

Abstract--Next-generation high-end Network Processors (NP)
must address demands from both diversified applications and
ever-increasing traffic pressure. One major challenge is to design
an extraordinary scalable architecture. In this paper, it is argued
that such an objective can only be sufficed by introducing highly
paralleled structure, namely the Paralleled Processing-engine
Cluster (PPC). We demonstrate this point from the trade-off
among aspects such as performance, programmability and
flexibility. However, PPC natively suffers from several critical
issues on load-balancing, intra-flow packet ordering and memory
contention. After investigating several existing approaches, we
present novel solutions for each issue according to the balance
between performance and coast. Through intensive analysis and
comprehensive simulations, it is shown that the Shortest Queue
First scheduling with Class-based prediction (SQF-C) performs
nearly optimally, while the hardware based per-flow ordering
mechanism resolves packet out-of-order independently with the
load-balancing issue, inducting little throughput degradation.
Implementing the unified solution, it is capable to design a PPC
supporting up to OC-768c line rate. Real implementation is also
carried out in our THNPU-1 prototype to verify the conclusions.

Keywords—Network Processor, Parallelism, Load-balancing.

I. INTRODUCTION

Traditional IP routers rely on Application Specific
Integrated Circuit (ASIC) to deal with the expeditiously
growing packet processing requirements. At the same time, as
the emergence of modern Internet applications, such as triple-
plays [1] and P2P [2], more flexibility beyond ASIC is also
extremely desired. To answer that, Network Processor (NP) is
introduced to combine ASIC’s high-speed superiority and
General Purpose Processor’s (GPP) outstanding flexibility.
Due to its enhanced programmability, the time-to-market
cycle of NP based products is greatly shortened. Again the
same reason lengthens their time-in-market.

To build such a high-end NP, a pragmatic challenge is the
development of highly scalable internal architecture, lying on
which, engenders the main problems studied in this paper:

Lei Shi, Yue Zhang and Bin Liu are with the Department of Computer
Science and Technology, Tsinghua University, Beijing, China. (email: shijim
@mails.tsinghua.edu.cn, zhang-yue@mails.tsinghua.edu.cn, liub@tsinghua.
edu.cn.) Jianming Yu and Bo Xu are with the Department of Automation, and
Research Institute of Information Technology, Tsinghua University, Beijing,
China. (email: yujm03@mails.tsinghua.edu.cn, xb00@mails.tsinghua.edu.cn)
Jun Li is with the Research Institute of Information Technology, Tsinghua
University, and Tsinghua National Laboratory for Information Science and
Technology, Beijing, China.(email: junl@tsinghua.edu.cn)

This work is supported by NSFC (No. 60373007, 60573121 and
60625201), the Cultivation Fund of the Key Scientific and Technical
Innovation Project, Ministry of Education of China (No. 705003), the
Specialized Research Fund for the Doctoral Program of Higher Education of
China (No. 20040003048 and 20060003058), China/Ireland Science and
Technology Collaboration Research Fund (2006DFA11170), and Tsinghua
Basic Research Foundation (JCpy2005054).

1) In what topology should high-end NP be constructed?
2) By which mechanisms can such a NP maximize its

utilization?
Previously, NP vendors have developed quite a lot of

solutions. Cisco Systems Inc. fabricated its 40Gbps Silicon
Packet Processor (SPP) [3] with highly paralleled cluster
structure. Bay Microsystems just disclosed a new chip, called
Chesapeake, designed to be an integrated NPU/TM device to
operate at 40Gbps [4]. Xelerated Inc. designed X10q [5] in
pipelined architecture with up to 200 stages. EzChip Ltd.
provided NP-1 [6] in a hybrid topology, i.e., both paralleled
and pipelined techniques are employed. Intel Corp. even
designed NP [7] in a flexibly reconfigurable scheme. These
vendors adopt diversified NP architecture in orientation to
separate markets and demands. By now, it is still hazy which
design is the best.

Recent studies in academia also cannot come to consensus.
Nearly all possibilities within NP’s design space [8] are
exploited. M. Gries et al. show in [9] paralleled model is the
best in dealing with IP forwarding application. At the same
time, H. Liu argues that it cannot scale much due to the
limited packet-level parallelism within Internet traffics [10]. N.
Weng and T. Wolf adopt a random algorithm to map
applications to NP’s topology. They prefer the pipelined
structure based on their simulation results [11]. Facing to such
a multifarious research, it is strongly asked to have a thorough
study extensively combining theoretical models with practical
implementations on NP’s architecture design.

In this paper, based on trade-off among NP’s performance,
programmability, flexibility, scalability, as well as power
saving capability and system robustness, we derive a
conservative sequitur on its architecture design that an
extremely paralleled structure, namely Paralleled Processing-
engine Cluster (PPC), is a must, at least functioning as one
stage of high-end NP. This argument is validated through
experiments on Intel IXP workbench [12].

However, due to the intrinsic nature of parallelism, PPC
cannot maximize performance by straightforwardly stacking
Processing Engines (PE) together. We focus on three major
issues resulting in that: load-balancing, intra-flow packet
ordering, and memory contention. We survey several existing
methods, carry out analysis to evaluate their performance, and
then present novel solution for each issue according to the
trade-off between performance metrics and implementation
cost. Our main contribution in this paper lies in the following:

1) We propose the Shortest Queue First scheduling with
Class-based prediction algorithm (SQF-C), the per-flow
ordering mechanism, as well as a distributed PPC memory
hierarchy. Due to their decoupled properties, we are able to

On the Extreme Parallelism Inside Next-
Generation Network Processors

Lei Shi, Yue Zhang, Jianming Yu, Bo Xu, Bin Liu, Jun Li

0743-166X/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1379

1 Multi-pipelining model can be classified to paralleled model, with a
pipeline substituting for each paralleled PE.

2 ME is used interchangeably with PE in Intel IXP.

Fig. 1: (a) Pipelined model (b) Paralleled model (c) Hybrid model

combine them into a unified solution naturally.
2) Through performance analysis, we prove that PPC in our

solution guarantees nearly 100% throughput, if only a speedup
of 1.5 is provided at the aggregating unit. Furthermore, if the
paralleled PEs further permit a speedup of 1.11, a delay bound
at a hundred microseconds can be obtained under practical
implementation parameters, no matter how many PEs are
integrated. Trace-driven simulation results show that our
unified solution performs load-balancing nearly optimally
while inducting little throughput degradation from the packet
ordering mechanism. This significantly overtops previous
methods.

