
 

Abstract--Next-generation high-end Network Processors (NP) 
must address demands from both diversified applications and 
ever-increasing traffic pressure. One major challenge is to design 
an extraordinary scalable architecture. In this paper, it is argued 
that such an objective can only be sufficed by introducing highly 
paralleled structure, namely the Paralleled Processing-engine 
Cluster (PPC). We demonstrate this point from the trade-off 
among aspects such as performance, programmability and 
flexibility. However, PPC natively suffers from several critical 
issues on load-balancing, intra-flow packet ordering and memory 
contention. After investigating several existing approaches, we 
present novel solutions for each issue according to the balance 
between performance and coast. Through intensive analysis and 
comprehensive simulations, it is shown that the Shortest Queue 
First scheduling with Class-based prediction (SQF-C) performs 
nearly optimally, while the hardware based per-flow ordering 
mechanism resolves packet out-of-order independently with the 
load-balancing issue, inducting little throughput degradation. 
Implementing the unified solution, it is capable to design a PPC 
supporting up to OC-768c line rate. Real implementation is also 
carried out in our THNPU-1 prototype to verify the conclusions.  
 
Keywords—Network Processor, Parallelism, Load-balancing.  

I. INTRODUCTION 

Traditional IP routers rely on Application Specific 
Integrated Circuit (ASIC) to deal with the expeditiously 
growing packet processing requirements. At the same time, as 
the emergence of modern Internet applications, such as triple-
plays [1] and P2P [2], more flexibility beyond ASIC is also 
extremely desired. To answer that, Network Processor (NP) is 
introduced to combine ASIC’s high-speed superiority and 
General Purpose Processor’s (GPP) outstanding flexibility. 
Due to its enhanced programmability, the time-to-market 
cycle of NP based products is greatly shortened. Again the 
same reason lengthens their time-in-market. 

To build such a high-end NP, a pragmatic challenge is the 
development of highly scalable internal architecture, lying on 
which, engenders the main problems studied in this paper: 
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1) In what topology should high-end NP be constructed? 
2) By which mechanisms can such a NP maximize its 

utilization? 
Previously, NP vendors have developed quite a lot of 

solutions. Cisco Systems Inc. fabricated its 40Gbps Silicon 
Packet Processor (SPP) [3] with highly paralleled cluster 
structure. Bay Microsystems just disclosed a new chip, called 
Chesapeake, designed to be an integrated NPU/TM device to 
operate at 40Gbps [4]. Xelerated Inc. designed X10q [5] in 
pipelined architecture with up to 200 stages. EzChip Ltd. 
provided NP-1 [6] in a hybrid topology, i.e., both paralleled 
and pipelined techniques are employed. Intel Corp. even 
designed NP [7] in a flexibly reconfigurable scheme. These 
vendors adopt diversified NP architecture in orientation to 
separate markets and demands. By now, it is still hazy which 
design is the best. 

Recent studies in academia also cannot come to consensus. 
Nearly all possibilities within NP’s design space [8] are 
exploited. M. Gries et al. show in [9] paralleled model is the 
best in dealing with IP forwarding application. At the same 
time, H. Liu argues that it cannot scale much due to the 
limited packet-level parallelism within Internet traffics [10]. N. 
Weng and T. Wolf adopt a random algorithm to map 
applications to NP’s topology. They prefer the pipelined 
structure based on their simulation results [11]. Facing to such 
a multifarious research, it is strongly asked to have a thorough 
study extensively combining theoretical models with practical 
implementations on NP’s architecture design. 

In this paper, based on trade-off among NP’s performance, 
programmability, flexibility, scalability, as well as power 
saving capability and system robustness, we derive a 
conservative sequitur on its architecture design that an 
extremely paralleled structure, namely Paralleled Processing-
engine Cluster (PPC), is a must, at least functioning as one 
stage of high-end NP. This argument is validated through 
experiments on Intel IXP workbench [12]. 

However, due to the intrinsic nature of parallelism, PPC 
cannot maximize performance by straightforwardly stacking 
Processing Engines (PE) together. We focus on three major 
issues resulting in that: load-balancing, intra-flow packet 
ordering, and memory contention. We survey several existing 
methods, carry out analysis to evaluate their performance, and 
then present novel solution for each issue according to the 
trade-off between performance metrics and implementation 
cost. Our main contribution in this paper lies in the following: 

1) We propose the Shortest Queue First scheduling with 
Class-based prediction algorithm (SQF-C), the per-flow 
ordering mechanism, as well as a distributed PPC memory 
hierarchy. Due to their decoupled properties, we are able to
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1 Multi-pipelining model can be classified to paralleled model, with a 
pipeline substituting for each paralleled PE. 

2 ME is used interchangeably with PE in Intel IXP. 

 
Fig. 1: (a) Pipelined model (b) Paralleled model (c) Hybrid model 
 

combine them into a unified solution naturally. 
2) Through performance analysis, we prove that PPC in our 

solution guarantees nearly 100% throughput, if only a speedup 
of 1.5 is provided at the aggregating unit. Furthermore, if the 
paralleled PEs further permit a speedup of 1.11, a delay bound 
at a hundred microseconds can be obtained under practical 
implementation parameters, no matter how many PEs are 
integrated. Trace-driven simulation results show that our 
unified solution performs load-balancing nearly optimally 
while inducting little throughput degradation from the packet 
ordering mechanism. This significantly overtops previous 
methods. 

