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Abstract—Multi-dimensional packet classification is a 

key task in network applications, such as firewalls, 
intrusion prevention and traffic management systems. 
With the rapid growth of network bandwidth, wire speed 
multi-dimensional packet classification has become a 
major challenge for next-generation network processing 
devices. In this paper, we present an FPGA-based 
architecture targeting 100 Gbps packet classification. Our 
solution is based on HyperSplit, a memory-efficient tree 
search algorithm. First, we present efficient pipeline 
architecture for mapping HyperSplit tree. Special logics 
are designed to support dual-packet classification per 
clock cycle. Second, a node-merging algorithm is proposed 
to reduce the number of pipeline stages without 
significantly increasing the memory. Third, a leaf-pushing 
algorithm is designed to control the memory usage and to 
support on-the-fly rule update. The implementation 
results show that our architecture can achieve more than 
100 Gbps throughput for the 64-byte minimum Ethernet 
packets. With a single Virtex-6 chip, our approach can 
handle over 50K rules. Compared with state-of-the-art 
multi-core network processors based solutions our FPGA 
design has at least a 10x speedup. 
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I. INTRODUCTION 
With the rapid growth of Internet, keeping network 

operations efficient and secure is crucial. Traffic management, 
access control, intrusion prevention, and many other network 
services require a discrimination of network packets based on 
their multi-field headers. This is achieved by multi-
dimensional packet classification.  

Although there have been a lot of research on multi-
dimensional packet classification over the past decade [1] [2], 
most existing solutions cannot meet the performance 
requirement. On the one hand, software solutions commonly 
used on multi-core network processors for high performance 
packet classification has good flexibility and programmability, 
but it inherently lacks high parallelism and abundant on-chip 
memory. As a result, even the best software classification 
algorithms on multi-core network processors can only achieve 
10 Gbps [3] [4]. This is an order of magnitude less than the 
widely deployed 100 Gbps links used in large ISP (Internet 
Service Provider) backbones and DC (Data Center) networks 
[5]. On the other hand, hardware solutions are mainly based 
on TCAM (Ternary Contend-Addressable Memory). While 
TCAM-based solutions can reach wire speed performance, 
they sacrifice scalability, programmability and power 
efficiency. TCAM-based solutions also suffer from a range-to-
prefix converting problem, making it difficult to support large 
and complex rule sets [6] [7].  

For this reason, the demand for flexible wire speed packet 
classification is still motivating research today. In this paper, 
we present high-performance multi-dimensional packet 
classification architecture based on FPGA technology.  The 
contributions of this paper are: 
♦ Architecture design: The proposed packet classification 
architecture is carefully designed to map a memory-efficient 
packet classification algorithm into a linear pipeline. The 
design also uses the available dual-port RAMs on current 
FPGA devices to double the classification rate. Compared to 
existing FPGA-based solutions, this architecture has higher 
performance while consuming less FPGA resources. 
♦ Implementation optimization: Two optimizations for the 
packet classification architecture are proposed. First, a node-
merging algorithm is used to reduce the number of pipeline 
stages without significant cost of extra memory. Secondly, a 
leaf-pushing algorithm is used for limiting the memory usage 
on each pipeline stage to support on-the-fly update without 
device reconfiguration. 



♦ Performance evaluation: The proposed architecture is 
evaluated with publicly available real-life rule sets [8]. When 
tested with minimum-size (64 bytes) Ethernet packets, over 
100 Gbps packet classification rate is achieved. More than 
50K rules can be supported by a single Virtex-6 chip.  

The rest of the paper is organized as follows. Section II 
gives the background and related work of the packet 
classification problem. Section III shows our architecture 
design for the HyperSplit algorithm. Section IV describes two 
optimizations for the architecture. Section V evaluates the 
performance of the proposed architecture. Section VI states 
our conclusion.  

 

II. BACKGROUND AND RELATED WORK 

A. Problem Statement 
The purpose of multi-dimensional packet classification is to 

classify packets according to a given rule set. Each rule  has 
 components, and the  component of rule , referred to as 

, is a range match expression on the  field of the 
packet header. If 1, , the  field of the header of a 
packet P satisfies the range expression ,  matches . 
Table 1 is a practical example of packet classification rules. 
From a geometric view, all possible values in the  fields of a 
packet header form a -dimensional search space . Each 
packet  is then a point located in , and each rule  is a  -
dimensional hyper-rectangle. If a packet  matches a 
particular rule , the point represented by  will fall into the 
hyper-rectangle specified by . Therefore, according to the 
point location problem in computational geometry [9], the 
best bounds for packet classification in  non-overlapping 
hyper-rectangles are log  time with  space.  

