

Multi-dimensional Packet Classification on FPGA:
100 Gbps and Beyond

Yaxuan Qi #1, Jeffrey Fong #2, Weirong Jiang *3, Bo Xu #4, Jun Li #5, Viktor Prasanna *6
Research Institute of Information Technology
Tsinghua University, Beijing 100084, China

* Ming Hsieh Department of Electrical Engineering
University of Southern California, Los Angeles, CA 90089, USA

1,5 {yaxuan, junl}@tsinghua.edu.cn
2,4 {fangyy09, xb00}@mails.tsinghua.edu.cn

3,6 {weirongj, prasanna}@usc.edu

Abstract—Multi-dimensional packet classification is a

key task in network applications, such as firewalls,
intrusion prevention and traffic management systems.
With the rapid growth of network bandwidth, wire speed
multi-dimensional packet classification has become a
major challenge for next-generation network processing
devices. In this paper, we present an FPGA-based
architecture targeting 100 Gbps packet classification. Our
solution is based on HyperSplit, a memory-efficient tree
search algorithm. First, we present efficient pipeline
architecture for mapping HyperSplit tree. Special logics
are designed to support dual-packet classification per
clock cycle. Second, a node-merging algorithm is proposed
to reduce the number of pipeline stages without
significantly increasing the memory. Third, a leaf-pushing
algorithm is designed to control the memory usage and to
support on-the-fly rule update. The implementation
results show that our architecture can achieve more than
100 Gbps throughput for the 64-byte minimum Ethernet
packets. With a single Virtex-6 chip, our approach can
handle over 50K rules. Compared with state-of-the-art
multi-core network processors based solutions our FPGA
design has at least a 10x speedup.

Keywords—Packet classification, FPGA, Pipeline

I. INTRODUCTION
With the rapid growth of Internet, keeping network

operations efficient and secure is crucial. Traffic management,
access control, intrusion prevention, and many other network
services require a discrimination of network packets based on
their multi-field headers. This is achieved by multi-
dimensional packet classification.

Although there have been a lot of research on multi-
dimensional packet classification over the past decade [1] [2],
most existing solutions cannot meet the performance
requirement. On the one hand, software solutions commonly
used on multi-core network processors for high performance
packet classification has good flexibility and programmability,
but it inherently lacks high parallelism and abundant on-chip
memory. As a result, even the best software classification
algorithms on multi-core network processors can only achieve
10 Gbps [3] [4]. This is an order of magnitude less than the
widely deployed 100 Gbps links used in large ISP (Internet
Service Provider) backbones and DC (Data Center) networks
[5]. On the other hand, hardware solutions are mainly based
on TCAM (Ternary Contend-Addressable Memory). While
TCAM-based solutions can reach wire speed performance,
they sacrifice scalability, programmability and power
efficiency. TCAM-based solutions also suffer from a range-to-
prefix converting problem, making it difficult to support large
and complex rule sets [6] [7].

For this reason, the demand for flexible wire speed packet
classification is still motivating research today. In this paper,
we present high-performance multi-dimensional packet
classification architecture based on FPGA technology. The
contributions of this paper are:
♦ Architecture design: The proposed packet classification
architecture is carefully designed to map a memory-efficient
packet classification algorithm into a linear pipeline. The
design also uses the available dual-port RAMs on current
FPGA devices to double the classification rate. Compared to
existing FPGA-based solutions, this architecture has higher
performance while consuming less FPGA resources.
♦ Implementation optimization: Two optimizations for the
packet classification architecture are proposed. First, a node-
merging algorithm is used to reduce the number of pipeline
stages without significant cost of extra memory. Secondly, a
leaf-pushing algorithm is used for limiting the memory usage
on each pipeline stage to support on-the-fly update without
device reconfiguration.

♦ Performance evaluation: The proposed architecture is
evaluated with publicly available real-life rule sets [8]. When
tested with minimum-size (64 bytes) Ethernet packets, over
100 Gbps packet classification rate is achieved. More than
50K rules can be supported by a single Virtex-6 chip.

The rest of the paper is organized as follows. Section II
gives the background and related work of the packet
classification problem. Section III shows our architecture
design for the HyperSplit algorithm. Section IV describes two
optimizations for the architecture. Section V evaluates the
performance of the proposed architecture. Section VI states
our conclusion.

