

Network Coding Based Live Peer-to-Peer Streaming Towards Minimizing Buffering
Delay*

* Supported by project from NEC Labs China

Zhiming Zhang1, 2, Ranran Hou1, Hao Chen1, Jin Zhou2 and Jun Li2, 3
1 Department of Automation, Tsinghua University, Beijing, China

2 Research Institute of Information Technology, Tsinghua University, Beijing, China
3 Tsinghua National Lab for Information Science and Technology, Beijing, China

Email: zzm02@mails.tsinghua.edu.cn, sakurazuka_hou@163.com, c-h06@mails.tsinghua.edu.cn,
{zhoujin, junl}@tsinghua.edu.cn

Abstract--In current live Peer-to-Peer (P2P) streaming systems,
buffering delay is too large compared with the channel
switching delay of traditional TV service provided by cable
companies. In this paper, network coding is applied to a live
P2P streaming system to minimize the buffering delay that
users experience. A new scheduling algorithm is designed, with
server-push mechanism and intelligent method for
determining initial playback point, to make full use of the
advantage of network coding. The simulation results show that
buffering delay can be reduced to as much as 5 seconds,
compared to more than 15 seconds in current systems.

Keywords-P2P networks; multimedia streaming; network
coding

I. INTRODUCTION
During recent years, many commercial live Peer-to-Peer

(P2P) streaming systems emerged after successful
combination of P2P technology with video streaming
systems [1]. P2P technology can make up for the shortage of
server bandwidth by utilizing the uplink bandwidth of users
in the same streaming session, and add scalability to live
streaming applications. While compared with traditional TV
services provided by cable companies, the buffering delay of
live P2P streaming is too large. When users chooses a live
P2P steaming, they usually have to wait for more than 15
seconds before the video starts [2, 3], which badly affects
users’ quality of experience.

Network coding was proposed in information theory to
achieve the maximum throughput of multicast in an acyclic
network [4]. Y.-h. Chu et al pointed out that linear network
coding is enough for most situations [5]. T. Ho et al further
proposed random linear network coding [6] which makes
network coding practical. The first important application of
network coding is Avalanche, a new protocol for P2P file
sharing, which has shown promising results for file sharing
systems with network coding [7, 8].

Network coding has the advantage to reduce buffering
delay of live P2P streaming. In real system, random linear
network coding needs to segment the continuous data
packets with same size. Each segment has the same number
of original data packets. Network coding operation is limited
in the segment, such that nearly all coded data packets have
some information of the original data packets in that segment.
All coded data packets in the same segment have no

difference from users’ point of view. In other words, when a
user wants to request some data packets from a segment
from his neighbors, all data packets of that segment in his
neighbors’ buffers are considered equal. This characteristic
increases the number of data packets the user needs, leading
to higher successful request ratio and shorter fetching time.

In this paper, we used several designs to make full use of
the advantage of random linear network coding for reducing
buffering delay of live P2P streaming. Our designs were
checked by simulations. The results indicated that buffering
delay of live P2P streaming could be reduced to as much as 5
seconds.

The remainder of this paper is organized as follows.
Section II introduces related works. Section III elaborates the
details of our system design. Section IV validates our design.
Section V concludes this paper and provides some open
problems to be solved in the future.

II. RELATED WORK
Live P2P streaming has two kinds of delay. One is

playback delay, which is the time difference between user’s
playback point and server’s playback point. Another one is
buffering delay, which is the lag between a channel is chosen
by a user and the video comes up on user’s screen. D. Ren et
al [9] tries to decrease the playback delay by constructing a
power-based topology. In this paper, we focus on buffering
delay.

Network coding has been used in live P2P streaming due
to the similarity between live P2P streaming and multicast.
Mea Wang et al [10, 11] designed a pull-based live P2P
streaming system with random linear network coding. They
evaluated the system under different parameter settings.
Experiment results show that network coding can improve
the performance of live P2P streaming system, especially
when the bandwidth supply barely meets the streaming
demand. They focus on the fair comparison between live
P2P streaming systems with and without network coding.
We believe that network coding can be further explored to
reduce the buffering delay of live P2P streaming.