3) Investigations on hardware complexity of our solution
show that it is scalable to cope with PPC running at up to OC-
768c line rate.

We have applied PPC solution in a real implementation,
THNPU-1, a FPGA based multi-stage NP prototype that fully
supports OC-48c line rate IPv4/IPv6/MPLS forwarding.

In rest of this paper, we discuss necessities of PPC in
Section II, propose unified solution to handle PPC issues in
Section III, carry out performance analysis in Section IV, and
present simulation results in Section V. Section VI introduces
implementations and finally Section VII concludes the paper.

II. WHY PARALLELISM IS A MUST IN HIGH-END NETWORK
PROCESSOR DESIGN

A. General NP Models
State-of-the-art NP designs generally follow three styles of

topology1: pipelined model, paralleled model and hybrid
model, depicted in Fig. 1(a)(b)(c). In a pipelined model, the
application is partitioned into several sequential micro-tasks
and mapped to all the stages of the pipeline. In a paralleled
model, multiple PEs are connected in a pool topology. Each
PE handles part of arrival traffic. In the hybrid model, the
former two are mixed, with a high-level pipelined topology
and paralleled sub-topology at each stage. We then compare
their efficiencies in building a high-end NP from several
critical aspects. Since in hybrid model, each stage follows a
paralleled model, we only contrast the paralleled model with
the pipelined one, and derive architecture choice for an entire
NP or its single stage in case a hybrid model is adopted.
B. Trade-off between Performance and Programmability

The ideal performance of NP in paralleled model, measured
by its throughput, increases linearly with PE number. Even
accounting the degradation caused by load-balancing and
packet ordering issue, the performance curve is only slightly
biased referred to our results in Section IV and V. At the same
time, users of such NP are transparent to its architecture by

Fig. 2. Performance comparisons of paralleled model with pipelined model

simply running the same code on each PE. It provides the best
programmability.

On the other hand, users of NP in pipelined model need to
divide each application uniformly across all the stages in order
to maximize PE utilization, which affects its programmability.
Even if application is divided automatically by embedded
high-level compilers, it still cannot perform best due to the
facts: 1) some atomic tasks are not dividable any more, such
as pattern matching application; 2) some task’s processing
time is not even predictable, such as packet filtering; 3) the
impacts of inter-stage communications can not be ignored.

In this sense, paralleled model is the better choice from the
trade-off between performance and programmability.
Experiments are also carried out on Intel Develop Workbench
[12] to validate this point. We configure Intel IXP2800 to be
paralleled and pipelined model respectively, both employing
2~10 MEs2 to execute test applications. (IXP2800 has 16 MEs
in total, but 6 out of 16 are fixed for packet Rx/Tx, Queue
Management and Scheduling). Three standard applications are
tested: IPv4 forwarding (FW), Diffserv (DS) and Pattern
Matching (PM) [13]. Each time 1000 fixed-length packets are
sent at the input. Packet length is set to 64 bytes for FW/DS
and 104 bytes for PM, where 64 byte random payload in each
packet is matched by 1000 8-byte-patterns. The task division
across stages in pipelined mode is handled by compiler from
Intel, which is normally better than a manual one.

Fig. 2 depicts the throughput dynamics when ME number
increases. Results show that the paralleled model always
performs better than the pipelined one. Under FW application
in Fig. 2(a), the throughput in paralleled model increases
before 4 MEs are employed, and then stays stable at about
9.5Gbps, while in pipelined model the throughput has never
exceeded 6Gbps. Under DS application in Fig. 2(b), the curve
of paralleled model is similar, but throughput this time keeps
on increasing until 6 MEs are employed. This is because the
system bottleneck after that has shifted from ME to memory
bandwidth; DS requires less memory transaction but more ME
processing compared with FW. Under PM application where
computing complexity is the dominating factor, it is clearly
shown in Fig. 2(c) that the paralleled model receives
continuous throughput climb-up while the pipelined model
remains nearly unchanged. This result validates our argument
that PM application cannot be divided further into granules. In
addition, in all our experiments, pipelined model suffers from
throughput degradation also because of high communication
complexity between all the consecutive stages.
C. Flexibility and Scalability

Next Generation high-end NP should also adapt with

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1380

3 In this paper, flow is defined by 5-tuple. I.e., IP source address, IP
destination address, source port number, destination port number and type
of transport protocol.

evolvements of network protocols, processing tasks, traffic
patterns, and be scalable to support the ever-increasing link
speed. While NP in paralleled model meets these requirements
perfectly by updating micro-codes of each PE homogeneously
and altering the number of paralleled PEs adaptively, the
pipelined NP generally fails to achieve that. The variation of
processing task on each stage will not only affect itself, but
also force the codes to be repartitioned and remapped across
all the stages to guarantee maximal performance. This
introduces sizable overhead. In addition, to provide higher
processing capacity, solely adding stages is inadequate,
repartition of processing task is also a must.
D. Power Saving and Robustness

As NP chip density rises with PE number, the power
dissipation also becomes a critical scaling bottleneck. Authors
in [14] has developed adaptive power saving techniques for
the paralleled NP model by turning off a subset of PEs during
light load periods. It brings significant reduction in power
consumption (up to 30%) while introduces little impacts on
overall throughput. Only a portion of PEs is affected in each
power saving operation. However, this technique can not be
extended to pipelined model, since the only PE in each stage
cannot be turned off. Although frequency adaptation can be
employed, all PEs are involved in each operation. When
frequency adaptation is not continuously variable, its
efficiency is normally worse than that of paralleled model.