3) Investigations on hardware complexity of our solution 
show that it is scalable to cope with PPC running at up to OC-
768c line rate. 

We have applied PPC solution in a real implementation, 
THNPU-1, a FPGA based multi-stage NP prototype that fully 
supports OC-48c line rate IPv4/IPv6/MPLS forwarding. 

In rest of this paper, we discuss necessities of PPC in 
Section II, propose unified solution to handle PPC issues in 
Section III, carry out performance analysis in Section IV, and 
present simulation results in Section V. Section VI introduces 
implementations and finally Section VII concludes the paper. 

II. WHY PARALLELISM IS A MUST IN HIGH-END NETWORK 
PROCESSOR DESIGN 

A. General NP Models 
State-of-the-art NP designs generally follow three styles of 

topology1: pipelined model, paralleled model and hybrid 
model, depicted in Fig. 1(a)(b)(c). In a pipelined model, the 
application is partitioned into several sequential micro-tasks 
and mapped to all the stages of the pipeline. In a paralleled 
model, multiple PEs are connected in a pool topology. Each 
PE handles part of arrival traffic. In the hybrid model, the 
former two are mixed, with a high-level pipelined topology 
and paralleled sub-topology at each stage. We then compare 
their efficiencies in building a high-end NP from several 
critical aspects. Since in hybrid model, each stage follows a 
paralleled model, we only contrast the paralleled model with 
the pipelined one, and derive architecture choice for an entire 
NP or its single stage in case a hybrid model is adopted. 
B. Trade-off between Performance and Programmability 

The ideal performance of NP in paralleled model, measured 
by its throughput, increases linearly with PE number. Even 
accounting the degradation caused by load-balancing and 
packet ordering issue, the performance curve is only slightly 
biased referred to our results in Section IV and V. At the same 
time, users of such NP are transparent to its architecture by 

 
Fig. 2. Performance comparisons of paralleled model with pipelined model 
 

simply running the same code on each PE. It provides the best 
programmability. 

On the other hand, users of NP in pipelined model need to 
divide each application uniformly across all the stages in order 
to maximize PE utilization, which affects its programmability. 
Even if application is divided automatically by embedded 
high-level compilers, it still cannot perform best due to the 
facts: 1) some atomic tasks are not dividable any more, such 
as pattern matching application; 2) some task’s processing 
time is not even predictable, such as packet filtering; 3) the 
impacts of inter-stage communications can not be ignored. 

In this sense, paralleled model is the better choice from the 
trade-off between performance and programmability. 
Experiments are also carried out on Intel Develop Workbench 
[12] to validate this point. We configure Intel IXP2800 to be 
paralleled and pipelined model respectively, both employing 
2~10 MEs2 to execute test applications. (IXP2800 has 16 MEs 
in total, but 6 out of 16 are fixed for packet Rx/Tx, Queue 
Management and Scheduling). Three standard applications are 
tested: IPv4 forwarding (FW), Diffserv (DS) and Pattern 
Matching (PM) [13]. Each time 1000 fixed-length packets are 
sent at the input. Packet length is set to 64 bytes for FW/DS 
and 104 bytes for PM, where 64 byte random payload in each 
packet is matched by 1000 8-byte-patterns. The task division 
across stages in pipelined mode is handled by compiler from 
Intel, which is normally better than a manual one. 

Fig. 2 depicts the throughput dynamics when ME number 
increases. Results show that the paralleled model always 
performs better than the pipelined one. Under FW application 
in Fig. 2(a), the throughput in paralleled model increases 
before 4 MEs are employed, and then stays stable at about 
9.5Gbps, while in pipelined model the throughput has never 
exceeded 6Gbps. Under DS application in Fig. 2(b), the curve 
of paralleled model is similar, but throughput this time keeps 
on increasing until 6 MEs are employed. This is because the 
system bottleneck after that has shifted from ME to memory 
bandwidth; DS requires less memory transaction but more ME 
processing compared with FW. Under PM application where 
computing complexity is the dominating factor, it is clearly 
shown in Fig. 2(c) that the paralleled model receives 
continuous throughput climb-up while the pipelined model 
remains nearly unchanged. This result validates our argument 
that PM application cannot be divided further into granules. In 
addition, in all our experiments, pipelined model suffers from 
throughput degradation also because of high communication 
complexity between all the consecutive stages. 
C. Flexibility and Scalability 

Next Generation high-end NP should also adapt with 
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3 In this paper, flow is defined by 5-tuple. I.e., IP source address, IP 
destination address, source port number, destination port number and type 
of transport protocol.

evolvements of network protocols, processing tasks, traffic 
patterns, and be scalable to support the ever-increasing link 
speed. While NP in paralleled model meets these requirements 
perfectly by updating micro-codes of each PE homogeneously 
and altering the number of paralleled PEs adaptively, the 
pipelined NP generally fails to achieve that. The variation of 
processing task on each stage will not only affect itself, but 
also force the codes to be repartitioned and remapped across 
all the stages to guarantee maximal performance. This 
introduces sizable overhead. In addition, to provide higher 
processing capacity, solely adding stages is inadequate, 
repartition of processing task is also a must. 
D. Power Saving and Robustness 

As NP chip density rises with PE number, the power 
dissipation also becomes a critical scaling bottleneck. Authors 
in [14] has developed adaptive power saving techniques for 
the paralleled NP model by turning off a subset of PEs during 
light load periods. It brings significant reduction in power 
consumption (up to 30%) while introduces little impacts on 
overall throughput. Only a portion of PEs is affected in each 
power saving operation. However, this technique can not be 
extended to pipelined model, since the only PE in each stage 
cannot be turned off. Although frequency adaptation can be 
employed, all PEs are involved in each operation. When 
frequency adaptation is not continuously variable, its 
efficiency is normally worse than that of paralleled model. 

