
A Fast Multi-pattern Matching Algorithm for Deep Packet Inspection on a
Network Processor

Jia Ni1, Chuang Lin1, Zhen Chen1,2 and Peter Ungsunan1

Department of Computer Science1, Research Institute of Information Technology2,
 Tsinghua University, Beijing

{jni, clin, zhenchen, hongsunan}@csnet1.cs.tsinghua.edu.cn

Abstract

Deep Packet Inspection (DPI) is a critical function
in network security applications such as Firewalls and
Intrusion Detection Systems (IDS). Signature based
scanners used in DPI apply multi-pattern matching
algorithms to check whether the packet payload or
flow content contains a specified signature in a
signature set. Existing multi-pattern matching
algorithms sacrifice memory space to achieve better
performance. In this paper a novel fast multi-pattern
matching algorithm, the Hash Boyer-Moore (HBM)
Algorithm, is presented, which reduces the memory
footprint of the heuristic table using a hash function
and adds another heuristic table to reduce the false-
positive ratio. Analyses and simulations show HBM
offers higher speed and lower memory cost than some
existing algorithms. The HBM algorithm was
implemented on the Intel IXP 2400 Network Processor
(NP) platform and experiments show suitable
performance results in a Gigabit Ethernet LAN
environment.

1. Introduction

With the increasing type and number of malicious
attacks in the Internet[1-3], network security appliances
such as Firewalls and IDS systems[4,5] need an effective
tool to detect such attacks. Deep Packet Inspection
(DPI) is a promising method of detecting these attacks
and is already widely used. DPI usually consists of
several functions, such as regular expression
matching[6] and signature based scanning. Signature
based scanning has many practical uses[8-10], the main
principles of which are to check packet payloads,
maintain flow states and scan flow streams to find
specified signatures. This takes much more time than
application protocol analysis[11] and usually becomes
the bottleneck of the system. Thus, the design of high

performance signature based scanners is very
important in high-speed network security applications.

The essence of a signature based scanner is a multi-
pattern matching algorithm. Based on a certain set of
string patterns, such as worm code signatures[7], the
scanner checks each byte of the packet payload to find
out whether it contains one of these patterns (In this
paper, the terms “signature” and “pattern” are used
interchangeably).

The remainder of this paper is organized as follows.
Section 2 reviews related works. Section 3 describes
the HBM algorithm. Section 4 gives some theoretical
analyses and simulation results compared to some
existing algorithms. Section 5 presents the test
environment and experimental results on the Intel IXP
2400 Network Processor (NP) platform. Section 6
summarizes the paper and presents conclusions.

2. Related Works

Developing an efficient multi-pattern matching
algorithm is still a difficult issue in research. There are
three kinds of algorithms usually used to tackle this
problem: (1) the Bloom Filter algorithm and its
extensions; (2) the Aho-Corasick (AC) algorithm and
its extensions; and (3) the Boyer-Moore Algorithm
(BM) and its extensions.

B. Bloom proposed the Bloom Filter algorithm [8,18-

20,24], which is widely implemented in hardware, like
FPGA which contains multiple hash function blocks
and paralleled memory accesses. Aho and Corasick
proposed the AC algorithm[12], which has proven linear
performance, making it suitable for searching a large
set of signatures. The AC algorithm and its extensions
deal well with regular expression matching, but they
are not optimal for fixed pattern matching like worm
scanning for its large number of states and frequent I/O
operation compared to BM and its extensions.

Boyer and Moore proposed the classical single-
pattern matching BM algorithm[13]. However, it cannot

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 7, 2008 at 6:37 from IEEE Xplore. Restrictions apply.

be transplanted to multi-pattern matching trivially, in
which cases, some extensions of the BM algorithm are
proposed, such as the WM algorithm[21], the Setwise
BMH algorithm[22], or the AC-BM algorithm[23].These
popular extensions change some features of the
traditional algorithm to adapt to the multi-pattern case,
which is mainly done on two points: (1) Several
characters are combined into a block as one
comparison unit; (2) the false-positive case is allowed
and exact matching is needed.

The WM algorithm combines several characters
into one block and only checks the rightmost block of
each substring in the input stream from a heuristic skip
table (so-called Table Delta 1). In this way, the
heuristic skip table would be large. Setwise BMH and
AC-BM use the trie and tree structure to form Table
Delta 1 in order to decrease the memory cost, but
additional I/O operations are needed. Meanwhile, the
three algorithms above only use the Delta 1 table but
omit the second skip table in BM (so-called Table
Delta 2). The RSI[17] algorithm analyzes the
relationship between the rightmost two blocks and
reduces the false-positive ratio, but it uses more
memory and still does not compare information from
all the blocks.