The same issue also exists when system robustness is
considered. Under failures of some PE, NP in paralleled model
can gracefully deal with it by bypassing the broken PE.
However, NP in pipelined model needs a great endeavor to
achieve the same feature.
E. Paralleled PE Cluster

In respect that the paralleled model gains advantages in
nearly all aspects illustrated above, we conclude that such
architecture is essential in fabricating next-generation high-
end NP. It will perform as entire NP in the pure paralleled
model or a single stage in the hybrid model.

We name such structure the Paralleled PE Cluster (PPC). In
what follows, we focus on the major scaling issues of PPC,
and propose a unified solution to maximize its performance.

III. EXPLOITING PARALLELISM IN HIGH SPEED PROCESSING

A. Problem Statement
The main challenge that affects the PPC to maximize its

utilization is the combined problem of load-balancing, intra-
flow packet ordering, and memory contention.

1) Load-balancing: Packet arrivals at PPC should be
distributed to each PE uniformly. Furthermore, this uniformity
is not defined on the traffic volume to each PE directly, but on
the workload measured by PE instruction cycles. This makes
things complicated since the processing time of each packet
can not be accurately estimated. In case the load-balancing is
non-uniform, packet delay at the heavily loaded PE will be
considerable large. At that time, due to the scarceness of on-
chip buffer, packet loss is inevitable.

Fig. 3. Average IF using static hashing

2) Intra-flow packet ordering: The packets in same flow3
should depart from PPC in the same order with their arrivals.
This requirement comes from the intrinsic demands of upper
layer protocols, such as TCP [15].

3) Memory contention: PPC should provide sufficient
memory bandwidth, as networking applications are mostly
data-intensive. Under line rate R, its overall bandwidth request
reaches up to R(2+ρp). Here ρp is ratio of average read/write
bytes in each packet processing to the average packet length.
Due to the well-known fact that memory technologies can not
catch up with the increase of link speed, a proper memory
hierarchy should be adopted to enhance system efficiency.

Although the above problems are always incorporated, we
try to figure them out in a divide and conquer method.

B. Load-Balancing
Previously, several load-balancing algorithms have been

proposed [16-20]. They can be partitioned into two categories:
Flow-based Load-Balancing (FLB) and Packet-based Load-
Balancing (PLB). FLB dispatches packets of a same flow to an
unchanged PE, thus preserves packet order intrinsically; PLB
assigns each packet independently, hence achieves fine
uniformity. We investigate these two approaches respectively
and then present our novel solution.
1) FLB

FLB generally adopt hashing techniques to map individual
flows into finite PE space. Two classes of FLB can be used:
Static Hashing (SH) [20] and Dynamic Hashing (DH) [19].

SH maps each flow by directly hashing its 5-tuples to PE ID.
This approach introduces little hardware cost, but also receives
limited performance due to the non-uniformity of hashing and
the heavy-tailed flow-size distribution in Internet. To reveal
this point, we carry out experiments using real trace collected
at the GE link connecting Tsinghua University to CERNET
[21]. Traffic generated from this trace is load-balanced into 8
PEs by SH with three popular hashing functions (CRC16 [20],
XOR, H3 [22]). Denote the traffic volume dispatched to PE l
in a time period T by Al(T), which is assumed to stand for the
amount of processing tasks. We define load-Imbalance Factor
(IF) in a time period T to be the maximal derivation ratio
formulized by

IF=Max{ |Al(T)-avg[Al(T)]|/avg[Al(T)] } (1)
Given a pre-defined timescale TS, we calculate the average

IF of every non-overlapped time periods with length TS to
represent overall load-imbalance degree. Average IFs under
timescales from 1ms to 10s are depicted in Fig. 3. As we
increase timescale exponentially, it actually does not go
asymptotically to zero, but stay stable at 0.2~0.4. It indicates

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1381

4 The resource demands at each PE are far from these four, however,
from our experience and previous literatures, they take up the most part.

the universal load-imbalance caused by SH.
DH, another approach, maps each flow on-line based on the

load status of all the PEs, as such improves the load-balancing
uniformity. However, at least two issues affect its performance
and scalability: 1) It needs to maintain per-flow information.
Under OC-768c line rate with full load, the simultaneous
active flow number may increase beyond 1M if we set flow
timeout to 2s. Currently, there is no such memory technology
to provide enough capacity for the flow table and fast access
speed. 2) It still suffers from non-uniform load-balancing due
to the heavy-tailed flow-size distribution, when flow
remapping is not employed. On the other hand when active
flows are allowed to be remapped, intra-flow packet order, as
the penalty, is not strictly preserved.

To sum up, FLB avoids the reordering cost, however, pay a
great deal in performance due to their non-uniformities. It is
further shown by our simulations in Section V, both SH and
DH with no flow remapping receive at least 10% throughput
degradation under fix-cycled or variable-cycled applications.
2) PLB

PLB load-balances each packet independently to achieve
the optimal uniformity. It leaves intra-flow ordering issue
handled by extra output resequencing mechanisms. The
optimal PLB is derived as below.

We use vector R={pr, iob, co, mb} to define per-second
demands from arrival traffic on processing capacity, IO
bandwidth, co-processor invoking and memory bandwidth4.
With load-balancing algorithm F, the workload assigned to PE
i is defined by Ri=Fi(R). If we denote the capacity of PE i by
Ci={p[i], io[i], c[i], m[i]}, and performance metrics Ii at PE i
by {Di, TPi}, where Di, TPi are the average delay and
throughput at PE i. Ii is written by { (,), (,)}i i i i iI D R C TP R C= (2)

The optimal PLB’s target is to maximize I, where

1 1
/ { [(), , [(), } /]]k k

i i i i ii i
I I k D F R C TP F R C k

= =
= =∑ ∑ (3)

We consider PPC which shares IO/co-processor resources
and decouple memory contention issue by assuming it not to
be the bottleneck, (3) becomes (4) given fixed iob and co.