The same issue also exists when system robustness is 
considered. Under failures of some PE, NP in paralleled model 
can gracefully deal with it by bypassing the broken PE. 
However, NP in pipelined model needs a great endeavor to 
achieve the same feature. 
E. Paralleled PE Cluster 

In respect that the paralleled model gains advantages in 
nearly all aspects illustrated above, we conclude that such 
architecture is essential in fabricating next-generation high-
end NP. It will perform as entire NP in the pure paralleled 
model or a single stage in the hybrid model. 

We name such structure the Paralleled PE Cluster (PPC). In 
what follows, we focus on the major scaling issues of PPC, 
and propose a unified solution to maximize its performance. 

III. EXPLOITING PARALLELISM IN HIGH SPEED PROCESSING 

A. Problem Statement 
The main challenge that affects the PPC to maximize its 

utilization is the combined problem of load-balancing, intra-
flow packet ordering, and memory contention. 

1) Load-balancing: Packet arrivals at PPC should be 
distributed to each PE uniformly. Furthermore, this uniformity 
is not defined on the traffic volume to each PE directly, but on 
the workload measured by PE instruction cycles. This makes 
things complicated since the processing time of each packet 
can not be accurately estimated. In case the load-balancing is 
non-uniform, packet delay at the heavily loaded PE will be 
considerable large. At that time, due to the scarceness of on-
chip buffer, packet loss is inevitable. 

 
Fig. 3. Average IF using static hashing 

 

2) Intra-flow packet ordering: The packets in same flow3 
should depart from PPC in the same order with their arrivals. 
This requirement comes from the intrinsic demands of upper  
layer protocols, such as TCP [15]. 

3) Memory contention: PPC should provide sufficient 
memory bandwidth, as networking applications are mostly 
data-intensive. Under line rate R, its overall bandwidth request 
reaches up to R(2+ρp). Here ρp is ratio of average read/write 
bytes in each packet processing to the average packet length. 
Due to the well-known fact that memory technologies can not 
catch up with the increase of link speed, a proper memory 
hierarchy should be adopted to enhance system efficiency. 

Although the above problems are always incorporated, we 
try to figure them out in a divide and conquer method. 

B. Load-Balancing 
Previously, several load-balancing algorithms have been 

proposed [16-20]. They can be partitioned into two categories: 
Flow-based Load-Balancing (FLB) and Packet-based Load-
Balancing (PLB). FLB dispatches packets of a same flow to an 
unchanged PE, thus preserves packet order intrinsically; PLB 
assigns each packet independently, hence achieves fine 
uniformity. We investigate these two approaches respectively 
and then present our novel solution. 
1) FLB 

FLB generally adopt hashing techniques to map individual 
flows into finite PE space. Two classes of FLB can be used: 
Static Hashing (SH) [20] and Dynamic Hashing (DH) [19]. 

SH maps each flow by directly hashing its 5-tuples to PE ID. 
This approach introduces little hardware cost, but also receives 
limited performance due to the non-uniformity of hashing and 
the heavy-tailed flow-size distribution in Internet. To reveal 
this point, we carry out experiments using real trace collected 
at the GE link connecting Tsinghua University to CERNET 
[21]. Traffic generated from this trace is load-balanced into 8 
PEs by SH with three popular hashing functions (CRC16 [20], 
XOR, H3 [22]). Denote the traffic volume dispatched to PE l 
in a time period T by Al(T), which is assumed to stand for the 
amount of processing tasks. We define load-Imbalance Factor 
(IF) in a time period T to be the maximal derivation ratio 
formulized by  

IF=Max{ |Al(T)-avg[Al(T)]|/avg[Al(T)] }                            (1) 
Given a pre-defined timescale TS, we calculate the average 

IF of every non-overlapped time periods with length TS to 
represent overall load-imbalance degree. Average IFs under 
timescales from 1ms to 10s are depicted in Fig. 3. As we 
increase timescale exponentially, it actually does not go 
asymptotically to zero, but stay stable at 0.2~0.4. It indicates 
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4 The resource demands at each PE are far from these four, however, 
from our experience and previous literatures, they take up the most part. 

the universal load-imbalance caused by SH. 
DH, another approach, maps each flow on-line based on the 

load status of all the PEs, as such improves the load-balancing 
uniformity. However, at least two issues affect its performance 
and scalability: 1) It needs to maintain per-flow information. 
Under OC-768c line rate with full load, the simultaneous 
active flow number may increase beyond 1M if we set flow 
timeout to 2s. Currently, there is no such memory technology 
to provide enough capacity for the flow table and fast access 
speed. 2) It still suffers from non-uniform load-balancing due 
to the heavy-tailed flow-size distribution, when flow 
remapping is not employed. On the other hand when active 
flows are allowed to be remapped, intra-flow packet order, as 
the penalty, is not strictly preserved. 

To sum up, FLB avoids the reordering cost, however, pay a 
great deal in performance due to their non-uniformities. It is 
further shown by our simulations in Section V, both SH and 
DH with no flow remapping receive at least 10% throughput 
degradation under fix-cycled or variable-cycled applications. 
2) PLB 

PLB load-balances each packet independently to achieve 
the optimal uniformity. It leaves intra-flow ordering issue 
handled by extra output resequencing mechanisms. The 
optimal PLB is derived as below. 