Mea Wang et al [12] further employs random push
streaming algorithm to utilize the advantage of network
coding. Simulation results show that this kind of design can
improve the performance of live P2P streaming greatly in
terms of buffering delay, resistance to peer (user) dynamics
and utilization ratio of peer uplink bandwidth. However, all

mailto:zzm02@mails.tsinghua.edu.cn
mailto:sakurazuka_hou@163.com
mailto:c-h06@mails.tsinghua.edu.cn

commercial live P2P streaming systems use pull-based or
push-pull based scheduling algorithm, so their results still
needs to be validated in real world system.

III. SYSTEM DESIGN
In this section, we will give our design of pull-based live

P2P streaming system with random linear network coding.
Some definitions are given in table I.

2

A. Design of Architecture

Figure 1. The architecture of a Node

The architecture of a node (peer) is shown in figure 1.
Compared with live P2P streaming system without network
coding, network coding based live P2P streaming system
added two modules to the node architecture, i.e.
Progressingly Decoding module and Encoding module.
When node receives a data packet, Progressingly Decoding

module will read the data packet from the corresponding
segment the node has received and progressively decode the
segment with the newly received one [11]. If the newly
received data packet is not linearly dependent with the data
packets in the buffer, the progressively decoded result will
be put into the buffer; otherwise, the newly received data
packet will be dropped. The function of Encoding module is
to generate new coded data packets for the neighbors by
combining the received data packets in the corresponding
segment. All calculation of random linear network coding is
realized in Galois field. The field size is 16 (24).

Table I
Definitions used in this paper

Definition Explanation
rs Streaming rate
ui Uplink bandwidth capacity of peer i
us Uplink bandwidth capacity of server
Ri Packets number that peer i should request in one

request cycle
Data packet The minimum transmission unit

Segment A group of continuous data packets which is the
operation scope of network coding

B The original number of data packets in one segment
Redundant We say received data packet is redundant if the data

packet is linear dependent with the data packets of
the same segment this node has received.

Aggressiveness
(AGG)

The number of coded data packets one peer should
receive before it starts to serve others.

Density The percentage of nonzero coefficients when the
linear network coding is performed

Buffer map Segment availability information
decodable We say one segment is decodable if and only if this

segment has AGG data packets that are linear
independent.

Skipped
segment

The segment that is not decodable when the segment
arrives at playback point.

UUR Uplink bandwidth Utilization Ratio
N Node count in a streaming system

Figure 2. Buffer and the corresponding scheduling algorithm

Figure 2 shows the buffer of a node and the

corresponding scheduling algorithm. There is a 30-second
exchange buffer before the playback point. In order to
provide service for other nodes with later playback point, 15
seconds of played data is stored in the obsolete buffer.

UDP protocol is employed to transmit data packets. Its
advantage is the predictable transmission delay which is the
absence of TCP protocol. Duplicate data packets will be
produced in live P2P streaming system if the arrival time of
data packet could not be predicted. However, we can
estimate the arrival time of the requested data packets with
corresponding streaming scheduling algorithm by using UDP
protocol [13]. Because once one peer receives a request
packet from others, it will send all the requested data packets
it has in the following request interval time uniformly.

The use of UDP protocol brings a new problem on
end-to-end bandwidth estimation. Lack of end-to-end
bandwidth estimation will lead to that node’s streaming
scheduling algorithm has no ability to estimate the utilization
ratio of each neighbor’s uplink bandwidth, which will result
in that some nodes’ uplink are congested and others are
starved. In our system, the scheduling algorithm requests
three data packets at most from each neighboring peer per
request cycle at the beginning. After that, the limit is set as
the data packet rate received in last five seconds plus a
constant.