() (){ }1 1
/(), [] , (), []k k

i r i ri i
I kD F p p i TP F p p i

= =
= ∑ ∑ (4)

Since TP(a,b)=max(b/a,1) and D(a,b) is the convex function
of a/b, the maximization of overall throughput and
minimization of average delay lead to the same solution under
admissible traffic input, that

1
() [] / []k

i r r i
F p p p i p i

=
= ∑ (5)

It demonstrates that the optimal PLB is to dispatch packets by
their workloads (packet processing times) in proportion to
PE’s processing capacity. If identical PEs are used in PPC, (5)
becomes Fi(pr)=pr/k.

Some basic PLB algorithms such as Deficit Round Robin
(DRR) [23] and Surplus Round Robin (SRR) [24] are broadly
used for their O(1) complexities where packet size is assumed
to represent actual packet processing time. To outperform
them, several prediction algorithms have been introduced.
Some recent solutions adopt flow-based prediction [25, 26].
Packet processing time within flow f is explicitly forecasted by
T=αfL+βf , where L is the packet length, parameters αf and βf

are adaptively adjusted according to actual processing time of
recent packets in f. The PE which has been assigned the lowest
predicted workloads will receive packet in each load-
balancing operation. We call it Shortest Queue First with
Flow-based prediction (SQF-F).

Nevertheless, SQF-F may fail to preserve accuracy under
current networking environments in respect that: 1) As in FLB
algorithms, it is hard to maintain per-flow prediction context
when total active flow number increases to as large as 1M
under OC-768c line rate. If prediction is carried out at flow-
aggregation level, SQF-F will thoroughly fail since processing
time of each flow is independent; 2) In handling applications
with processing time T=rand×αf’L+βf’, such as packet filtering
where rand is random variable uniformly distributed in [0,1],
SQF-F losses its accuracy, since αf is not predictable. In worst
case, it actually generates processing time in random, and
performs even .worse than the simplest RR scheduling.

Denote the processing time of packet i to be random
variable X. When n packets are backlogged before one PE (n
is large enough), the total prediction error of RR algorithm
(equivalent to prediction with average) is

1
()n

ii
X nE X

=
−∑ ,

following normal distribution N[0,nVar(X)]. Contrastively in
worst case of SQF-F, denote predicted processing time for
packet i by random variable Y exhibiting same distribution
with X, the total prediction error is calculated by

1
()n

i ii
X Y

=
−∑ ,

follows normal distribution N[0,2nVar(X)]. It reveals that
SQF-F performs even worse than RR at worst case with total
prediction error variation one time larger.
3) Class-based Prediction

To overcome the inaccuracy and the complexity of flow-
based prediction, we introduce a novel Class-based prediction
scheme [26] in SQF based load-balancing, namely SQF-C. We
show that this method will always perform better than RR
algorithm, while need not to keep per-flow information due to
the finite number of traffic classes.

In SQF-C, arrival traffic is partitioned into t classes
according to application types. For a packet of length L in
class i, we can model its accurate processing time by

1
() ()i i i i

m j j
i ij

T f L U V g Lα
=

= + + +∑ (6)
Here, αi, fi(L) and gi

j(L) are determined off-line by
investigating processing micro-codes, Ui and Vi

j are random
variables determining processing time variation. For each
packet in class i, SQF-C generates prediction value by

1
(() () () ()) m j j

i i i i i i ij
P E T f L E U E V g Lα

=
= + + += ∑ (7)

We then analyze its performance. Denote the traffic ratio of
class i by qi, and the total class number by l, when n packets
are backlogged before one PE (n is large enough), the total
prediction error by SQF-C counts to

1 1 1
() [()]in l nq j

i i i ii i j
X Y T E T

= = =
=− −∑ ∑ ∑ (8)

Here Ti
j denotes the accurate processing time of jth packet

in class i. Then the total prediction error follows normal
distribution 1

0, ()l
i ii

N n q Var T
=

 ∑ . Since 1

()()l
i ii

Var Xq Var T
=

<∑

holds at any time, SQF-C always performs better than RR.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1382

5 We use a Tri-model (64 bytes, 576 bytes, 1500 bytes, 50%, 30%) to
mimic current packet length distribution in Internet. I.e., 64 byte packet
accounts for 50% packets, 576 byte 30%, the others are of 1500 byte length.

C. Packet Ordering
1) Symmetrical Round Robin

One ordering method is to dispatch packets at input in a
strict RR manner to all the PEs, and read them out at output in
the same order. We name it the Symmetrical RR algorithm. In
this approach, the packets processed faster will not be
scheduled out until all the precedent packets probably with
larger delay have been outputted. This method actually adopts
delay equalization technique and increases the delay of each
packet to the largest one in recent. When all the packet buffers
beside some PE are occupied by packets that are blocked due
to the out-of-order issue, this PE will become idle and degrade
the overall system throughput.
2) Tagging

Another ordering method is the tagging and in-order output
scheduling. At the input, each arrival packet is tagged with a
sequence number. Then at the output, only the packet with in-
ordered sequence number can be scheduled out. The tagging
technique can be carried out in global scope or per-flow scope.
Global Tagging (GT) is easy to implement, however, it
introduces throughput degradation when output resequencing
buffer is limited, which is the case in NP with scarce on-chip
memory. Comparatively, the per-Flow Tagging (FT) approach
keeps packet sequence in flow scope, thus allows all the
packets in head of each flow to be scheduled out after
processing, considerably alleviating the ordering constraints.
Nevertheless, due to the difficulty to maintain per-flow
information, FT is often carried out on merely coarse-grained
flow aggregation level, whose performance greatly depends on
the uniformity of hash function that maps flows to their
aggregations. In worst case, FT degenerates to GT.