We use vector R={pr, iob, co, mb} to define per-second 
demands from arrival traffic on processing capacity, IO 
bandwidth, co-processor invoking and memory bandwidth4. 
With load-balancing algorithm F, the workload assigned to PE 
i is defined by Ri=Fi(R). If we denote the capacity of PE i by 
Ci={p[i], io[i], c[i], m[i]}, and performance metrics Ii at PE i 
by {Di, TPi}, where Di, TPi are the average delay and 
throughput at PE i. Ii is written by  { ( , ), ( , )}i i i i iI D R C TP R C=   (2) 

The optimal PLB’s target is to maximize I, where 

1 1
/ { [ ( ), , [ ( ), } /] ]k k

i i i i ii i
I I k D F R C TP F R C k

= =
= =∑ ∑               (3) 

We consider PPC which shares IO/co-processor resources 
and decouple memory contention issue by assuming it not to 
be the bottleneck, (3) becomes (4) given fixed iob and co. 

( ) ( ){ }1 1
/( ), [ ] , ( ), [ ]k k

i r i ri i
I kD F p p i TP F p p i

= =
= ∑ ∑           (4) 

Since TP(a,b)=max(b/a,1) and D(a,b) is the convex function 
of a/b, the maximization of overall throughput and 
minimization of average delay lead to the same solution under 
admissible traffic input, that 

1
( ) [ ] / [ ]k

i r r i
F p p p i p i

=
= ∑            (5) 

It demonstrates that the optimal PLB is to dispatch packets by 
their workloads (packet processing times) in proportion to 
PE’s processing capacity. If identical PEs are used in PPC, (5) 
becomes Fi(pr)=pr/k. 

Some basic PLB algorithms such as Deficit Round Robin 
(DRR) [23] and Surplus Round Robin (SRR) [24] are broadly 
used for their O(1) complexities where packet size is assumed 
to represent actual packet processing time. To outperform 
them, several prediction algorithms have been introduced. 
Some recent solutions adopt flow-based prediction [25, 26]. 
Packet processing time within flow f is explicitly forecasted by 
T=αfL+βf , where L is the packet length, parameters αf and βf 

are adaptively adjusted according to actual processing time of 
recent packets in f. The PE which has been assigned the lowest 
predicted workloads will receive packet in each load-
balancing operation. We call it Shortest Queue First with 
Flow-based prediction (SQF-F). 

Nevertheless, SQF-F may fail to preserve accuracy under 
current networking environments in respect that: 1) As in FLB 
algorithms, it is hard to maintain per-flow prediction context 
when total active flow number increases to as large as 1M 
under OC-768c line rate. If prediction is carried out at flow-
aggregation level, SQF-F will thoroughly fail since processing 
time of each flow is independent; 2) In handling applications 
with processing time T=rand×αf’L+βf’, such as packet filtering 
where rand is random variable uniformly distributed in [0,1], 
SQF-F losses its accuracy, since αf is not predictable. In worst 
case, it actually generates processing time in random, and 
performs even .worse than the simplest RR scheduling. 

Denote the processing time of packet i to be random 
variable X. When n packets are backlogged before one PE (n 
is large enough), the total prediction error of RR algorithm 
(equivalent to prediction with average) is 

1
( )n

ii
X nE X

=
−∑ , 

following normal distribution N[0,nVar(X)]. Contrastively in 
worst case of SQF-F, denote predicted processing time for 
packet i by random variable Y exhibiting same distribution 
with X, the total prediction error is calculated by 

1
( )n

i ii
X Y

=
−∑ , 

follows normal distribution N[0,2nVar(X)]. It reveals that 
SQF-F performs even worse than RR at worst case with total 
prediction error variation one time larger. 
3) Class-based Prediction 

To overcome the inaccuracy and the complexity of flow-
based prediction, we introduce a novel Class-based prediction 
scheme [26] in SQF based load-balancing, namely SQF-C. We 
show that this method will always perform better than RR 
algorithm, while need not to keep per-flow information due to 
the finite number of traffic classes. 

In SQF-C, arrival traffic is partitioned into t classes 
according to application types. For a packet of length L in 
class i, we can model its accurate processing time by 

1
( ) ( )i i i i

m j j
i ij

T f L U V g Lα
=

= + + +∑                                        (6) 
Here, αi, fi(L) and gi

j(L) are determined off-line by 
investigating processing micro-codes, Ui and Vi

j are random 
variables determining processing time variation. For each 
packet in class i, SQF-C generates prediction value by 

1
( ( ) ( ) ( ) ( )) m j j

i i i i i i ij
P E T f L E U E V g Lα

=
= + + += ∑                    (7) 

We then analyze its performance. Denote the traffic ratio of 
class i by qi, and the total class number by l, when n packets 
are backlogged before one PE (n is large enough), the total 
prediction error by SQF-C counts to 

1 1 1
( ) [ ( )]in l nq j

i i i ii i j
X Y T E T

= = =
=− −∑ ∑ ∑                              (8) 

Here Ti
j denotes the accurate processing time of jth packet 

in class i. Then the total prediction error follows normal 
distribution 1

0, ( )l
i ii

N n q Var T
=

 
 ∑ . Since 1

( )( )l
i ii

Var Xq Var T
=

<∑  

holds at any time, SQF-C always performs better than RR. 
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5 We use a Tri-model (64 bytes, 576 bytes, 1500 bytes, 50%, 30%) to 
mimic current packet length distribution in Internet. I.e., 64 byte packet 
accounts for 50% packets, 576 byte 30%, the others are of 1500 byte length. 