B. Scheduling Algorithm
As shown in Figure 2, the exchange buffer is partitioned

into three equal parts. Every part is given one third of Ri in
each request cycle, which is the number of data packets that
peer i should request per cycle. The first and the second part
use the greedy scheduling algorithm to request the data
packets from others. The third part uses rarest first
scheduling algorithm. The “greedy” scheduling algorithm
means the data packet closest to the playback point has the
highest priority. If one segment is not decodable but is the
closest one to the playback point compared to other

segments in that part, this segment will be requested first.
However, “rarest first” gives higher priority to the newest
ones [14]. To ensure each node requests enough data packets
in each cycle, if the number of requested data packets in the
last three stages is less than the number of data packets that
the peer should request, the remaining number of data
packets will be assigned to the whole exchange buffer by
using greedy algorithm. This scheduling algorithm can keep
all the segments in the exchange buffer from being empty,
promoting the nodes with different playback points to
cooperate with each other perfectly.

The cooperation requires each node to access the buffer
information of its neighbors as soon as possible. This
involves two parameters. One is AGG and the other is the
time to send buffer map packet. As for AGG, we set it as two
that means that once one node has received two data packets
of one segment, this node is ready to serve others in terms of
the corresponding segment. While its neighbors have no
ideas about the segment before they received buffer map
packet. Therefore, we let the node send buffer map packet to
its neighbors immediately after it received AGG data packets
of one segment. Because the video stream is partitioned into
segments, the overhead introduced by buffer map packet is
bounded by the neighbor count and the reciprocal of the time
that one segment spans. This mechanism can let the
neighbors acquire the newest information immediately,
reducing the delay further.

The following question is how to request each segment
from neighbors. Because coded data packets in the same
segment have no difference, previous literatures [10, 11]
request data packet based on granularity of segment. One
segment stands for one-second video stream, so the
granularity is a slightly coarse. In our design, the granularity
of scheduling is reduced to data packet level. Once one
segment is requested, the pair (segment_number,
number_of_packets) will be filled in the request packet for
the target neighbor. After the neighbor received the request
packet, this node will only transmit the number of data
packets it has in its own buffer to its neighbor to avoid
redundancy if the requested data packets in
(segment_number, number_of_packets) is bigger than that in
its own corresponding segment. Otherwise, this neighbor
will transmit the requested number of data packets back to it.

The number of data packet requested per cycle needs
adjusting according to network situation. One segment is
composed of one second’s data packets. The request interval
is set as half second to tradeoff overhead and delay.
Normally, one node can request half segment at most one
time, but the node may not be able to achieve streaming rate
due to data packet loss. Therefore, the requested number of
data packets per cycle is set as 65% of the segment.
Moreover, once there is one segment which can not be
decoded in the most urgent 10-second buffer, the requested
number of data packets in one cycle is increased to (0.65 +
(10 - i) * 0.2) times of normal count, where i refers to the
number of seconds between current playback point and the
non-decodable segment with the most urgent segment
number. Therefore, the worst case is that node requests about
five times of the normal count per cycle. The worst case is

also limited by the sum of end-to-end bandwidth under this
node gains.

C. Minimizing Server Bandwidth Costs
Buffering delay and playback delay can be a tradeoff

with server bandwidth cost [15]. The higher the server
bandwidths costs are, the shorter the buffering delay and
playback delay are. Therefore, minimizing server bandwidth
costs can reduce buffering delay and playback delay.

The capacity of server uplink bandwidth is an important
factor affecting streaming quality. Due to the characteristics
of random linear network coding, one node cannot decode
the coded data packets before it acquires B data packets with
no dependency. Therefore, the server should insert at least B
data packets per segment into the streaming system.
However, the pull-based scheduling algorithm only cares
about the peer’s own requirement and all the neighbors of
the server compete for the uplink bandwidth of server, which
leads to that server may not be able to insert B data packets
of some segments into the streaming system. Moreover, the
situation deteriorates with the decrease of server uplink
bandwidth.