We carry out experiments to test the performance of
Symmetrical RR and GT based on reconfigurable IXP2400
under Intel Develop Workbench. We construct 4 MEs of each
IXP2400 as a PPC and realize Symmetrical RR and GT
mechanisms by employing Intel’s HyperTask Chaining model
and Asynchronous Insert Synchronous Remove (AISR) array
technology respectively. PPC’s performance without ordering
constraint is also plotted for comparison. Two standard
applications [12] are deployed: one is IPv4 Forwarding (FW)
which stands for the fixed-time processing; the other is IPv4
Forwarding plus Pattern Matching (FW+PM), which gives the
case of variable-time processing. The input data rate is set to
5Gbps for FW and 2.5Gbps for FW+PM to saturate the MEs.

We depict throughputs of three ordering methods in Fig. 4.
Under FW application and real packet length distribution5 (Fig.
4(a)), both ordering mechanisms achieve nearly same
throughput as that of no-ordered one, since in this case no out-
of-order actually happens. Under 49 byte fixed-length packet
arrivals (Fig. 4(b)), GT suffers from 27.1% throughput
degradation. AISR array this time becomes system bottleneck
as packet arrival rate increases a great deal. Meanwhile,
Symmetrical RR retains the throughput similar to a no-ordered
one, since there is still no packet out-of-order and the resulting
output blocking under fixed-time processing. However, under
FW+PM application with real packet length distribution (Fig.
4(c)), the throughput of Symmetrical RR degrades 64.7%, due

Th
ro
ug
hp
ut

Th
ro
ug
hp
ut

Th
ro
ug
hp
ut

Fig. 4. PPC throughput with packet ordering mechanisms

to the highly biased packet processing time. While the
throughput received by GT also decrease 23.5% because of
the significant increase in resequencing buffer length.

To sum up, both the ordering mechanisms can not perfectly
deal with all the traffic patterns and applications.
3) Per-flow ordering without per-flow information

In this paper, we develop a novel per-flow ordering method
without maintaining large numbers of per-flow information.
Our solution is based on the fact that the number of buffer
blocks (each block holds a packet) inside current NP is
limited. Therefore, we only store the flow information of
packets currently buffered in system, since packets waited in
the queue before the load-balancing point or already outputted
will not cause out-of-order. This mechanism is implemented
by a hardware dispatching and aggregating unit (DA).
Compared with previous solutions using programmable PE to
manipulate traffic, hardware DA is able to achieve much
higher line rate while maintaining per-flow orders.

The details of DA unit are given in Fig. 5. Totally three
register-based tables are maintained: memory table, flow table
and thread table. Memory table stores status of each memory
block in system and flow information of the corresponding
packet in the block. By recording a next block field for each
packet, it builds a link list for each active flow in system as
packet arrival sequence. Flow table stores the information of
each active flow in DA, including the head/tail of its link list,
and flowID defined by 5-tuples. Thread table keeps busy/idle
status of each PE thread in NP and the index of associated
memory block.

The packet ordering mechanism works as below. When a
packet arrives at ingress, we first search its 5-tuples in flow
table to judge whether it belongs to a new flow or an active
flow. In former case, a new flow entry is inserted to the flow
table and this arrival packet’s entry in memory table is set
accordingly: head field is written to 1 to indicate it is the first
packet of a flow. In latter case, the entry representing this
active flow in flow table is updated: this packet’s index in
memory table is stored in tail field of flow table, and the old
tail packet’s next block field in memory table is updated to
restore the active flow link list. On the other hand at the egress
direction, only the packets with head field in memory table
being 1 can be scheduled out. In this manner, per-flow packet
order is preserved. After scheduling each packet out, the three
tables are updated to the correct value.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1383

Fig. 5. Block diagram of DA

Fig. 6. Evaluation of DA’s timing complexity Fig. 7. Distributed memory hierarchy

We further quantitate the complexity of our approach. The
mechanisms in each load-balancing and aggregating operation
are described in Fig. 6. For each packet, in maximal 2 SRAM
reads and 3 CAM reads are necessary. (1 CAM write cycle
approximately equals to 2 CAM read cycles). In a 16-PE PPC
with thread size of 16 and total memory size of 256 blocks,
which is enough to guarantee system performance according
to our results in Section IV, the sizes of three tables are about
4.1kB (flow table), 1.28kB (memory table) and 0.51KB
(thread table). Running frequency estimation tool CACTI 4.2
[27], we obtain that the access time of on-chip CAM and
SRAM with such sizes reach as small as 1.05ns and 0.41ns
under 65nm technology. Consequently, the maximal line rate
supported by DA unit reaches 251.9M packets per second,
corresponding to 80Gbps even under 40 byte packet arrivals.
This fully supports OC-768c line speed processing.

D. Memory Contention
Traditional memory hierarchies in NP mostly adopt shared-

memory approach, where bandwidth request up to R(2+ρp)
stresses on the single memory. To resolve this bottleneck, we
propose a distributed memory hierarchy for PPC. It reduces
the bandwidth demands on each memory down to 2R, which is
in theory the minimum value.

Figure 7 depicts our distributed memory solution. We
implement local memory to each PE. Different from data
caches in shared-memory approach, the entire packet is
buffered in the local memory, not only the handles. In this way,
the processing on the packet payload can be directly carried
out between PE and its local memory, while shared-memory
approach needs to access the bottlenecked memory in each
payload processing. Moreover, the hardware complexity of
our approach is acceptable. The local memory buffering up to
b packets is sufficient, where b is the number of threads in
each PE. As such, a 16-PE PPC with each PE containing 16
threads only requires a total local memory size of 3Mb. It is
feasible under current on-chip SRAM technology.
E. Our Unified Solution

Summarily, in this section we have proposed novel
solutions for the load-balancing, intra-flow packet ordering
and memory bottleneck issues. Our approach for each of them
outperforms previous ones from the trade-off between
performance and cost. Importantly, these solutions are
decoupled with each other, thus allows us to integrate them

into a unified solution to finally solve the combined problem
stated in Subsection III.A. In the rest of this paper, we carry
out analysis and simulations to study the PPC performance
using our unified solution.