C. Packet Ordering 
1) Symmetrical Round Robin 

One ordering method is to dispatch packets at input in a 
strict RR manner to all the PEs, and read them out at output in 
the same order. We name it the Symmetrical RR algorithm. In 
this approach, the packets processed faster will not be 
scheduled out until all the precedent packets probably with 
larger delay have been outputted. This method actually adopts 
delay equalization technique and increases the delay of each 
packet to the largest one in recent. When all the packet buffers 
beside some PE are occupied by packets that are blocked due 
to the out-of-order issue, this PE will become idle and degrade 
the overall system throughput. 
2) Tagging 

Another ordering method is the tagging and in-order output 
scheduling. At the input, each arrival packet is tagged with a 
sequence number. Then at the output, only the packet with in-
ordered sequence number can be scheduled out. The tagging 
technique can be carried out in global scope or per-flow scope. 
Global Tagging (GT) is easy to implement, however, it 
introduces throughput degradation when output resequencing 
buffer is limited, which is the case in NP with scarce on-chip 
memory. Comparatively, the per-Flow Tagging (FT) approach 
keeps packet sequence in flow scope, thus allows all the 
packets in head of each flow to be scheduled out after 
processing, considerably alleviating the ordering constraints. 
Nevertheless, due to the difficulty to maintain per-flow 
information, FT is often carried out on merely coarse-grained 
flow aggregation level, whose performance greatly depends on 
the uniformity of hash function that maps flows to their 
aggregations. In worst case, FT degenerates to GT. 

We carry out experiments to test the performance of 
Symmetrical RR and GT based on reconfigurable IXP2400 
under Intel Develop Workbench. We construct 4 MEs of each 
IXP2400 as a PPC and realize Symmetrical RR and GT 
mechanisms by employing Intel’s HyperTask Chaining model 
and Asynchronous Insert Synchronous Remove (AISR) array 
technology respectively. PPC’s performance without ordering 
constraint is also plotted for comparison. Two standard 
applications [12] are deployed: one is IPv4 Forwarding (FW) 
which stands for the fixed-time processing; the other is IPv4 
Forwarding plus Pattern Matching (FW+PM), which gives the 
case of variable-time processing. The input data rate is set to 
5Gbps for FW and 2.5Gbps for FW+PM to saturate the MEs. 

We depict throughputs of three ordering methods in Fig. 4. 
Under FW application and real packet length distribution5 (Fig. 
4(a)), both ordering mechanisms achieve nearly same 
throughput as that of no-ordered one, since in this case no out-
of-order actually happens. Under 49 byte fixed-length packet 
arrivals (Fig. 4(b)), GT suffers from 27.1% throughput 
degradation. AISR array this time becomes system bottleneck 
as packet arrival rate increases a great deal. Meanwhile, 
Symmetrical RR retains the throughput similar to a no-ordered 
one, since there is still no packet out-of-order and the resulting 
output blocking under fixed-time processing. However, under 
FW+PM application with real packet length distribution (Fig. 
4(c)), the throughput of Symmetrical RR degrades 64.7%, due  
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Fig. 4. PPC throughput with packet ordering mechanisms 

 
to the highly biased packet processing time. While the 
throughput received by GT also decrease 23.5% because of 
the significant increase in resequencing buffer length. 

To sum up, both the ordering mechanisms can not perfectly 
deal with all the traffic patterns and applications. 
3) Per-flow ordering without per-flow information 

In this paper, we develop a novel per-flow ordering method 
without maintaining large numbers of per-flow information. 
Our solution is based on the fact that the number of buffer 
blocks (each block holds a packet) inside current NP is 
limited. Therefore, we only store the flow information of 
packets currently buffered in system, since packets waited in 
the queue before the load-balancing point or already outputted 
will not cause out-of-order. This mechanism is implemented 
by a hardware dispatching and aggregating unit (DA). 
Compared with previous solutions using programmable PE to 
manipulate traffic, hardware DA is able to achieve much 
higher line rate while maintaining per-flow orders. 

The details of DA unit are given in Fig. 5. Totally three 
register-based tables are maintained: memory table, flow table 
and thread table. Memory table stores status of each memory 
block in system and flow information of the corresponding 
packet in the block. By recording a next block field for each 
packet, it builds a link list for each active flow in system as 
packet arrival sequence. Flow table stores the information of 
each active flow in DA, including the head/tail of its link list, 
and flowID defined by 5-tuples. Thread table keeps busy/idle 
status of each PE thread in NP and the index of associated 
memory block.  