In our system, server-push mechanism is used to
minimize the use of server uplink bandwidth. The first
question is how many data packets should be pushed? On the
one hand, the server should push more than B data packets
per segment to the system due to the data packet loss and
linear dependency of data packets. On the other hand, the
number of pushed data packets cannot be too large. This is
because the pushed data will compete for the server uplink
bandwidth, which will lead to the loss of data packets and
increase of possibility that less than B data packets of some
segments are inserted into the system when the server uplink
bandwidth is less than the rate of pushed data packets. So in
our system, the number of pushed data packets per segment
is set to 1.2 times of the number of data packets in one
segment, i.e. . The extra uplink bandwidth of server
is used by pull-based scheduling if any.

1.2* B

The remaining question is to whom the data should be
pushed. If all the data packets are pushed to one neighbor of
the server, the same situation that happened in the server
without push-based scheduling will appear again to this
neighboring peer. Therefore, the data should be pushed to
different neighbors to make the data as dispersive as possible.
However, each neighbors’ peer should gain at least AGG
data packets of each segment to make them have the ability
to relay the data packets to others.

D. Entry Points to Data Requests
How to determine the initial playback point of each peer

is a non-trivial question, especially in a large-scale system.
Let us look at two extreme conditions. If all uplink
bandwidths of users are bigger than streaming rate, i.e.

 for all i, every node can find two neighbors, one
parent and one child, and the playback point can be simply
set as slightly latter than its parent. In this way, the buffering
delay can be very small, but the largest playback delay is
proportional to the number of nodes. Moreover, the extra

iu r≥ s

 3

4

)uplink bandwidth of peers will be wasted.
Another example is that all peers have the same playback
point. Although the peers can cooperate with each other in
terms of uplink bandwidth, this system is not scalable,
because some peers will not be able to get the data before
deadline with the increase of peer number due to the
transmission delay of data packets between peers.

(i su r−

In our design, the playback point is determined by
most-popular mechanism. Each newly joined node requests
peers’ information from server first then it sends the
connection packets to each of them and waits for responses.
Once two third of the neighbors’ response has been received,
the playback point will be determined based on the
popularity of segments in its neighbors. The playback point
is set as the segment number that is most popular with
highest segment number in its neighbors in order to fully
utilize the neighbors’ uplinks bandwidth and reduce the
buffering delay at the same time. Moreover, only the greedy
algorithm is applied during buffering process in the scope of
exchange buffer to fill in the most urgent segment as soon as
possible, leading to a short buffering delay. Once the
playback point is determined, data packets will be requested
from the playback point.

IV. EXPERIMENTS AND VALIDATIONS

In this section, we check our design by doing simulations.

The simulator P2PStrmSim [16] is employed to evaluate the
performance of our design. Table II provides main parameter
settings used in the following simulations.

In terms of end-to-end delay, we use the measurement
result of latency used in [17] to simulate the real under-layer
Internet topology. End-to-end bandwidth is distributed
uniformly between 50kbps and 2Mbps.

We use the peers with different uplink bandwidth to
simulate the heterogeneity of the networks. Three types of
peers are employed and their uplink bandwidths are 1Mbps,
384kbps and 128kbps respectively, which simulates three
typical DSL peers. Once the peer joined the system, they
would stay in the system to the end of simulation. Different
Peer Resource Index (PRI) can be achieved by adjusting the
fraction of each type of peers. PRI is defined as the ratio of
total uplink bandwidth to the minimum requirement of
download bandwidth, i.e.

*
*

s i

s

u N u
PRI

N r
+

=

In the following simulations, we set . The exact
fractions of each type of peers (1Mbps, 384kbps and
128kbps) are (0.42, 0.42, 0.16).