IV. PERFORMANCE ANALYSIS

A. Models
We depict the equivalent model of PPC in Fig. 8. Packet

arrivals are first buffered in Receive FIFO (RF) waiting to be
dispatched. After that by SQF-C, they are associated with one
thread at a selected PE and stored in its local memory. Each
PE processes packets in a sequential order, i.e., it only
switches thread when one packet processing task is completed,
so as to keep PE busy while fetching the next packet. Hence,
each local memory is modeled by a Thread FIFO (TF) with b
memory blocks. (Each block holds one packet.) The newly
dispatched packet is placed at the tail of corresponding TF.
After processing, packets are sent out to Output Buffer (OB)
for multiplexing, which has totally l memory blocks. Here,
only head packet of an active flow can be scheduled out,
therefore guarantees intra-flow packet orders.

Packet arrivals at ingress are assumed to be of fixed-length
PL and represent workload WL measured by PE cycles which
follows exponential distribution with average 1/µ. (The cases
of non-exponential processing time and variable-length packet
arrival are examined in simulation section.) We denote the
time dispatching one packet before TF by 1/λ, aggregating one
packet after OB by 1/β, and let kµ<λ≈β to make sure both
dispatching and aggregating unit are not system bottlenecks.

B. Throughput Guarantee
To investigate the maximal throughput of PPC, we assume

RF is always backlogged. Then applying SQF-C algorithm at
the dispatch unit, TF before each PE is always saturated. PPC
throughput will be maximized if only there is at least one
unprocessed packet at each TF. This is the case when OB’s
length does not increase to l since when TF is not blocked.

()tγ

1/ µ

1/λ 1/ β

Fig. 8. Equivalent analytic model of PPU module

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1384

Fig. 9. Statistical backlog bound at OB Fig. 10. Intra-flow packet interval distributions Fig. 11. Statistical delay bound at RF

There are two reasons when OB’s length increases to l,
causing PPC throughput to degrade: a) traffic burst at OB’s
input; b) OB’s output blocking because of packet out-of-order
issue. Below we investigate their probabilities respectively.

a) As the exponential packet processing time at each PE,
packet arrivals at OB follow Poisson process with arrival rate
kµ when each PE is saturated. Then OB behaves as M/D/1
queue. Solving it by Pollaczek-Khintchine formula [28], we
derive numeric results on statistical backlog bounds at OB, as
shown in Fig. 9 in different Confidence Intervals (CI). When
OB’s size is fixed to l, the minimal speedup at aggregating
unit to constrain OB’s length below l can be derived inversely.
In an implementation with totally 16 blocks in OB, a speedup
of 1.5 is sufficient to limit this probability below 10-5.

b) Investigate packet P2 blocked at OB because of out-of-
order issue. There should exist at least one older packet in the
same flow, denoted as P1, which is still in PPC system. Denote
the delay of P1, P2 at PPC by D(P2), D(P1) and their arrival
interval at ingress by I12. This blocking probability can be
sized by

P{[D(P1)-D(P2)]≥I12}<P[D(P1)≥I12] (9)
We analyze some packet traces from NLANR [29] and

DragonLab [21], and depict intra-flow packet interval
distributions in Fig. 10. We observe

P[I12<90µs]<0.2 (10)
On the other hand, from Subsection IV.C, given maximal

traffic burst c=0, we have
P[D(P)>90µs]≤2×10-5 (11)

Thus, the probability that all the packets in OB encounter
out-of-order is computed by

() ()
{ }

1 2 12 1 12

2 2 12

{[() ()] } [()]
[() 90] [() 90] [90]

(0 .00001 0 .99998 0 .2) 0 .2 0

l l

l

l l

D P D P I D P I
D P s D P s I sµ µ µ

Ρ − ≥ < Ρ ≥
≤ Ρ ≥ + Ρ < Ρ <
≤ + × ≈ →

(12)

Summarize a) and b), 99.999% throughput is guaranteed for
PPC, if only a small speedup of 1.5 is provided at the
aggregating unit.

C. Delay Guarantee
In this part, we assume traffic arrival γ(t) during any time

length t is leaky-bucket constrained by arrival curve γ(t)=Rt+c
(c<∞). The packet delay at PPC is introduced at RF, TF and
OB, sequentially. At RF, packet is backlogged due to the
traffic burst. If we assume the arriving traffic to be strictly
admissible (c=0), we can model the delay at RF by the waiting
time in a D/M/k queue, and further safely approximated by
that in an M/M/k queue, with arriving rate R/PL and departure

rate kµ. Then, the statistical delay bound at RF is derived by
famous Erlang C formula [28]. The case of k=4 is shown in
Fig. 11. When offered load ρ is below 0.9, delay is bounded
by about 29/µ in 99.999% CI. Under bursty traffic arrival
(c≠0), this bound increases to DR=29/µ+c/4PLµ. At the case of
k>4, the delay distribution will remain stable according to the
characteristics of the M/M/k queue.

At TF with fixed size b, it is easy to size its strict delay
bound by DT=b/U, where 1/U is the maximal processing time
for each packet. Lastly at OB, it is modeled by an M/D/1
queue at worst case when all PEs are saturated. In Subsection
IV.B, it is proved that OB’s length will not exceed 16 blocks
with probability 0.99999 when DA operates at a speedup of
1.5. Thus, statistical delay bound at OB with 99.999% CI is
calculated by DF=(1/1.5kµ)×16=2.67/µ when k=4, and even
smaller when k>4.