The packet ordering mechanism works as below. When a 
packet arrives at ingress, we first search its 5-tuples in flow 
table to judge whether it belongs to a new flow or an active 
flow. In former case, a new flow entry is inserted to the flow 
table and this arrival packet’s entry in memory table is set 
accordingly: head field is written to 1 to indicate it is the first 
packet of a flow. In latter case, the entry representing this 
active flow in flow table is updated: this packet’s index in 
memory table is stored in tail field of flow table, and the old 
tail packet’s next block field in memory table is updated to 
restore the active flow link list. On the other hand at the egress 
direction, only the packets with head field in memory table 
being 1 can be scheduled out. In this manner, per-flow packet 
order is preserved. After scheduling each packet out, the three 
tables are updated to the correct value. 
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Fig. 5. Block diagram of DA 

 

Fig. 6. Evaluation of DA’s timing complexity Fig. 7. Distributed memory hierarchy 
 

We further quantitate the complexity of our approach. The 
mechanisms in each load-balancing and aggregating operation 
are described in Fig. 6. For each packet, in maximal 2 SRAM 
reads and 3 CAM reads are necessary. (1 CAM write cycle 
approximately equals to 2 CAM read cycles). In a 16-PE PPC 
with thread size of 16 and total memory size of 256 blocks, 
which is enough to guarantee system performance according 
to our results in Section IV, the sizes of three tables are about 
4.1kB (flow table), 1.28kB (memory table) and 0.51KB 
(thread table). Running frequency estimation tool CACTI 4.2 
[27], we obtain that the access time of on-chip CAM and 
SRAM with such sizes reach as small as 1.05ns and 0.41ns 
under 65nm technology. Consequently, the maximal line rate 
supported by DA unit reaches 251.9M packets per second, 
corresponding to 80Gbps even under 40 byte packet arrivals. 
This fully supports OC-768c line speed processing. 

D. Memory Contention 
Traditional memory hierarchies in NP mostly adopt shared-

memory approach, where bandwidth request up to R(2+ρp) 
stresses on the single memory. To resolve this bottleneck, we 
propose a distributed memory hierarchy for PPC. It reduces 
the bandwidth demands on each memory down to 2R, which is 
in theory the minimum value. 

Figure 7 depicts our distributed memory solution. We 
implement local memory to each PE. Different from data 
caches in shared-memory approach, the entire packet is 
buffered in the local memory, not only the handles. In this way, 
the processing on the packet payload can be directly carried 
out between PE and its local memory, while shared-memory 
approach needs to access the bottlenecked memory in each 
payload processing. Moreover, the hardware complexity of 
our approach is acceptable. The local memory buffering up to 
b packets is sufficient, where b is the number of threads in 
each PE. As such, a 16-PE PPC with each PE containing 16 
threads only requires a total local memory size of 3Mb. It is 
feasible under current on-chip SRAM technology.  
E. Our Unified Solution 

Summarily, in this section we have proposed novel 
solutions for the load-balancing, intra-flow packet ordering 
and memory bottleneck issues. Our approach for each of them 
outperforms previous ones from the trade-off between 
performance and cost. Importantly, these solutions are 
decoupled with each other, thus allows us to integrate them 

into a unified solution to finally solve the combined problem 
stated in Subsection III.A. In the rest of this paper, we carry 
out analysis and simulations to study the PPC performance 
using our unified solution. 

IV. PERFORMANCE ANALYSIS 

A. Models 
We depict the equivalent model of PPC in Fig. 8. Packet 

arrivals are first buffered in Receive FIFO (RF) waiting to be 
dispatched. After that by SQF-C, they are associated with one 
thread at a selected PE and stored in its local memory. Each 
PE processes packets in a sequential order, i.e., it only 
switches thread when one packet processing task is completed, 
so as to keep PE busy while fetching the next packet. Hence, 
each local memory is modeled by a Thread FIFO (TF) with b 
memory blocks. (Each block holds one packet.) The newly 
dispatched packet is placed at the tail of corresponding TF. 
After processing, packets are sent out to Output Buffer (OB) 
for multiplexing, which has totally l memory blocks. Here, 
only head packet of an active flow can be scheduled out, 
therefore guarantees intra-flow packet orders. 

Packet arrivals at ingress are assumed to be of fixed-length 
PL and represent workload WL measured by PE cycles which 
follows exponential distribution with average 1/µ. (The cases 
of non-exponential processing time and variable-length packet 
arrival are examined in simulation section.) We denote the 
time dispatching one packet before TF by 1/λ, aggregating one 
packet after OB by 1/β, and let kµ<λ≈β to make sure both 
dispatching and aggregating unit are not system bottlenecks. 

B. Throughput Guarantee 
To investigate the maximal throughput of PPC, we assume 

RF is always backlogged. Then applying SQF-C algorithm at 
the dispatch unit, TF before each PE is always saturated. PPC 
throughput will be maximized if only there is at least one 
unprocessed packet at each TF. This is the case when OB’s 
length does not increase to l since when TF is not blocked.  

 

( )tγ

1/ µ

1/λ 1/ β  

Fig. 8. Equivalent analytic model of PPU module 
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Fig. 9. Statistical backlog bound at OB Fig. 10. Intra-flow packet interval distributions Fig. 11. Statistical delay bound at RF 
 

There are two reasons when OB’s length increases to l, 
causing PPC throughput to degrade: a) traffic burst at OB’s 
input; b) OB’s output blocking because of packet out-of-order 
issue. Below we investigate their probabilities respectively. 

a) As the exponential packet processing time at each PE, 
packet arrivals at OB follow Poisson process with arrival rate 
kµ  when each PE is saturated. Then OB behaves as M/D/1 
queue. Solving it by Pollaczek-Khintchine formula [28], we 
derive numeric results on statistical backlog bounds at OB, as 
shown in Fig. 9 in different Confidence Intervals (CI). When 
OB’s size is fixed to l, the minimal speedup at aggregating 
unit to constrain OB’s length below l can be derived inversely. 
In an implementation with totally 16 blocks in OB, a speedup 
of 1.5 is sufficient to limit this probability below 10-5. 