B. Packet Classification Algorithms 

Although multi-dimensional packet classification has high 
theoretical complexity, real-life packet classification rules 
have redundancies that can be exploited to improve 
classification rate and reduce memory usage [4]. In general, 
most packet classification algorithms can be divided in two 
categories. Parallel search algorithms and Tree search 
algorithms. Parallel search algorithms, such as RFC [10], 
HSM [11] and DFCL [12], apply parallel searches on all  
fields of a packet header, and then combine the search results 
using a set of cross-producting tables. Tree search algorithms, 
including HiCuts [13], HyperCuts [14] and AggreCuts [15], 
hierarchically decompose the search space on selected field(s) 
at each non-leaf node, and apply linear search to find the final 
match at leaf nodes. Table 2 is a summary of existing packet 
classification algorithms.  

C. Related Work  
Most existing FPGA implementations of packet 

classification engines are based on a parallel search or tree 
search algorithm. Jedhe et al. [16] implemented the DCFL 
architecture on a Xilinx Virtex-2 Pro FPGA and achieved a 
throughput of 16 Gbps (40-byte packet) for 128 rules. They 
predict the throughput can be 24 Gbps on Virtex-5 FPGAs. 

Luo et al. [17] proposed a method called explicit range 
search to allow more cuts per node than the original 
HyperCuts algorithm. The tree height is reduced at the cost of 
extra memory consumption. At each internal node, a varying 
number of memory accesses are required to determine which 
child node to traverse, making it difficult for pipeline mapping.  

For improved power efficiency, Kennedy et al. [18] 
implemented a simplified HyperCuts algorithm on Altera 
Cyclone-3 FPGA. Because up to hundreds of rules are stored 
in each leaf node and matched in parallel, the architecture can 
only operate at low clock frequencies. Moreover, because the 
search in the tree is not pipelined, their implementation can 

Table 1. Example rule set 
 

Rule Destination IP 
address 

Source IP 
address 

Destination 
port 

Source  
port 

Layer-4 
protocol 

Priority Action 

R1 188.111.8.28/32 64.10.8.20/32 80 0~65535 TCP 1 RESET 
R2 188.111.8.28/32 0.0.0.0/0 53 0~65535 TCP 2 ACCEPT 
R3 188.111.0.0/16 202.110.0.15/32 0~65535 0~65535 UDP 3 DENY 
R4 188.111.0.0/16 0.0.0.0/0 0~65535 0~65535 TCP  4 DENY 
R5 182.105.3.20/32 0.0.0.0/0 80 6110~6112 UDP 11 ACCEPT 
R6 182.105.3.0/24 0.0.0.0/0 0~65535 1024~65535 ANY 12 ACCEPT 
R7 0.0.0.0/0 0.0.0.0/0 0~65535 0~65535 ANY 99 DROP  

 
Table 2. Packet classification algorithms 

 
 Parallel search algorithms Tree search algorithms 
Typical algorithms RFC, HSM, DCFL HiCuts, HyperCuts, AggreCuts 
Space decomposition 
methods 

Decompose the search space by end-points on 
each dimension 

Decompose the search space with equal-sized 
cuttings on selected fields 

Packet search Parallel search on all fields and then lookup 
cross-producting tables for final match 

Traverse a tree and apply linear search the leaf 
node for final match 

Advantages Fast and deterministic performance Modest memory usage 
Limitations Large memory usage Non-deterministic performance 
 



only obtain 0.47 Gbps for large rule sets. The design takes as 
many as 23 clock cycles to classify a packet with 20K firewall 
rules.  

Jiang et al. [19] proposed two optimization methods for the 
HyperCuts algorithm to reduce memory consumption. By 
deep pipelining, their FPGA implementation can achieve a 
throughput of 80 Gbps. However, since the pipeline depth is 
determined by the decision tree height, their architecture is not 
practical for decision trees with various heights.  

Some researchers use multi-core network processor for 
high-performance multi-dimensional packet classification. Liu 
et al. [3] proposed a parallel search algorithm, Bitmap-RFC, 
which reduces the memory usage of RFC by applying a 
bitmap compression technique. Qi et al. [4] proposed an 
optimized tree search algorithm, AggreCuts, using 
hierarchical bitmap to compress the pointer arrays in each tree 
node. Although both algorithms support large rule sets and 
flexible update, their maximum performance is limited to 10 
Gbps due to the limitations of the Intel IXP2850 multi-core 
architecture [20]. 

 

III. ARCHITECTURE DESIGN 

A. Algorithm Motivation 
To reach high-performance and flexible multi-dimensional 

packet classification, an efficient FPGA-based solution should 
take the following design considerations: 
♦ Algorithm parallelism: To achieve wire speed packet 
classification, the algorithm to be implemented should be able 
to efficiently exploit the parallelism available on FPGA 
devices. 
♦ Logic complexity: To run at high clock rate, the 
combinational logic in each pipeline stage must be simple and 
efficient. 
♦ Memory efficiency: To support large rule sets, the 
memory usage should be small so as to fit into the on-chip 
block RAMs.  