Totally, the delay bound at PPC with 99.998% CI sizes to

max

max

29 / / 4 / 2.67 /
31.67 / / / 4
(31.67 ()(/) /) / 4

R T F L

L

L

D D D D c P b U
I f bI f cI fP

b I I I f cI fP

µ µ µ= + + = + + +
= + +
= + +

 (13)

Here I , Imax are the average/maximal PE cycles executed
on each packet, f is PE frequency. In a implementation with
b=16, 300I = , Imax=6000, f=1.2GHz, PL=500Byte, we size
D=(87.92+15.625c)µs, where c is in unit of M bit. This is to
say that if we slightly degrade the utility of PEs to 90% (allow
a speedup of 1.11) and adopt a high speed aggregating unit
working at speedup of 1.5, the packet delay at PPC under
strictly admissible traffic pattern will be considerably small,
say below 90µs in 99.998% CI. This result holds no matter
how many PEs are configured in PPC.

We write service curve [30] for such PPC by

max]() 1.1 [(31.67 /)(/) 1.1 []SS t R t bI I I f R t D= − + = − (14)

D. Concatenations
In hybrid NP model composed of several PPCs, the analytic

model becomes PPC concatenations. It is clear that if each
PPC achieves 99.999% throughput, their concatenations
guarantee the same throughput. To size its delay metric, we
write service curve of m PPC concatenations from (14) by

max]() 1.1 [] 1.1 [(31.67 /)(/)m SS t R t mD R t m bI I I f= − = − + (15)
Combining it with arrival curve γ(t)=Rt+c (c<∞), we obtain

the statistical delay bound of m PPS concatenations by (16),
which only pays burst once.

max(31.67 /)(/) / 4m LD m bI I I f cI fP= + + (16)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1385

Fig. 12. Performance of LB algorithms under fix-cycled FW application Fig. 13. Performance of LB algorithms under variable-cycled PM application

Fig. 14. Prediction algorithms Fig. 15. Impact of thread number Fig. 16. Performance of ordering mechanisms

V. SIMULATIONS

A. Methodology
We launch simulations on PPC composed of a DA unit and

four 16-thread PEs, which also follows the analytical model in
Fig. 8. We set TF, OB and RF size to 16, 64 and 30000 blocks.
RF has nearly infinite size to accommodate input traffic
fluctuation and acquire accurate system throughput. The
arriving traffic is generated from real Internet trace [21] at GE
port by extracting the timestamp and packet length from
continuous packet records. Although this trace only has an
average load of 25.2%, we dilute or compress it to obtain other
load rates. In each simulation set, about 1M packets are
injected to PPC. Time slot is defined as one PE instruction
cycle. DA unit works at a speedup of 1.2.

B. Results
1) PLB/FLB Load-balancing Algorithms

We first simulate performance of Load-Balancing (LB)
algorithms under fix-cycled FW application. They are SQF-C,
RR, Symmetrical RR, SH using 5-tuple and DH. Each FW
processing lasts 300 PE cycles fixedly. In this case, SQF-C
can be seen as the optimal algorithm, since it accurately
predicts each packet processing time. Figure 12(a)(b) depicts
the average delays and throughput of LB algorithms. Results
show that PLB algorithms (RR/Symmetrical RR) perform very
close to the optimal SQF-C, while FLB algorithms (SH/DH)
receive throughput degradation of 11.6% and 12.6% due to the
non-uniformity of hash functions.

We further plot their performance under variable-cycled PM
application in Fig. 13(a)(b). Each PM task occupies 4L PE
cycles, where L is packet length. This time, SQF-C still stands
for the optimal algorithm due to the accuracy of its prediction.
Results show that RR also receives comparable performance
with the optimal SQF-C. Notice that, Symmetrical RR this
time can not catch up with the optimal performance, it falls to
a throughput of 91.7% due to the cost in handling packet out-
of-order. At the same time, FLB algorithms experience even

larger delay than in fixed-cycled case and is diminished to a
throughput of 75.9%~78.3%.
2) Processing Time Prediction Algorithms

We compare SQF algorithms using flow-based and class-
based predictions, and the optimal algorithm which is assumed
to predict accurately for each packet. RR algorithm is also
plotted for comparison. In this simulation set, we apply a
mixed application of FW and Packet Filtering (PF) in PPC. PF
does similar job with PM, but will finish if only a pattern is
found. Thus, its processing time is modeled by rand×4L,
where rand is uniformly distributed in [0,1]. Load rate is fixed
to 0.9 (similar results are received at load rate of 1.0), and the
ratio of packets executing PF increases from 0% to 100%.

Average delays in different algorithms are depicted in Fig.
14, where both prediction algorithms perform better than RR.
SQF-C outperforms SQF-F with average delay only 1.0%
larger than the optimal one, while SQF-F is 21.5% larger.
3) Thread Number’s Impacts

We test PPC performance when PE thread number (TF size)
increases. The mixed application of FW and PF in set 2 is
applied with 20% FW and 80% PF. Load rate is fixed to 1.0
and PPC adopts SQF-C algorithm. Performance metrics given
in Fig. 15 demonstrate that as thread number increases beyond
16, the system performance remains stable at the best one.
4) Ordering Mechanisms

In this set, we deploy Symmetrical RR, GT and our per-
flow ordering mechanisms on PPC. Still, SQF-C scheduling is
used. Under mixed applications of 20% FW and 80% PF, we
find in Fig. 16 that both ordering methods (SRR, GT)
deteriorate PPC performance, with throughput degradation of
16.6% and 8.9% respectively, while our approach receives
more than 99.98% throughput of a no-ordered one. This result
fits our analysis in Section IV well.

To sum up, in all simulation sets, our unified solution
always achieves nearly optimal performance and considerably
outperforms all the other simulated approaches. Even under
highly biased applications, as in Fig. 16, it is able to retain at
nearly 100% throughput and provides an average delay of less

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1386

Fig. 17. Block diagram of THNPU-1

than 1000 time slots when offered load is below 0.9. Given
1.2GHz PE, the actual average delay at such PPC is below 1µs.