b) Investigate packet P2 blocked at OB because of out-of-
order issue. There should exist at least one older packet in the 
same flow, denoted as P1, which is still in PPC system. Denote 
the delay of P1, P2 at PPC by D(P2), D(P1) and their arrival 
interval at ingress by I12. This blocking probability can be 
sized by 

P{[D(P1)-D(P2)]≥I12}<P[D(P1)≥I12] (9)
We analyze some packet traces from NLANR [29] and 

DragonLab [21], and depict intra-flow packet interval 
distributions in Fig. 10. We observe 

P[I12<90µs]<0.2 (10)
On the other hand, from Subsection IV.C, given maximal 

traffic burst c=0, we have 
P[D(P)>90µs]≤2×10-5 (11)

Thus, the probability that all the packets in OB encounter 
out-of-order is computed by 

( ) ( )
{ }

1 2 12 1 12

2 2 12

{[ ( ) ( )] } [ ( ) ]
[ ( ) 90 ] [ ( ) 90 ] [ 90 ]

(0 .00001 0 .99998 0 .2) 0 .2 0

l l

l

l l

D P D P I D P I
D P s D P s I sµ µ µ

Ρ − ≥ < Ρ ≥
≤ Ρ ≥ + Ρ < Ρ <
≤ + × ≈ →  

(12)

Summarize a) and b), 99.999% throughput is guaranteed for 
PPC, if only a small speedup of 1.5 is provided at the 
aggregating unit. 

C. Delay Guarantee 
In this part, we assume traffic arrival γ(t) during any time 

length t is leaky-bucket constrained by arrival curve γ(t)=Rt+c 
(c<∞). The packet delay at PPC is introduced at RF, TF and 
OB, sequentially. At RF, packet is backlogged due to the 
traffic burst. If we assume the arriving traffic to be strictly 
admissible (c=0), we can model the delay at RF by the waiting 
time in a D/M/k queue, and further safely approximated by 
that in an M/M/k queue, with arriving rate R/PL and departure 

rate kµ. Then, the statistical delay bound at RF is derived by 
famous Erlang C formula [28]. The case of k=4 is shown in 
Fig. 11. When offered load ρ is below 0.9, delay is bounded 
by about 29/µ in 99.999% CI. Under bursty traffic arrival 
(c≠0), this bound increases to DR=29/µ+c/4PLµ. At the case of 
k>4, the delay distribution will remain stable according to the 
characteristics of the M/M/k queue. 

At TF with fixed size b, it is easy to size its strict delay 
bound by DT=b/U, where 1/U is the maximal processing time 
for each packet. Lastly at OB, it is modeled by an M/D/1 
queue at worst case when all PEs are saturated. In Subsection 
IV.B, it is proved that OB’s length will not exceed 16 blocks 
with probability 0.99999 when DA operates at a speedup of 
1.5. Thus, statistical delay bound at OB with 99.999% CI is 
calculated by DF=(1/1.5kµ)×16=2.67/µ when k=4, and even 
smaller when k>4. 

Totally, the delay bound at PPC with 99.998% CI sizes to 
 

max

max

                                    

                                    

29 / / 4 / 2.67 /
31.67 / / / 4
(31.67 ( )(/ ) / ) / 4

R T F L

L

L

D D D D c P b U
I f bI f cI fP

b I I I f cI fP

µ µ µ= + + = + + +
= + +
= + +

 (13)

Here I , Imax are the average/maximal PE cycles executed 
on each packet, f is PE frequency. In a implementation with 
b=16, 300I = , Imax=6000, f=1.2GHz, PL=500Byte, we size 
D=(87.92+15.625c)µs, where c is in unit of M bit. This is to 
say that if we slightly degrade the utility of PEs to 90% (allow 
a speedup of 1.11) and adopt a high speed aggregating unit 
working at speedup of 1.5, the packet delay at PPC under 
strictly admissible traffic pattern will be considerably small, 
say below 90µs in 99.998% CI. This result holds no matter 
how many PEs are configured in PPC. 

We write service curve [30] for such PPC by 
 

max ]( ) 1.1 [ (31.67 / )( / ) 1.1 [ ]SS t R t bI I I f R t D= − + = −  (14)

D. Concatenations 
In hybrid NP model composed of several PPCs, the analytic 

model becomes PPC concatenations. It is clear that if each 
PPC achieves 99.999% throughput, their concatenations 
guarantee the same throughput. To size its delay metric, we 
write service curve of m PPC concatenations from (14) by 

 

max ]( ) 1.1 [ ] 1.1 [ (31.67 / )( / )m SS t R t mD R t m bI I I f= − = − + (15)
Combining it with arrival curve γ(t)=Rt+c (c<∞), we obtain 

the statistical delay bound of m PPS concatenations by (16), 
which only pays burst once. 

 

max(31.67 / )( / ) / 4m LD m bI I I f cI fP= + +  (16)
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Fig. 12. Performance of LB algorithms under fix-cycled FW application Fig. 13. Performance of LB algorithms under variable-cycled PM application

Fig. 14. Prediction algorithms Fig. 15. Impact of thread number Fig. 16. Performance of ordering mechanisms 
 

V. SIMULATIONS 

A. Methodology 
We launch simulations on PPC composed of a DA unit and 

four 16-thread PEs, which also follows the analytical model in 
Fig. 8. We set TF, OB and RF size to 16, 64 and 30000 blocks. 
RF has nearly infinite size to accommodate input traffic 
fluctuation and acquire accurate system throughput. The 
arriving traffic is generated from real Internet trace [21] at GE 
port by extracting the timestamp and packet length from 
continuous packet records. Although this trace only has an 
average load of 25.2%, we dilute or compress it to obtain other 
load rates. In each simulation set, about 1M packets are 
injected to PPC. Time slot is defined as one PE instruction 
cycle. DA unit works at a speedup of 1.2. 