II. BACKGROUND AND RELATED WORK

A. Problem Statement
The purpose of multi-dimensional packet classification is to

classify packets according to a given rule set. Each rule has
 components, and the component of rule , referred to as

, is a range match expression on the field of the
packet header. If 1, , the field of the header of a
packet P satisfies the range expression , matches .
Table 1 is a practical example of packet classification rules.
From a geometric view, all possible values in the fields of a
packet header form a -dimensional search space . Each
packet is then a point located in , and each rule is a -
dimensional hyper-rectangle. If a packet matches a
particular rule , the point represented by will fall into the
hyper-rectangle specified by . Therefore, according to the
point location problem in computational geometry [9], the
best bounds for packet classification in non-overlapping
hyper-rectangles are log time with space.

B. Packet Classification Algorithms

Although multi-dimensional packet classification has high
theoretical complexity, real-life packet classification rules
have redundancies that can be exploited to improve
classification rate and reduce memory usage [4]. In general,
most packet classification algorithms can be divided in two
categories. Parallel search algorithms and Tree search
algorithms. Parallel search algorithms, such as RFC [10],
HSM [11] and DFCL [12], apply parallel searches on all
fields of a packet header, and then combine the search results
using a set of cross-producting tables. Tree search algorithms,
including HiCuts [13], HyperCuts [14] and AggreCuts [15],
hierarchically decompose the search space on selected field(s)
at each non-leaf node, and apply linear search to find the final
match at leaf nodes. Table 2 is a summary of existing packet
classification algorithms.

C. Related Work
Most existing FPGA implementations of packet

classification engines are based on a parallel search or tree
search algorithm. Jedhe et al. [16] implemented the DCFL
architecture on a Xilinx Virtex-2 Pro FPGA and achieved a
throughput of 16 Gbps (40-byte packet) for 128 rules. They
predict the throughput can be 24 Gbps on Virtex-5 FPGAs.

Luo et al. [17] proposed a method called explicit range
search to allow more cuts per node than the original
HyperCuts algorithm. The tree height is reduced at the cost of
extra memory consumption. At each internal node, a varying
number of memory accesses are required to determine which
child node to traverse, making it difficult for pipeline mapping.

For improved power efficiency, Kennedy et al. [18]
implemented a simplified HyperCuts algorithm on Altera
Cyclone-3 FPGA. Because up to hundreds of rules are stored
in each leaf node and matched in parallel, the architecture can
only operate at low clock frequencies. Moreover, because the
search in the tree is not pipelined, their implementation can

Table 1. Example rule set

Rule Destination IP
address

Source IP
address

Destination
port

Source
port

Layer-4
protocol

Priority Action

R1 188.111.8.28/32 64.10.8.20/32 80 0~65535 TCP 1 RESET
R2 188.111.8.28/32 0.0.0.0/0 53 0~65535 TCP 2 ACCEPT
R3 188.111.0.0/16 202.110.0.15/32 0~65535 0~65535 UDP 3 DENY
R4 188.111.0.0/16 0.0.0.0/0 0~65535 0~65535 TCP 4 DENY
R5 182.105.3.20/32 0.0.0.0/0 80 6110~6112 UDP 11 ACCEPT
R6 182.105.3.0/24 0.0.0.0/0 0~65535 1024~65535 ANY 12 ACCEPT
R7 0.0.0.0/0 0.0.0.0/0 0~65535 0~65535 ANY 99 DROP

Table 2. Packet classification algorithms

 Parallel search algorithms Tree search algorithms
Typical algorithms RFC, HSM, DCFL HiCuts, HyperCuts, AggreCuts
Space decomposition
methods

Decompose the search space by end-points on
each dimension

Decompose the search space with equal-sized
cuttings on selected fields

Packet search Parallel search on all fields and then lookup
cross-producting tables for final match

Traverse a tree and apply linear search the leaf
node for final match

Advantages Fast and deterministic performance Modest memory usage
Limitations Large memory usage Non-deterministic performance

only obtain 0.47 Gbps for large rule sets. The design takes as
many as 23 clock cycles to classify a packet with 20K firewall
rules.