VI. IMPLEMENTATION
We implement the PPC design in THNPU-1, a FPGA-based

NP prototype from Tsinghua University. Fig. 17 illustrates its
structure. The parts in grey are two PPC stages. Each contains
4 PEs. The first stage is a packet parser that extracts essential
fields from IPv4/IPv6/MPLS headers and as well carries out
limited inspection on payload. The second stage is the packet
modifier, which handles most IP/MPLS forwarding protocols.

Currently, implementing state-of-the-art TCAM through
standard LA-1 interface and advanced DRAM technology
such as QDR and RL-DDR, THNPU-1 with each PE working
at a frequency of 110MHz, fully supports duplex OC-48c or
four duplex GE L2-4 (as well as partly L7) line rate packet
processing. Further evolvement to an ASIC chip is expected to
meet the requirements of an OC-192 port.

VII. CONCLUSION
Motivated by the idea that a PPC structure should be

introduced in the next-generation high-end NP, we discussed
the major bottleneck issues that prevent PPC from reaching
maximal performance. Through comprehensive investigations
on current approaches, we propose a unified solution that
load-balances traffic by SQF scheduling with class-based
prediction, orders packets only in per-flow scope, and adopts a
distributed memory hierarchy. Both performance analysis and
simulation results demonstrate that our solution outperforms
previous approaches with nearly 100% throughput guarantee
and relatively small average delay. Complexity assessment
indicates that PPC solution is scalable to support up to OC-
768c line rate.

REFERENCES
[1] C. Liu, L. Shi, et al., "Utility-based Bandwidth Allocation for Triple-play

Services," in Proc. European Conference on Universal Multiservice
Networks, 2007.

[2] Y. Chawathe, S. Ratnasamy, et al., "Making Gnutella-like P2P Systems
Scalable," in Proc. ACM SIGCOMM, 2003.

[3] Cisco Systems, Inc., Silicon Packet Processor, http://www.cisco.com/.
[4] Bay Microsystems, Chesapeake, http://www.baymicrosystems.com/.
[5] Xelerated, Inc., X10q, http://www.xelerated.com.
[6] EZchip Technologies Ltd., NP-1, http://www.ezchip.com/.
[7] Intel Corp., Intel IXP2800 Network Processor, http://developer.intel.com

/design/network/products/npfamily/ixp2800.htm.

[8] L. Thiele, S. Chakraborty, et al., "Design Space Exploration of Network
Processor Architectures," in Proc. 1st Network Processor Workshop
(NP-1) in Conjunction with HPCA-8, 2002.

[9] M. Gries, C. Kulkarni, et al., "Exploring Trade-offs in Performance and
Programmability of Processing Element Topologies for Network
Processors," in Proc. 2nd Network Processor Workshop (NP-2) in
Conjunction with HPCA-9, 2003.

[10] H. Liu, "A Trace Driven Study of Packet Level Parallelism," in Proc.
IEEE ICC, 2002.

[11] N. Weng and T. Wolf, "Pipelining vs. Multiprocessors - Choosing the
Right Network Processor System Topology," in Proc. ANCHOR 2004 in
Conjunction with ISCA 2004, 2004.

[12] Intel IXP2XXX Product Line Architecture Tool, User Guide, Rev. 002,
July 2005.

[13] B. Xu, X. Zhou, et al., "Recursive Shift Indexing: A Fast Multi-Pattern
String Matching Algorithm," in Proc. 4th International Conference on
Applied Cryptography and Network Security, 2006.

[14] Y. Luo, J. Yu, et al., "Low Power Network Processor Design Using
Clock Gating," in Proc. IEEE/ACM DAC, 2005.

[15] V. Paxson, "End-to-end Internet packet dynamics," IEEE/ACM Trans.
Networking, vol. 7, no. 3, pp. 277-292, June 1999.

[16] J. Cuo, J. Yao, et al., "An Efficient Packet Scheduling Algorithm in
Network Processors," in Proc. IEEE INFOCOM, 2005.

[17] L. Kencl and J.-Y. L. Boudec, "Adaptive Load Sharing for Network
Processors," in Proc. IEEE INFOCOM, 2002.

[18] W. Shi, M. H. MacGregor, et al., "Load Balancing for Parallel
Forwarding," IEEE/ACM Trans. Networking, vol. 13, no. 4, pp. 790-801,
Aug. 2005.

[19] G. Dittmann and A. Herkersdorf, "Network Processor Load Balancing
for High-Speed Links," in Proc. SPECTS, 2002.

[20] Z. Cao, Z. Wang, et al., "Performance of Hashing-Based Schemes for
Internet Load Balancing," in Proc. IEEE INFOCOM, 2000.

[21] Tsinghua Egress Traces from DragonLab, http://dragonlab.org/.
[22] L. Carter and M. Wegman, "Universal Classes of Hashing Functions," J.

Computer and System Sciences, vol. 18, no. 2, pp. 143-154, 1979.
[23] M. Shreedhar and G. Varghese, "Efficient Fair Queuing Using Deficit

Round-Robin," IEEE/ACM Trans. Networking, vol. 4, no. 3, pp. 375-385,
1996.

[24] H. Adiseshu, G. Parulkar, et al., "A Reliable and Scalable Striping
Protocol," in Proc. ACM SIGCOMM, 1996.

[25] F. Sabrina and S. Jha, "Scheduling Resources in Programmable and
Active Networks based on Adaptive Estimations," in Proc. IEEE LCN,
2003.

[26] T. Wolf, P. Pappu, et al., "Predictive Scheduling of Network
Processors," Computer Networks, vol. 41, no. 5, pp. 601-621, April 2003.

[27] CACTI 4.2, http://quid.hpl.hp.com:9081/cacti/.
[28] R. W. Wolff, Stochastic Modeling and the Theory of Queues. Prentice

Hall, Oct. 1989.
[29] Abilene-III Traces from NLANR, http://pma.nlanr.net/Special/ipls3.html.
[30] J.-Y. L. Boudec and P. Thiran, Network Calculus: A Theory of

Deterministic Queuing Systems for the Internet. Springer-Verlag, New
York, 2001.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

1387