We propose the HBM algorithm, an extension of
the BM algorithm, with the following main
contributions: (1) Table Delta 1 is organized in a hash
mode allowing collision to reduce the memory
footprint; (2) Table Delta 2 is constructed to reduce
false-positives; (3) Skipping is allowed at any position
to improve the algorithm’s efficiency.

3. HBM Algorithm Description

The HBM algorithm consists of two parts. One is
the off-line initialization which constructs Table Delta
1 and Delta 2 depending on the signature set. The other
is the run-time procedure to check whether the input
string stream contains a certain signature.

3.1. Symbol and Assumption

Let S indicate the signature set, n indicate the set
size, L indicate the length of each signature (assume
that all the signatures have the same length), and b
indicate the block size. Thus, 0 1 1{ , , , }nS S S S −= ,
where k-th signature is ,0 ,1 , 1...k k k k LS s s s −= .Let

0 1 2 1(...)by h a a a a −= indicate the hash function, which
is a mapping from a block of b characters to a value
ranged in [0, 1]m − . Let m indicate the size of Table
Delta 1, where 1()D i is i-th item. The size of Table

Delta 2 is fixed to 1L b− + , where 2 ()D t is the t-th
item. The input string is represented as str(0),
str(1),…,where str(i) is i-th character. All the
subscripts start at 0 in this paper.

A “comparison” is defined as the fetching of a
character block from an input string and checking its
value in Table Delta 1. If the value satisfies some
condition, the comparison “succeeds”, otherwise it
“fails”.

A “check” is defined as the fetching of a substring
with the same signature length from the input string
and testing whether it is a certain signature. If each
comparison succeeds, then this check “succeeds”,
otherwise it “fails”.

3.2. Off-line Initialization

The off-line initialization can be divided into three
steps: (1) Construct Table Delta 1; (2) Construct Table
Delta 2; (3) Construct the hash table for storing
signatures (Table SHT). Before describing the
algorithm in detail, an example is given to illustrate the
principle of HBM.

Figure 1. An example of the HBM algorithm

Each block in a signature has a hash entry in Delta
1, which represents the position of the rightmost
appearance of the block. The position is counted from
the right end. In Figure 1, the block size is 2 and the
some entries in Delta 1 are shown. (For hash collisions
such as with blocks “fc” and “ax”, the same entry is
shared, which contains the smaller value.) We make
the following observations:

Observation 1: The Delta 1 value of the rightmost
block of a signature should be 0, the 2nd block should
less than or equal to 1, the 3rd should be less than or
equal to 2, and so on.

Therefore, the results of a comparison can be
determined by Observation 1. If the comparison
succeeds, the next block to the left is compared. If the
comparison fails, the pointer can skip some distance in
order to align the block with its rightmost appearance
in signatures. That is,

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 7, 2008 at 6:37 from IEEE Xplore. Restrictions apply.

Observation 2: When current check fails, the
comparison pointer can at least skip a distance of the
value indexed in Table Delta 1.

Meanwhile, the occurrence of a failure indicates the
success of former comparisons. In Figure 1, the failure
happens at block “fc”, so substring “cda” may “appear”
at the end of a signature. If that certain signature
contains a substring “$cda” at a left position (‘$’ is an
arbitrary char), but not “fcda”, the comparison pointer
can skip a distance in order to make it align with
“$cda”. Table Delta 2 stores such skipping distances.

Observation 3: When the current check fails, the
comparison pointer can at least skip a distance of the
value indexed in Table Delta 2.

If all the comparisons in the current check succeed,
it only means that the substring may be a signature
because the condition in Observation 1 is only a
necessary condition. Therefore,

Observation 4: When current check succeeds, an
exact match is needed to confirm that the substring is a
real signature to avoid false-positives.

Thus, the principle of the HBM algorithm is to
follow the four Observations mentioned above.

Figure 2. The construction of Table Delta 1 and 2

Figure 2 shows the algorithm of constructing Table
Delta 1 and Delta 2. As is shown in Observation 1 and
2, values in Delta 1 present not only the positions of
the rightmost appearance of the block but also the skip
distances.

The construction of Table Delta 1 differs from the
BM algorithm in that: (1) The comparison unit is a
block of characters instead of a single character; (2)
The entry in Table Delta 1 is determined by the hash
value of the block instead of the character itself; (3)
Table Delta 1 allows hash collision. Once it happens,
the smallest of the skip distances is stored there.