1.2PRI =

The uplink bandwidth of server is set
to 1.4* 700s su r kbps= =

1.3* 650s su r kbps

. Table III gives a typical
simulation result of overhead. We can see that the overhead
caused by all kinds of sources is less than 10%. The pushed
data rate is equal to . Therefore, 1.2* 600sr kb= ps

= = is enough for server to stream video.
In order to ensure that enough data packets of each segment
are streamed to system from server, we further give
additional 10% uplink bandwidth to server, making the
uplink bandwidth of server equal to . 700kbps

A. Simulations for Validating Buffering Delay

Figure 3 shows the average streaming quality with

different buffering delay. A segment will be skipped when
the segment cannot get enough data packets to be decoded
before its deadline. The shorter buffering delay is, the more
segments will be skipped. We can see from Figure 3 that
average skipped segments are only 0.2% even when the
buffering delay is 5 seconds. The peer can still get healthy
streaming quality with 5 seconds of buffering delay.

B. Simulations for Checking System Scalability and the
Ability to Resist Flash Crowd
In order to make our designs applied in real system, other

aspects of network coding based live P2P streaming needs to

3 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Buffering Delay (Seconds)

P
er

ce
nt

ag
e

of
 S

ki
pp

ed
 S

eg
m

en
ts

 (%
)

Figure 3. Average streaming quality with different buffering delay

Table III
One example for the sources of overhead and the corresponding fraction

Source of Overhead Overhead Percentage
(Compared with streaming rate)

Network coding coefficients 1.8

Redundant packets 2.3

Skipped segments 0.2

Control packets 2.9

Total 7.2

Table II
Parameter settings of simulations

Parameters Values
Streaming rate 500 kbps
Number of data packets per segment 50
Data packet size 1250 bytes
Number of nodes 600
Simulation time 600 seconds
Peer arriving rate 5 per second
Neighbor count of each peer 25
Peer Resource Index (PRI) 1.2
Uplink bandwidth capacity of server (us) 700 kbps
Galois field size 16 (24)

 5

be checked, such as system’s ability to resist peers’ flash
crowd, the performance stability when the number of nodes
are increased.

Figure 4 shows the streaming qualities when the arriving
rate of nodes is increased. The system can maintain good
performance when the arriving rate reaches ten nodes per
second. The ability to resist peers’ flash crowd is
proportional to the scale of system. When the scale of our
system reaches one million nodes, the system can support
more than ten thousand new nodes per second. Furthermore,
the uplink bandwidth of server in our system can be set as
very slow, only barely meeting the minimum requirement.

As shown in Figure 5, skipped segment fraction keeps
low and stable when the node count varies from 600 to 3,000
with buffering delay of 5 seconds. We believe that the
streaming quality can also hold good and stable when the
node count reaches more than 3,000, basing on the trend.

V. CONCLUSIONS AND FUTURE WORKS
Compared to traditional TV services provided by cable

companies, the delay of live P2P streaming system is
currently too large. In this paper, we applied network coding
to live P2P streaming system to reduce buffering delay with
our design. The methods used are data packet granularity
based scheduling algorithm, server-push method, and
intelligent method for determining initial playback point.
The simulations results showed that this system could make

the buffering delay as low as five seconds when server
uplink bandwidth is only 1.4 times of streaming rate while
maintaining a healthy streaming quality and ability to resist
flash crowd.

For future works, we will use the real trace data to check
the performance of our system. Also we will study the
playback delay to increase users’ quality of experience,
especially during live broadcast, such as World Cup.
Because the playback time difference between users can be
up to several minutes in real live streaming system with large
number of users.

VI. REFERENCES
[1] X. Zhang, J. Liu, B. Li, and T.-S. P. Yu, "CoolStreaming/DONet: A

Data-driven Overlay Network for Peer-to-Peer Live Media
Streaming," in IEEE INFOCOM, Miami, FL, USA, 2005.

[2] "PPLive," http://www.pplive.com/en/.
[3] "PPStream," http://www.ppstream.com/.

5 10 15 20 25 30
0

5

10

15

20

25

30

Arriving Rate of Nodes (Mumber of Nodes per Second)

P
er

ce
nt

ag
e

of
 S

ki
pp

ed
 S

eg
m

en
ts

 (%
)

Figure 4. Average streaming quality with different nodes arriving rate

[4] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, "Network
Information Flow," IEEE Transactions on Information Theory, vol. 46.
No. 4, pp. 1204–1216, July 2000.

