B = {1, 3, 4, 5, 6}. The principle of HTB could
be expressed by linear programming of LP1. In LP1, Di , ARi
and CRi (∀i ∈ A ∪ B) are known and Si can be solved easily.

max
∑

i ∈A∪B
Si (LP1)

s.t. min{Di ,ARi } ≤ Si ≤ CRi , ∀i ∈ B (1)

min{
∑
i ∈A

Di ,AR2} ≤
∑
i ∈A

Si ≤ CR2 (2)

min{
∑

i ∈A∪B
Di ,AR0} ≤

∑
i ∈A∪B

Si ≤ CR0 (3)

method 1 core 2 cores 3 cores
HTB 4.2Mpps 7.0Mpps 6.5Mpps

qos_sched - 7.4Mpps 7.4Mpps
mHTB 7.4Mpps 14.4Mpps 14.4Mpps
Table 1: The throughput of different methods

method 1 Level 2 Levels 3 Levels
HTB with 1 core 7.5Mpps 5.5Mpps 4.2Mpps
HTB with 2 cores 14.4Mpps 7.4Mpps 5.9Mpps

mHTB with 2 cores 14.4Mpps 14.4Mpps 14.4Mpps
Table 2: The throughput for different HTB levels

3 EVALUATION
We use two machines with CPU: Xeon E3-1241 v3 @ 3.50GHz
and NIC: Intel Corporation Ethernet Controller X710 for 10GbE
SFP+. One machine generated 64B packets of different desti-
nation IPs with Pktgen 3.4.2 while the other ran the rate limit
program in DPDK stable 16.11.3.

To compare the performance, we use the qos_sched demo
in DPDK and implement a naive HTB with spinlock. We test
the throughput with different core numbers in Table-1 and
with different HTB trees in Table-2. From the table, we can
conclude that mHTB can achieve higher throughput.

For a three-level HTB tree with 1024 leaf nodes and 32
inner nodes, the complete calculation for LP1 needs 100K
CPU cycles or 0.05ms for a 2GHz CPU, damaging the dy-
namic response of mHTB. If the traffic rate jumps in a large
scale, packet loss may occur.

4 CONCLUSION AND FUTURE WORK
In this paper, we propose a novel traffic control architecture
which implements high performance sharing-enabled rate lim-
iting on multi-core platforms. Preliminary experiments demon-
strate that our method is capable in 10Gbps network environ-
ment and achieves more than 200% improvement compared
to existing methods. Our future work includes: (1) evaluation
on dynamic response time, (2) removing the sensor in Rate
Limiter by concluding D from the average queue length, the
number of drop packets or the idle time. (3) simplifing the
calculation process of LP1.
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