Jiang et al. [19] proposed two optimization methods for the
HyperCuts algorithm to reduce memory consumption. By
deep pipelining, their FPGA implementation can achieve a
throughput of 80 Gbps. However, since the pipeline depth is
determined by the decision tree height, their architecture is not
practical for decision trees with various heights.

Some researchers use multi-core network processor for
high-performance multi-dimensional packet classification. Liu
et al. [3] proposed a parallel search algorithm, Bitmap-RFC,
which reduces the memory usage of RFC by applying a
bitmap compression technique. Qi et al. [4] proposed an
optimized tree search algorithm, AggreCuts, using
hierarchical bitmap to compress the pointer arrays in each tree
node. Although both algorithms support large rule sets and
flexible update, their maximum performance is limited to 10
Gbps due to the limitations of the Intel IXP2850 multi-core
architecture [20].

III. ARCHITECTURE DESIGN

A. Algorithm Motivation
To reach high-performance and flexible multi-dimensional

packet classification, an efficient FPGA-based solution should
take the following design considerations:
♦ Algorithm parallelism: To achieve wire speed packet
classification, the algorithm to be implemented should be able
to efficiently exploit the parallelism available on FPGA
devices.
♦ Logic complexity: To run at high clock rate, the
combinational logic in each pipeline stage must be simple and
efficient.
♦ Memory efficiency: To support large rule sets, the
memory usage should be small so as to fit into the on-chip
block RAMs.

For this reason, a memory-efficient packet classification
algorithm, HyperSplit [4], is selected for the proposed
architecture. HyperSplit uses an optimized k-d tree data
structure for packet classification. It combines the advantages
of both parallel search and tree search algorithms by using a
simple but efficient binary search tree for classification.

Unlike the basic k-d tree data structure, HyperSplit uses rule-
based heuristics to select the most efficient splitting point on a
specific field. Figure 1 and Table 3 show a two-dimensional
example of the HyperSplit algorithm. From Figure 1, it takes
the following steps to classify a packet P (x=11, y=01). First,
at the root node (x, 01), field X is selected and packet header
value x=11 is then compared to the field value stored in the
root node, x=01. Because 11 > 01, the search goes to the right
child node of the root. Similarly, at the second node (x, 10),
the packet header value x=11 is still greater than the stored
field value x=10, then it takes the right child. At the third child
node (y, 10), the packet header value y=01 is smaller than the
field value y=10, so the next node will be the left child which
is a leaf node. The search completes at the leaf node, where
the best matched rule R5 can be found.

HyperSplit is well suited to FPGA implementation. First,
the tree structure of the binary search can be pipelined to
achieve high throughput of one packet per clock cycle. Second,
the operation at each tree node is simple. Both the value
comparison and address fetching can be efficiently
implemented with small amount of logic. Additionally,
HyperSplit is one of the most efficient algorithms in terms of
memory usage compared to best existing algorithms. The
memory usage of HyperSplit is at least 10% less [4].
Experimental result shows that even with 50,000 rules
HyperSplit consumes less than 6MB of memory. This allows
all data structure of the HyperSplit tree to fit into the modern
FPGA chips ((e.g. Xilinx Virtex-6).

In the following part of this section, we will present the
basic architecture of the HyperSplit algorithm and discuss the
design challenges. Then in the next section, we will propose
two optimization schemes to further improve the performance
and flexibility of the basic architecture.

B. Basic Architecture
Because the HyperSplit uses a binary search tree, we map

the binary search tree into a pipeline on FPGA. According to
Figure 2, all the nodes within a level of the binary search tree
are mapped into one stage of the pipeline in the hardware.
This architecture allows the incoming packets to be processed
in parallel. Because each stage uses one clock cycle to process
the packet, the overall classification rate is identical to the
clock rate.

Table 3. A two-field example rule set

Rule Priority Field-X Field-Y
R1 1 00~01 00~00
R2 2 00~01 00~11
R3 3 10~10 00~11
R4 4 11~11 11~11
R5 5 11~11 00~11

Figure 1. A two-dimensional example of HyperSplit algorithm

In our design, the processing logics for each stage are
identical because they perform the same binary search. From
Figure 3, each node has 3 inputs, packet_in, node_in and
found_in. As the name implies, the packet_in is the 104-bit
packet header, consisting of the 32-bit destination_IP_address,
32-bit source_IP_address, 16-bit destination_port, 16-bit
source_port, and 8-bit L4_protocol (transport layer protocol).
node_in is the 64-bit node data loaded from the binary search
tree, containing a 32-bit field_value, a 4-bit field_identifier
and a 28-bit next_node_address. found_in is a 1-bit signal to
tell if the best matched rule has been found in previous stages.
The outputs of each node are 104-bit packet_out, 64-bit
node_out and 1-bit found_out.