B. Results 
1) PLB/FLB Load-balancing Algorithms 

We first simulate performance of Load-Balancing (LB) 
algorithms under fix-cycled FW application. They are SQF-C, 
RR, Symmetrical RR, SH using 5-tuple and DH. Each FW 
processing lasts 300 PE cycles fixedly. In this case, SQF-C 
can be seen as the optimal algorithm, since it accurately 
predicts each packet processing time. Figure 12(a)(b) depicts 
the average delays and throughput of LB algorithms. Results 
show that PLB algorithms (RR/Symmetrical RR) perform very 
close to the optimal SQF-C, while FLB algorithms (SH/DH) 
receive throughput degradation of 11.6% and 12.6% due to the 
non-uniformity of hash functions. 

We further plot their performance under variable-cycled PM 
application in Fig. 13(a)(b). Each PM task occupies 4L PE 
cycles, where L is packet length. This time, SQF-C still stands 
for the optimal algorithm due to the accuracy of its prediction. 
Results show that RR also receives comparable performance 
with the optimal SQF-C. Notice that, Symmetrical RR this 
time can not catch up with the optimal performance, it falls to 
a throughput of 91.7% due to the cost in handling packet out-
of-order. At the same time, FLB algorithms experience even 

larger delay than in fixed-cycled case and is diminished to a 
throughput of 75.9%~78.3%.  
2) Processing Time Prediction Algorithms 

We compare SQF algorithms using flow-based and class-
based predictions, and the optimal algorithm which is assumed 
to predict accurately for each packet. RR algorithm is also 
plotted for comparison. In this simulation set, we apply a 
mixed application of FW and Packet Filtering (PF) in PPC. PF 
does similar job with PM, but will finish if only a pattern is 
found. Thus, its processing time is modeled by rand×4L, 
where rand is uniformly distributed in [0,1]. Load rate is fixed 
to 0.9 (similar results are received at load rate of 1.0), and the 
ratio of packets executing PF increases from 0% to 100%. 

Average delays in different algorithms are depicted in Fig. 
14, where both prediction algorithms perform better than RR. 
SQF-C outperforms SQF-F with average delay only 1.0% 
larger than the optimal one, while SQF-F is 21.5% larger. 
3) Thread Number’s Impacts 

We test PPC performance when PE thread number (TF size) 
increases. The mixed application of FW and PF in set 2 is 
applied with 20% FW and 80% PF. Load rate is fixed to 1.0 
and PPC adopts SQF-C algorithm. Performance metrics given 
in Fig. 15 demonstrate that as thread number increases beyond 
16, the system performance remains stable at the best one. 
4) Ordering Mechanisms 

In this set, we deploy Symmetrical RR, GT and our per-
flow ordering mechanisms on PPC. Still, SQF-C scheduling is 
used. Under mixed applications of 20% FW and 80% PF, we 
find in Fig. 16 that both ordering methods (SRR, GT) 
deteriorate PPC performance, with throughput degradation of 
16.6% and 8.9% respectively, while our approach receives 
more than 99.98% throughput of a no-ordered one. This result 
fits our analysis in Section IV well. 

To sum up, in all simulation sets, our unified solution 
always achieves nearly optimal performance and considerably 
outperforms all the other simulated approaches. Even under 
highly biased applications, as in Fig. 16, it is able to retain at 
nearly 100% throughput and provides an average delay of less  
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Fig. 17. Block diagram of THNPU-1 

 

than 1000 time slots when offered load is below 0.9. Given 
1.2GHz PE, the actual average delay at such PPC is below 1µs. 

VI. IMPLEMENTATION 
We implement the PPC design in THNPU-1, a FPGA-based 

NP prototype from Tsinghua University. Fig. 17 illustrates its 
structure. The parts in grey are two PPC stages. Each contains 
4 PEs. The first stage is a packet parser that extracts essential 
fields from IPv4/IPv6/MPLS headers and as well carries out 
limited inspection on payload. The second stage is the packet 
modifier, which handles most IP/MPLS forwarding protocols. 

Currently, implementing state-of-the-art TCAM through 
standard LA-1 interface and advanced DRAM technology 
such as QDR and RL-DDR, THNPU-1 with each PE working 
at a frequency of 110MHz, fully supports duplex OC-48c or 
four duplex GE L2-4 (as well as partly L7) line rate packet 
processing. Further evolvement to an ASIC chip is expected to 
meet the requirements of an OC-192 port. 

VII. CONCLUSION 
Motivated by the idea that a PPC structure should be 

introduced in the next-generation high-end NP, we discussed 
the major bottleneck issues that prevent PPC from reaching 
maximal performance. Through comprehensive investigations 
on current approaches, we propose a unified solution that 
load-balances traffic by SQF scheduling with class-based 
prediction, orders packets only in per-flow scope, and adopts a 
distributed memory hierarchy. Both performance analysis and 
simulation results demonstrate that our solution outperforms 
previous approaches with nearly 100% throughput guarantee 
and relatively small average delay. Complexity assessment 
indicates that PPC solution is scalable to support up to OC-
768c line rate. 
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