The construction of Table Delta 2 is also shown in
Figure 2. It is similar to the BM algorithm, but differs
in calculating the function y=rpr(). “rpr” means the

rightmost plausible reoccurrence of a substring, which
has the same meaning as in BM. Function (,)irpr S t
represents the rpr value at position t in signature iS .
First, we will define the “extension” of signatures and
provide the definition of “unify”.

Every signature pattern is preceded with the wild
character “$” in front of the first character, i.e.,

0 1 2 1... Lpat a a a a −= would be represented as

0 1 2 1...$$$$... Lpat a a a a −= , and the Delta 1 value of
each block including character “$” would be 0
(1 0D =).

Definition of “unify”: A substring in the signature
pattern 0 1 nsubstr c c c= is called unified, iff
condition (*) is satisfied.

1 1 2 1 1 1 2 1

1 0 1 1 0

() 0,...., ()
() 1 or $

i b i b n b

b

D c c c D c c c n b
D c c c n b c

− + − + − −

−

≤ ≤ −
> − + =

 (*)

Here the term “unify” is derived from the BM
algorithm with some changes. According to the
definition above, a unified substring has the same
characteristic as the tail substring in the signature. In
other words, the certain substring is unified with the
tail of the signature string. Function rpr() calculates the
position of the rightmost “unified” substring. In
signature iS , if 0 1 nsubstr c c c= is the rightmost
unified substring, the result of function (,)irpr S t is the
position of character 1c in iS . Therefore, the value in
Table Delta 2 is:

2 () min { 1 (,)}
iS S iD t L b rpr S t∀ ∈= − + − (**)

For the same reason as in the BM algorithm, the
Delta 2 value of the rightmost block position would
never be used, which can be defined as 1 manually in
the consideration of easy implementation. In other
words, the last value of Table Delta 2 is 1 and is
always equal to or less than the value of any entry in
Table Delta 1 and no influence is taken into the
algorithm.

3.3. Run-time Procedure

The run-time procedure of the HBM algorithm is
rather easy. For each substring, mismatches are judged
according to the condition 1()D i j< from right to left,

1 ()D i is the Delta 1 value of the block at position i

(that is 1 1() (((), (1),..., (1))D i D h str i str i str i b= + + −).
Once a mismatch is found, the pointer i skips a
distance according to the maximum value in Table
Delta 1 and Delta 2 until it reaches the end of the input
stream. If there is no mismatch for a substring, an extra
comparison is needed.

Initialize Table Delta 2:
1. Initialize Table Delta 1
2. t∀ , 2()D t Infinite_max=
3. for : 0i = to 1n −

for : 0t = to L b−
1 (,)id L b rpr S t← − + −

If 2()D t d>
then 2 ()D t d←
end if;

end loop t ;
end loop i ;

Initialize Table Delta 1:
1. 1, () 1x D x L b∀ = − +
2. for : 0i = to 1n −

for : 0j = to L b−

(1) ()(...)ij i j i j bx h s s s+ +=

if 1()D x L b j> − −
then

1()D x L b j← − −
end if;

end loop j ;
end loop i ;

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 7, 2008 at 6:37 from IEEE Xplore. Restrictions apply.

As is shown in Observation 4, an exact test is
needed when a check succeeds. In order to reduce I/O
operations, a hash table (called SHT) is used to store
the signature set in Figure 3 where linked lists are used
to solve the hash collision, so an exact test only needs
to read the signatures with the same hash key and
ignore the other ones.

Figure 3. Hash table for storing signatures (SHT)

4. Performance Analysis

In the HBM algorithm, the criterion of performance
is based on two parts. One is the average skip distance
which represents the instances of comparison; the other
is the false-positive ratio which represents the
additional time consumption for exact matches. Thus,
the time consumption for each character can be
represented as follows:

exact comp false positive
char comp char

comp

comp exact comp false positive

comp

t P
T t c

distance

t t P

distance

− −

− −

⋅
= ⋅ +

+ ⋅
=

 (Eq. 1.)
In Eq. 1, charT indicates the time cost for dealing

with each character, compt indicates the time for a

comparison, charc indicates the average number of
comparisons dealing with a character, exact compt −

indicates the time to test for false-positives. false positiveP −

indicates the false-positive possibility of one check,

compdistance indicates the average skip distance after a
comparison. compt and exact compt − are constants
determined by the data structure and memory I/O

speed, so the false-positive ratio false positiveP − and

average skip distance compdistance become the main
evaluation of performance.