Within each stage, the incoming packets are first latched
into registers. The output of the register is split up into their
corresponding fields and fed into a multiplexer. The
multiplexer is controlled by the 4-bit field_identifier from
node_in to choose the corresponding field to compare.
Similarly, the 32-bit field_value is fed into a comparator along
with the output of the multiplexer. The comparison determines
whether the output of the multiplexer is less than or equal to
the field_value. This value in turn drives another multiplexer
which selects the left child node at next_node_address or the
right child node at next_node_address+1 (in our design, two
child nodes are stored in consecutive entries in a block RAM).
This address is immediately fed into the RAM so that at the
clock’s next rising edge, the data can be read into the next
pipeline stage.

To determine whether the node has reached a leaf node, i.e.
whether the best matched rule has been found in an earlier
stage, we use the following design: First, leaf nodes in this
hardware implementation are recognized by checking the
field_identifier. When this value is 0, it has reached a leaf

node, so the signal found_out is set to high to tell the next
stage that the best matched rule has been found and simply
propagate the rule down the pipeline.

The memory in the pipeline is updated by inserting write
bubbles [21]. New tree nodes of each pipeline stage are
computed offline. When an update is initiated, a write bubble
is inserted into the pipeline. Each write bubble is assigned
with a stage_identifier. If the write enable bit is set, the write
bubble will use the new content to update the memory at the
stage specified by the stage_identifier. This update
mechanism supports on-the-fly memory update. Packets
preceding the write bubble traverse the old tree while packets
following the write bubble look up the new tree.

C. Design Challenges
Although the HyperSplit algorithm is well suited to high

performance packet classification architecture on FPGA, there
are two major limitations in the current design:
♦ Number of pipeline stages: Because the depth of the
binary search tree is [4], the pipeline can be long
for large rule sets. For example, with 10K ACL (Access
Control List) rules, the pipeline has 28 stages. Deep pipeline
will significantly increase the latency of classifying packets
resulting in severe problems in packet buffering and system
synchronization.
♦ Block RAM usage: Because the number of nodes is
different at each level of the tree, the memory usage at each
stage is not equal. In order to support on-the-fly rule update,
the size of block RAMs for each pipeline stage needs to be
determined during the implementation of the design.
Therefore, an advanced memory allocation scheme is required
to control the memory usage of each stage.

Figure 2. HyperSplit pipeline mapping

Figure 3. HyperSplit node implementation

MUX

packet_in

32 32 16 16 8

block RAM

104

node_in found_in

CMP

MUX

ADD 1
CMP

0

MUX

64

4 32 28

28

64

packet_out node_out found_out

dIP sIP dPrt sPrt Prt
field_ID

field_value
next_addr

1

104
64 1

Our solution to the two major problems is described in
detail in the next section.

IV. ARCHITECTURE OPTIMIZATION
To solve the problems of the basic design in Section III, we

propose a node-merging algorithm to reduce the number of
pipeline stages, and a leaf-pushing algorithm to control the
memory usage. Furthermore, an improved pipeline
implementation is used to enable dual-packet classification
per clock cycle.

A. Pipeline Depth Reduction
Because the number of pipeline stages is equal to the height

of the HyperSplit tree, we implemented a node merging
algorithm to reduce the tree height. The node-merging scheme
merges a non-leaf node with its two children into a single
node. Thus a two-stage search is done in a single stage. The

basic idea of the algorithm is shown in Figure 4. From this
figure we can see that three non-leaf nodes (left) of the
original HyperSplit tree are merged into a single node (right).
The merged node stores all field identifiers and fields values
of the original nodes. Figure 5 shows the implementation of
the merged nodes. Figure 6 is the pseudo code of the node-
merging algorithm.

After node merging, the height of the tree is reduced from
 to . Thus the number of pipeline stages is half

of the basic design. In addition, because no extra information
is stored in the merged node, the size of a merged node is no
greater than the total size of the original three nodes.
Therefore the node merging scheme will not increase the
overall memory usage.