For this reason, a memory-efficient packet classification 
algorithm, HyperSplit [4], is selected for the proposed 
architecture. HyperSplit uses an optimized k-d tree data 
structure for packet classification. It combines the advantages 
of both parallel search and tree search algorithms by using a 
simple but efficient binary search tree for classification. 

Unlike the basic k-d tree data structure, HyperSplit uses rule-
based heuristics to select the most efficient splitting point on a 
specific field. Figure 1 and Table 3 show a two-dimensional 
example of the HyperSplit algorithm. From Figure 1, it takes 
the following steps to classify a packet P (x=11, y=01). First, 
at the root node (x, 01), field X is selected and packet header 
value x=11 is then compared to the field value stored in the 
root node, x=01. Because 11 > 01, the search goes to the right 
child node of the root. Similarly, at the second node (x, 10), 
the packet header value x=11 is still greater than the stored 
field value x=10, then it takes the right child. At the third child 
node (y, 10), the packet header value y=01 is smaller than the 
field value y=10, so the next node will be the left child which 
is a leaf node. The search completes at the leaf node, where 
the best matched rule R5 can be found. 

HyperSplit is well suited to FPGA implementation. First, 
the tree structure of the binary search can be pipelined to 
achieve high throughput of one packet per clock cycle. Second, 
the operation at each tree node is simple. Both the value 
comparison and address fetching can be efficiently 
implemented with small amount of logic. Additionally, 
HyperSplit is one of the most efficient algorithms in terms of 
memory usage compared to best existing algorithms. The 
memory usage of HyperSplit is at least 10% less [4]. 
Experimental result shows that even with 50,000 rules 
HyperSplit consumes less than 6MB of memory. This allows 
all data structure of the HyperSplit tree to fit into the modern 
FPGA chips ((e.g. Xilinx Virtex-6). 

In the following part of this section, we will present the 
basic architecture of the HyperSplit algorithm and discuss the 
design challenges. Then in the next section, we will propose 
two optimization schemes to further improve the performance 
and flexibility of the basic architecture.  

B. Basic Architecture 
Because the HyperSplit uses a binary search tree, we map 

the binary search tree into a pipeline on FPGA. According to 
Figure 2, all the nodes within a level of the binary search tree 
are mapped into one stage of the pipeline in the hardware. 
This architecture allows the incoming packets to be processed 
in parallel. Because each stage uses one clock cycle to process 
the packet, the overall classification rate is identical to the 
clock rate. 

 
 

Table 3. A two-field example rule set 
 

Rule Priority Field-X Field-Y 
R1 1 00~01 00~00 
R2 2 00~01 00~11 
R3 3 10~10 00~11 
R4 4 11~11 11~11 
R5 5 11~11 00~11 

 
  

Figure 1. A two-dimensional example of HyperSplit algorithm 
 



In our design, the processing logics for each stage are 
identical because they perform the same binary search.  From 
Figure 3, each node has 3 inputs, packet_in, node_in and 
found_in. As the name implies, the packet_in is the 104-bit 
packet header, consisting of the 32-bit destination_IP_address, 
32-bit source_IP_address, 16-bit destination_port, 16-bit 
source_port, and 8-bit L4_protocol (transport layer protocol). 
node_in is the 64-bit node data loaded from the binary search 
tree, containing a 32-bit field_value, a 4-bit field_identifier 
and a 28-bit next_node_address. found_in is a 1-bit signal to 
tell if the best matched rule has been found in previous stages. 
The outputs of each node are 104-bit packet_out, 64-bit 
node_out and 1-bit found_out.  

Within each stage, the incoming packets are first latched 
into registers. The output of the register is split up into their 
corresponding fields and fed into a multiplexer. The 
multiplexer is controlled by the 4-bit field_identifier from 
node_in to choose the corresponding field to compare. 
Similarly, the 32-bit field_value is fed into a comparator along 
with the output of the multiplexer. The comparison determines 
whether the output of the multiplexer is less than or equal to 
the field_value. This value in turn drives another multiplexer 
which selects the left child node at next_node_address or the 
right child node at next_node_address+1 (in our design, two 
child nodes are stored in consecutive entries in a block RAM). 
This address is immediately fed into the RAM so that at the 
clock’s next rising edge, the data can be read into the next 
pipeline stage.  

To determine whether the node has reached a leaf node, i.e. 
whether the best matched rule has been found in an earlier 
stage, we use the following design: First, leaf nodes in this 
hardware implementation are recognized by checking the 
field_identifier. When this value is 0, it has reached a leaf 

node, so the signal found_out is set to high to tell the next 
stage that the best matched rule has been found and simply 
propagate the rule down the pipeline. 