4.1. Average Skip Distance

In this section, the theoretical analysis will be
explained first and a comparison of the HBM, WM and
RSI algorithms will also be provided by simulation.

In the HBM algorithm, the two Delta tables are used
to achieve higher efficiency, though it is much more
likely to use values in Table Delta 1 than Delta 2.
When a skipping happens, it has only less than a 1%
chance to use the value in Table Delta 2 but more than
a 99% chance to use Table Delta 1. Table Delta 2 is
mainly used to reduce the false-positive ratio.

Considering that Delta 1 is used in most cases, we
can simply approximate the average skip distance
value in Table Delta 1 as the one in the whole HBM
algorithm. If the hash function outputs results in a
uniform distribution, the possibility of a block hitting a
certain entry in Table Delta 1 is p=1/m. The average
skip distance can be calculated by Eq. 2.

1

Delta1
0 0

(1)

(1)

(1) (1)

L b n
in j

i j

L b n

distance p p i

p L b

− −
+

= =

− +

= − ⋅ ⋅

+ − − +
 (Eq. 2.)

 Let 1(1) (1)
n

n n ma p e
m

−
= − = − ≈ , when m is a large

number. Eq. 2 can be rewritten as Eq. 3
(2)2

Delta1 1
1

n n l bl b m m

n
m

a a e edistance
a

e

− − − +− +

−

− −≈ ≈
−

−
 (Eq. 3.)

The average skip distance after a check,

compdistance , can be approximately calculated (see
Figure 4(b)) as Eq. 4:

0

2 1
1

0

0 0

()
1 ()

1

(1) (1)
(1)

(1) (1)

k
i

comp
i

i
L b i i t

kk
tt

i t

skip P j i
distance P match

i

a a a
a

a i

=

− + − +
+

=

= =

⋅ =
≈ + ⋅

+

− ⋅ ⋅ −
= + −

− ⋅ +

∏
∏

(Eq. 4.)

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 7, 2008 at 6:37 from IEEE Xplore. Restrictions apply.

(a) Average skip distance in table Delta 1 (b) Average skip distance for each comparison
Figure 4. Average skip distance with m/n

(a)Distance with payload length (hit ratio=0) (b)Distance with hit ratio (payload length = 704)
Figure 5. Average skip distance of HBM, WM and RSI (Table Delta 1 size = 3840 entries)

It is clear that the average skipping distance is a
function of m/n with parameters L and b whose
relationship is shown in Figure 4(a), where the
acceleration of skip distance decreases with the
increase in size of Table Delta 1.

Figure 5 shows the simulation results which
compare the average skip distance of the HBM, WM
and RSI algorithms with 512 randomly signatures of
32 bytes fixed length. From Figure 5, the WM
algorithm has the best skip distance and HBM is a little
worse. But the false positive ratio of WM is not much
higher than HBM and RSI as shown in Figure 7. In
fact, an exact comparison takes hundreds of times
longer than an operation that visits Table Delta 1, so
WM may offer the worst performance in practical
implementation.

4.2. False-positive Ratio

Unlike the AC algorithm, all of the extensions of
the BM algorithm are subject to false-positives. The
possibility of a false-positive in HBM can be
calculated as Eq. 5.

1

1

1[1 (1)]
2

L b
jn

false positive L
j

nP
m

− +

−
=

= − − −∏ (Eq. 5.)

Table Delta 2 is used to reduce the false-positive
ratio as shown in Figure 6. In most cases, the algorithm
without Table Delta 2 will have a false-positive ratio
about 10% higher, which means about 10% more false-
positive testing.

The HBM algorithm has a lower false-positive ratio,
for it uses Observation 1 in the entire procedure while
other existing algorithms only use it once or several
times. Figure 7 presents the simulation results with the
HBM, WM and RSI algorithms. From Figure 7 we can
see that HBM has a much lower false-positive ratio
than WM and RSI, so it is possible to provide much
higher performance than the two existing algorithms.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 7, 2008 at 6:37 from IEEE Xplore. Restrictions apply.

(a)False-positive with payload length (hit ratio=0) (b)False-positive with hit ratio (payload length = 704)
Figure 6. False-positive ratio with and without Table Delta 2 (Table Delta 1 size = 3840 entries)

(a)False-positive with payload length (hit ratio=0) (b)False-positive with hit ratio (payload length = 704)
Figure 7. False-positive ratio of three algorithm (Table Delta 1 size = 3840 entries)

5. Experiment

In our work, Network Processors[14-16] are chosen
instead of General Purpose or ASIC Processors in
virtue of its programming flexibility and specific
architecture for processing network packets. Our
scanner is implemented on Intel IXP 2400 platform.