B. Controlled Block RAM Allocation
Because each pipeline stage has its own dedicated block

RAMs, if the number of nodes changes we need to reallocate

Figure 4. Node merging algorithm

Figure 5. Node merging implementation

Algorithm 1: Node merging
// before merging
if pkt[d1] <= v1 then

node_next = read_ram(addr1+0)
if pkt[d2] <= v2 then

node_next = read_ram(addr2+0)
else

node_next = read_ram(addr2+1)
 end if
else

node_next = read_ram(addr1+1)
if pkt[d3] <= v3 then

node_next = read_ram(addr3+0)
else

node_next = read_ram(addr3+1)
end if

end if

// After merging
if pkt[d1] <= v1 then

node_next = (pkt[d2] <= v2) ?
read_ram(addr1+0) : read_ram(addr1+1)
else

node_next = (pkt[d3] <= v3) ?
read_ram(addr1+2) : read_ram(addr1+3)
end if

Figure 6. Node-merging algorithm

Algorithm 2: Leaf pushing
Initialize bucket[i], i=0, …, tree_height-1
node = root
depth = 0
Reshape (node, depth) begin
 if node is leaf then

while bucket[depth]==0 do depth ++
end while
bucket[depth]--
node->depth = depth

else
Reshape (node->child[0], depth+1)
Reshape (node->child[1], depth+1)
Reshape (node->child[2], depth+1)
Reshape (node->child[3], depth+1)

end if
end

Figure 7. Leaf-pushing algorithm

MUX

packet_in

32 32 16 16 8

104

node_in found_in

128

4

packet_out node_out found_out

dIP sIP dPrt sPrt Prt
d1

1

104 64

1

MUX

32 32 16 16 8

dIP sIP dPrt sPrt Prt

MUX

32 32 16 16 8

dIP sIP dPrt sPrt Prt

4 4 32 32 32 20

CMP

CMP

CMP

block RAM

CMP

MUX

ADD 1

ADD 2

ADD 3

0

1

d2 d3 v1 v2 v3 addr

block RAMs for each stage. However, block RAM
reallocation will result in reconfiguring the FPGA device, so
the rules cannot be updated on-the-fly with the basic design.

Our optimization maps the HyperSplit tree onto a linear
pipeline with controlled memory distribution over each stage.
The proposed leaf-pushing algorithm is based on the
following two features of the HyperSplit algorithm:

First, because the number tree nodes in the top l-level is
small (less than 4l), it is not efficient to instantiate the 1024-
entry (or larger [19]) block RAMs for those levels. Instead, we
allow those entries in distributed RAMs.

Second, because pushing down the leaf nodes does not
change the search semantics of the original tree [19] and the
number of leaf nodes is comparable to non-leaf nodes [4], we
can reshape the tree by pushing leaf nodes down to lower
levels to reduce the memory usage at certain stages.

The pseudo code leaf-pushing algorithm is shown in Figure
7. With this algorithm, the memory usage at the l-th stage can
be limited by bucket[l]. The maximum value of bucket[l] can
be determined by the overall available memory of the FPGA
chip. If we set bucket[l] to have the same value, a balanced
memory allocation is achieved, i.e. the number of block
RAMs pre-allocated for all pipeline stages (l>5) shares the
same value.

C. Dual-packet Search Architecture
To further improve the performance, we exploit the

advanced features of modern FPGA. Because the block RAMs

support dual-port reads, i.e. two memory reads can be done in
a single clock cycle, a dual-packet search pipeline can be
implemented to achieve a 2x speedup. The new pipeline in
Figure 8 uses the same dual-port block RAM in each stage
with two search logics to classify two packets per clock cycle.

V. PERFORMANCE EVALUATION

A. Test bed and data set
We evaluated the effectiveness of our design by conducting

experiments with publicly available 5-dimensional packet
classification rule sets [8]. The number of rules in our tested
rule sets ranges from 100 to 50,000. The rule sets in our tests
are denoted by acl1_num. For example, acl1_10K represents
the rule set with 10,000 rules and generated by the Classbench
with acl1 seeds [22].