[5] S.-Y. R. Li, R. W. Yeung, and N. Cai, "Linear Network Coding,"
IEEE Transactions on Information Theory, vol. 49, No. 2, Feburary
2003.

[6] T. Ho, R. Koetter, M. M´edard, D. R. Karger, and M. Effros, "The
Benefits of Coding over Routing in a Randomized Setting," in IEEE
International Symposium on Information Theory, Yokohama, Japan,
2003.

[7] C. Gkantsidis and P. R. Rodriguez, "Network Coding for Large Scale
Content Distribution," in IEEE INFOCOM, Miami, FL, USA, 2005.

[8] C. Gkantsidis, J. Miller, and P. Rodriguez, "Anatomy of a P2P
Content Distribution System with Network Coding," in International
Workshop on Peer-to-Peer Systems, Santa Barbara, CA, USA, 2006.

[9] D. Ren, Y.-T. H. Li, and S.-H. G. Chan, "On Reducing Mesh Delay
for Peer-to-Peer Live Streaming," in IEEE INFOCOM, Phoenix, AZ,
USA, 2008.

600 900 1200 1500 3000
0

0.05

0.1

0.15

0.2

0.25

Number of Nodes

P
er

ce
nt

ag
e

of
 S

ki
pp

ed
 S

eg
m

en
ts

 (%
)

Figure 5. Average streaming quality with different number of nodes

[10] M. Wang and B. Li, "Lava: A Reality Check of Network Coding in
Peer-to-Peer Live Streaming," in IEEE INFOCOM, Anchorage, AK,
USA, 2007.

[11] M. Wang and B. Li, "Network Coding in Live Peer-to-Peer
Streaming," IEEE Transactions on Multimedia, Special Issue on
Content Storage and Delivery in Peer-to-Peer Networks, vol. 9, No. 8,
pp. 1554-1567, December 2007.

[12] M. Wang and B. Li, "R2: Random Push with Random Network
Coding in Live Peer-to-Peer Streaming," IEEE Journal on Selected
Areas in Communications, Special Issue on Advances in Peer-to-Peer
Streaming Systems, vol. 25, No. 9, pp. 1655-1666, December 2007.

[13] M. Zhang, L. Sun, and S. Yang, "iGridMedia: Providing
Delay-Guaranteed Peer-to-Peer Live Streaming Service on Internet,"
in IEEE GLOBECOM, 2008.

[14] Y. Zhou, D. M. Chiu, and J. C. S. Lui, "A Simple Model for
Analyzing P2P Streaming Protocols," in IEEE International
Conference on Network Protocols, Beijing, China, 2007.

[15] T. Small, B. Liang, and B. Li, "Scaling Laws and Tradeoffs of
Peer-to-Peer Live Multimedia Streaming," in ACM Multimedia,
Santa Barbara, California, USA, October 23-27, 2006, pp. 539-548.

[16] "P2PStrmSim," http://media.cs.tsinghua.edu.cn/~zhangm/.
[17] B. Wong, A. Slivkins, and E. G. Sirer, "Meridian: A Lightweight

Network Location Service without Virtual Coordinates," in ACM
SIGCOMM, Philadelphia, PA, USA, 2005.

http://www.pplive.com/en/
http://www.ppstream.com/
http://media.cs.tsinghua.edu.cn/%7Ezhangm/

	I. INTRODUCTION
	II. RELATED WORK
	III. SYSTEM DESIGN
	A. Design of Architecture
	B. Scheduling Algorithm
	C. Minimizing Server Bandwidth Costs
	D. Entry Points to Data Requests

	IV. Experiments and validations
	A. Simulations for Validating Buffering Delay
	B. Simulations for Checking System Scalability and the Ability to Resist Flash Crowd

	V. CONCLUSIONS AND FUTURE WORKS
	VI. REFERENCES