The optimization of HBM is mainly focused on two
points: (1) Design and assign function blocks in
parallel to make full use of the multiple Micro Engines

(MEs); (2) Store two heuristic tables and Table SHT in
different memory types to fit the hierarchical memory
structure. Compared to ALU operations, I/O operations
are more likely to cause system bottlenecks. The HBM
algorithm is very suitable for the hierarchical memory
structure. Table 1 is allocated memory for 512
signatures 32 bytes long each.

Table 1. The memory allocation of the HBM algorithm in the IXP 2400

Context Distribution Size Speed
Table Delta 1 On chip Local Memory 640 Long Word Fast (several cycles)
Table Delta 2 On chip Next Neighbor Reg. 32 bytes Fast (several cycles)
Original Signature Set Order storing in DRAM 16K bytes Slow (100MHz bus)
SHT Hash link table in DRAM 32K bytes Slow (100MHz bus)

In our experiment, 512 signature patterns are
generated randomly with a fixed length of 32 bytes.
The length of an input Gigabit Ethernet frame is
indicated by 118, 246, …, 1398, and 1518. The hit ratio
is from 0% to 100%. The carrying signature is inserted
randomly at any position of the payload. The

throughput results are shown from Figure 8 to Figure
10.

Compared with the results in [9-10,18], it is
demonstrated that there is a big performance leap in
throughput and delay, which makes the HBM
algorithm based scanner practical in Gigabit Ethernet.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 7, 2008 at 6:37 from IEEE Xplore. Restrictions apply.

Figure 8 plots the variation of throughput
performance with frame length and Figure 9 presents
the variation of the throughput performance with hit
ratio. Figure 10 shows a referential delay cycle at the
media bus at 104MHz. From the experiment, the
signature based scanner with the HBM algorithm has
achieved the throughput of Gigabit Ethernet.
Meanwhile, the throughput ratio is stable with the
variation of frame length and hit ratio.

As the system needs to scan the entire payload by
shifting each byte one by one, the frame forwarding
rate is related to the size of the frame. In the worst case
(i.e., hit ratio is 0%), the throughput comes down

slowly (see Figure 8 (a)) as the size of the frame is
increased.

In the simulation experiment, the testing for exact
match is also executed on MEs. Once a string is
matched and proved true, the scanner just stops and
alarms without any more operations. Therefore, it takes
fewer cycles when handling frames with signatures,
especially long frames with high hit ratios. For
example, in the case of worm scanning, the throughput
of the system will not be impaired when a worm breaks
out and the network is jammed with worm frames (see
Figure 8(b) and Figure 9).

(a) Hit ratio is 0% (b) Hit ratio is 100%
Figure 8. The variation of throughput with the frame length

Figure 9. The variation of throughput with the hit
ratio (frame length = 1518)

Figure 10. The variation of single frame delay
with the frame length (hit ratio = 0)

6. Conclusion

Signature-based scanners are widely used in
network security applications. Their critical function is
the multi-pattern matching algorithm which is still an
important issue in the high speed network security
field. The HBM Algorithm, a novel fast multi-pattern
matching algorithm, is presented in this paper to inherit
the skipping characteristic of the Boyer-Moore

algorithm when used in multi-pattern matching mode.
It offers higher performance and takes less memory
than other existing algorithms. This signature-based
scanner with HBM was implemented on the Intel IXP
2400 Network Processor platform and its performance
was tested. From these experiments, it has proven
stable, offers high performance and meets the needs of
Gigabit Ethernet.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 7, 2008 at 6:37 from IEEE Xplore. Restrictions apply.