The FPGA device used in our tests is the Xilinx Virtex-6,
(model: XC6VSX475T) containing 7,640 Kb Distributed
RAM and 38,304 Kb block RAMs. All the experimental
results on FPGA are obtained by post place and route
simulation. To compare our design with state-of-the-art multi-
core solutions, we have also implemented the HyperSplit
algorithm on a 16-MIPS-core Cavium OCTEON3860
processor, which is the same platform used in existing work
[4].

B. Node-merging Optimization
Figure 9 and Figure 10 show the effectiveness of the node-

merging algorithm. From Figure 9, the node-merging
algorithm effectively reduces the pipeline stages. Regardless
of the size of the rule set, the node-merging algorithm reduces
the number of pipeline stages of the basic design (without
node merging) by 50%. According Figure 10, the memory
usage is increased slightly by the node-merging scheme.

C. Leaf-pushing Optimization
Because the number of block RAMs is predetermined, to

support on-the-fly rule update, the leaf-pushing algorithm is
used to limit the number of nodes in each stage. According to
Figure 11, we can see that without leaf-pushing, the memory
required by each pipeline stage is uncontrolled. In comparison,
Figure 12 shows the memory distribution after leaf-pushing.
In this test, we use a balanced memory allocation scheme and
set each bucket[l] to 10,000. Compared to Figure 11, the
memory usage of each stage is strictly limited to the bucket
size. This allows the new data structure to be adjusted to fit
within the original block RAM sizes without reconfiguring the
FPGA.

D. FPGA Performance
Table 4 shows the performance of our FPGA

implementation. The maximum clock rate is obtained from the
post place and route report. Even with 10K rules, the clock
achieved is 115.4 MHz. This is equivalent to a throughput of
118 Gbps for the minimum-size (64 bytes) Ethernet packets.

Figure 8. Dual-search pipeline implementation

Table 4. FPGA performance and resource utilization

Rules Max
Clock
(MHz)

Max
Thrupt
(Gbps)

Tree
depth

#slices
used /

available

#RAMs
used /

available
acl1_100 139.1 142 7 444/37440 10/516
acl1_1K 134.0 137 11 602/37440 18/516
acl1_10K 115.4 118 12 747/37440 103/516

Table 5. Comparison with FPGA-based approaches

Approaches Max
#rules

Max
Thrupt
(Gbps)

for acl1_10K
Pipeline

depth
#slices
used

#RAMs
used

Our approach
 50K 142 12 747 103

HyperCuts on
FPGA [19] 10K 128 20 10307 407

HyperCuts
Simplified [17] 10K 7.22 -- -- --

Table 6. Comparison with multi-core based approaches

Approaches Max Throughput (Gbps)
Our approach 142
HyperSplit on OCTEON [4] 6.4
RFC on IXP2850 [3] 10

Table 5 compares our approach with start-of-the-art FPGA-

based packet classification solutions. From this table, our
approach uses significantly less block RAMs (e.g. 103 vs. 407
for acl1_10K). This is mainly because our approach does not

store the original rules at each pipeline stage for doing the
linear search. According to our test, we can support more than
50,000 rules with a single Virtex-6 chip (model:
XC6VSX475T). The number of slices used by our approach is
also significantly smaller (747 vs. 10307 for acl1_10K). One
reason is our approach uses a linear pipeline while their
approach is a two dimensional pipeline. Another reason is
their approach has deeper pipeline due to multiple linear
searches at leaf nodes.

Table 6 compares the performance of our approach with
state-of-the-art multi-core based solutions. From this table we
can see that our approach has at least a 10x speedup compared
with based solutions. The main performance bottleneck of I/O
bandwidth and latency is solved in our approach by using on-
chip block RAMs.

VI. CONCLUSION
With the rapid growth of network bandwidth, wire speed

multi-dimensional packet classification has become a
challenge for next-generation network processing devices. In
this paper, we propose an FPGA-based architecture to support
100 Gbps packet classification. Two optimization algorithms
are proposed to reduce the number of pipeline stages and
control the memory usage in each stage. The implementation
results show that our architecture can achieve more than 100
Gbps throughput for the minimum-size Ethernet packet.
Compared to state-of-the-art FPGA based solutions, our
approach uses significantly less FPGA resources and can

Figure 9. Tree heights with and without node-merging

Figure 10. Memory usage with and without node-merging

Figure 11. Nodes distribution without leaf pushing

Figure 12. Nodes distribution with leaf pushing

0

5

10

15

20

25

30

acl1_100 acl1_1K acl1_5K acl1_10K

tr
ee

 h
ei
gh

t

Rule set

w/o merge w/ merge

1.00E+00

1.00E+01

1.00E+02

1.00E+03

acl1_100 acl1_1K acl1_5K acl1_10K

m
em

or
y
us
ag
e
(K
B)

Rule set

w/o merge w/ merge

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

6 7 8 9 10 11 12

nu
m
be

r o
f n

od
es

tree depth

#leaf nodes

#non‐leaf nodes

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

6 7 8 9 10 11 12
nu

m
be

r o
f n

od
es

tree depth

#leaf nodes

#non‐leaf nodes

support over 50K rules with a single FPGA chip. Compared to
multi-core based solutions, our approach has at least a 10x
speedup.

REFERENCES
[1] P. Gupta and N. McKeown. Algorithms for packet

classification. IEEE Network, 15(2):24–32, 2001.
[2] D. E. Taylor. Survey and taxonomy of packet

classification techniques. ACM Comput. Surv.,
37(3):238–275, 2005.

[3] D. Liu, B. Hua, X. Hu and X. Tang. High-performance
packet classification algorithm for many-core and
multithreaded network processor. In Proc. CASES, 2006.

[4] Y. Qi, L. Xu, B. Yang, Y. Xue, J. Li. Packet
classification algorithms: from theory to practice. In Proc.
Infocom’09, 2009.

[5] Ethernet Alliance, 40 Gigabit Ethernet and 100 Gigabit
Ethernet Technology Overview White Paper, 2007.

[6] K. Lakshminarayanan, A. Rangarajan, and S.
Venkatachary. Algorithms for advanced packet
classification with ternary CAMs. In Proc. SIGCOMM,
2005.

[7] C. R. Meiners, A. X. Liu, and E. Torng. TCAM Razor:
A Systematic Approach Towards Minimizing Packet
Classifiers in TCAMs. In Proc. ICNP, 2007.

[8] http://www.arl.wustl.edu/~hs1/PClassEval.html
[9] M. H. Overmars and A. F. van der Stappen. Range

searching and point location among fat objects. Journal
of Algorithms, 21(3), 1996.

[10] P. Gupta and N. McKeown. Packet Classification on
Multiple Fields. In Proc. SIGCOMM, 1999.

[11] B. Xu, D. Jiang and J. Li. HSM: A Fast Packet
Classification Algorithm. In Proc. AINA, 2005.

[12] D. E. Taylor and J. S. Turner. Scalable packet
classification using distributed crossproducing of field
labels. In Proc. INFOCOM, 2005.

[13] P. Gupta and N. McKeown. Classifying packets with
hierarchical intelligent cuttings. IEEE Micro, 20(1):34–
41, 2000.

[14] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet classification using multidimensional cutting. In
Proc. SIGCOMM, 2003.

[15] Y. Qi, B. Xu, F. He, B. Yang. J. Yu, J. Li. Towards high-
performance flow-level packet processing on multi-core
network processors. In Proc. ANCS, 2007.

[16] G. S. Jedhe, A. Ramamoorthy, and K. Varghese. A
scalable high throughput firewall in FPGA. In Proc.
FCCM, 2008.

[17] Y. Luo, K. Xiang, and S. Li. Acceleration of decision
tree searching for IP traffic classification. In Proc. ANCS,
2008.

[18] A. Kennedy, X. Wang, Z. Liu, and B. Liu. Low power
architecture for high speed packet classification. In Proc.
ANCS, 2008.

[19] W. Jiang and V. K. Prasanna. Large-scale wire-speed
packet classification on FPGAs. In Proc. FPGA, 2009.

[20] Intel IXP2850 Network Processor Hardware Reference
Manual. http://int.xscale-freak.com/XSDoc/IXP2xxx/

[21] A. Basu and G. Narlikar. Fast incremental updates for
pipelined forwarding engines. In Proc. INFOCOM, 2003.

[22] D. E. Taylor and J. S. Turner. Classbench: a packet
classification benchmark. IEEE/ACM Trans. Netw.,
15(3):499–511, 2007.