References

[1] Darrell M. Kienzle, Matthew C. Elder, “Recent worms: a
survey and trends,” Proceedings of the 2003 ACM workshop
on Rapid Malcode (WORM’2003), Pages: 1–10, October
2003.
[2] Nicholas Weaver, Vern Paxson, Stuart Staniford, Robert
Cunningham, “A taxonomy of computer worms,”
Proceedings of the 2003 ACM workshop on Rapid Malcode
(WORM’2003), Pages: 11- 18, October 2003.
[3] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case
study on the spread and victims of an internet worm,”
Proceedings of the Internet Measurement Workshop 2002,
Marseille France, November 2002.
[4] V. Paxson, “Bro: A System for Detecting Network
Intruders in Real-Time,” Computer Networks, 31(23-24), pp.
2435-2463, 14 Dec. 1999. Also see www.bro-ids.org.
[5] M. Roesch, “Snort: Lightweight intrusion Systems
Administration Conference,” 1999. Also see www.snort.org.
[6] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley and J.
Turner., “Algorithms to accelerate Multiple Regular
Expression Matching for Deep Packet Inspection,” ACM
SIGCOMM Computer Communication Review, Volume: 36
, Issue: 4, October 2006.
[7] J. Newsome, B. Karp and D. Song, “Polygraph:
Automatically Generating Signatures for. Polymorphic
Worms,” in Proceedings of the IEEE Symposium on Security
and. Privacy (Oakland 2005), May 2005.
[8] Bharath Madhusudan and John W. Lockwood, “A
Hardware-Accelerated System for Real-Time Worm
Detection,” IEEE Micro, Volume 25, Issue 1, January 2005.
[9] Zhen Chen and Chuang Lin et al., “AntiWorm NPU-
based Parallel Bloom filters for TCP/IP Content Processing
in Giga-Ethernet LAN,” IEEE proceeding of Local Computer
Network, the First Workshop on Network Security (WoNS
2005), Sydney, Australia, November 15, 2005.
[10] Zhen Chen and Chuang Lin et al., “AntiWorm NPU-
based Parallel Bloom filters in Giga-Ethernet LAN,” IEEE
International Conference on Communications (ICC 2006),
Network Security and Information Assurance Symposium,
2006.
[11] H. Dreger, A. Feldmann, M. Mai, V. Paxson and R.
Sommer, “Dynamic Application-Layer Protocol Analysis for
Network Intrusion Detection,” Proc. USENIX Security
Symposium, August 2006.
[12] A.V. Aho and M. J. Corasick, “Fast pattern matching: an
aid to bibliographic search,” Communication of ACM, Vol.
18, No. 6, June 1975.
[13] Robert S. Boyer and J Strother Moore, “A Fast String
Searching Algorithm,” Communication of ACM, Vol. 20,
No. 10, 1977.
[14] Bill Carlson, Intel Internet Exchange Architecture Intel
Network Processors, Intel Press, 2003.
[15] Erik J. Johnson and Aaron R. Kunze, IXP2400/2800
Programming: The Complete Microengine Coding Guide,
Intel Press, 2003.
[16] Uday R. Naik and Prashant R. Chandra, Designing
High-Performance Networking Application, Intel Press,
2004.

[17] Bo Xu, Xin Zhou and Jun Li, “Recursive Shift Indexing:
A Fast Multi-Pattern String Matching Algorithm,” Proc. of
the 4th International Conference on Applied Cryptography
and Network Security (ACNS 2006), 2006.
[18] Rong-Tai Liu, Nen-Fu Huang, Chia-Nan Kao, Chih-Hao
Chen, Chi-Chieh Chou, “A Fast Pattern-Match Engine for
Network Processor-based Network Intrusion Detection
System,” International Conference on Information
Technology: Coding and Computing (ITCC'04) Volume 1,
2004.
[19] B. Bloom, “Space/Time Trade-Offs in Hash Coding
with Allowable Errors,” Comm. ACM, vol. 13, no. 7, May
1970, pp. 422-426.
[20] Sarang Dharmapurikar, Praveen Krishnamurthy, T.S.
Sproull and J. W. Lockwood, “Deep packet inspection using
parallel bloom filters,” IEEE Micro, Volume 24, Issue 1,
Pages:52 – 61, Jan.-Feb. 2004.
[21] S. Wu and U. Manber, “A fast algorithm for multi-
pattern searching,” Technical Report TR-94-17, Department
of Computer Science, University of Arizona, 1994.
[22] M. Fisk and G. Varghese, “An analysis of fast string
matching applied to content-based forwarding and intrusion
detection,” Technical Report CS2001-0670, University of
California at San Diego, 2002.
[23] C. J. Coit, S. Staniford, and J. McAlerney, “Towards
faster pattern matching for intrusion detection, or exceeding
the speed of snort,” Proc. of the 2nd DARPA Information
Survivability Conference and Exposition (DISCEX), 2002.
[24] H. Song and J. Lockwood, “Multi-pattern signature
matching for hardware network intrusion detection systems,”
Global Telecommunications Conference, 2005.
GLOBECOM’05. IEEE Volume 3, Page(s):5, Nov., 2005.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 7, 2008 at 6:37 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