The memory in the pipeline is updated by inserting write 
bubbles [21]. New tree nodes of each pipeline stage are 
computed offline. When an update is initiated, a write bubble 
is inserted into the pipeline. Each write bubble is assigned 
with a stage_identifier. If the write enable bit is set, the write 
bubble will use the new content to update the memory at the 
stage specified by the stage_identifier. This update 
mechanism supports on-the-fly memory update. Packets 
preceding the write bubble traverse the old tree while packets 
following the write bubble look up the new tree. 

C. Design Challenges  
Although the HyperSplit algorithm is well suited to high 

performance packet classification architecture on FPGA, there 
are two major limitations in the current design:  
♦ Number of pipeline stages: Because the depth of the 
binary search tree is  [4], the pipeline can be long 
for large rule sets. For example, with 10K ACL (Access 
Control List) rules, the pipeline has 28 stages.  Deep pipeline 
will significantly increase the latency of classifying packets 
resulting in severe problems in packet buffering and system 
synchronization. 
♦ Block RAM usage: Because the number of nodes is 
different at each level of the tree, the memory usage at each 
stage is not equal. In order to support on-the-fly rule update, 
the size of block RAMs for each pipeline stage needs to be 
determined during the implementation of the design. 
Therefore, an advanced memory allocation scheme is required 
to control the memory usage of each stage. 

 
Figure 2. HyperSplit pipeline mapping 

 

 
Figure 3. HyperSplit node implementation 
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Our solution to the two major problems is described in 
detail in the next section. 

 

IV. ARCHITECTURE OPTIMIZATION 
To solve the problems of the basic design in Section III, we 

propose a node-merging algorithm to reduce the number of 
pipeline stages, and a leaf-pushing algorithm to control the 
memory usage. Furthermore, an improved pipeline 
implementation is used to enable dual-packet classification 
per clock cycle. 

A. Pipeline Depth Reduction 
Because the number of pipeline stages is equal to the height 

of the HyperSplit tree, we implemented a node merging 
algorithm to reduce the tree height. The node-merging scheme 
merges a non-leaf node with its two children into a single 
node. Thus a two-stage search is done in a single stage. The 

basic idea of the algorithm is shown in Figure 4. From this 
figure we can see that three non-leaf nodes (left) of the 
original HyperSplit tree are merged into a single node (right). 
The merged node stores all field identifiers and fields values 
of the original nodes. Figure 5 shows the implementation of 
the merged nodes. Figure 6 is the pseudo code of the node-
merging algorithm.  

After node merging, the height of the tree is reduced from 
 to . Thus the number of pipeline stages is half 

of the basic design. In addition, because no extra information 
is stored in the merged node, the size of a merged node is no 
greater than the total size of the original three nodes. 
Therefore the node merging scheme will not increase the 
overall memory usage.  

B. Controlled Block RAM Allocation 
Because each pipeline stage has its own dedicated block 

RAMs, if the number of nodes changes we need to reallocate 

 

Figure 4. Node merging algorithm 
 

 
Figure 5. Node merging implementation 

   
 

Algorithm 1: Node merging 
// before merging 
if  pkt[d1] <= v1  then 

node_next = read_ram(addr1+0) 
if pkt[d2] <= v2 then 

node_next = read_ram(addr2+0) 
else 

node_next = read_ram(addr2+1) 
    end if 
else 

node_next = read_ram(addr1+1) 
if pkt[d3] <= v3 then 

node_next = read_ram(addr3+0) 
else 

node_next = read_ram(addr3+1) 
end if 

end if 
 
// After merging 
if pkt[d1] <= v1 then 

node_next = (pkt[d2] <= v2) ? 
read_ram(addr1+0) : read_ram(addr1+1) 
else 

node_next = (pkt[d3] <= v3) ? 
read_ram(addr1+2) : read_ram(addr1+3) 
end if

Figure 6. Node-merging algorithm 
 

Algorithm 2: Leaf pushing 
Initialize bucket[i], i=0, …, tree_height-1 
node = root 
depth = 0 
Reshape (node, depth) begin 
    if  node is leaf then 

while bucket[depth]==0 do depth ++  
end while 
bucket[depth]-- 
node->depth = depth  

else 
Reshape (node->child[0], depth+1) 
Reshape (node->child[1], depth+1) 
Reshape (node->child[2], depth+1) 
Reshape (node->child[3], depth+1) 

end if 
end

Figure 7. Leaf-pushing algorithm 
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block RAMs for each stage. However, block RAM 
reallocation will result in reconfiguring the FPGA device, so 
the rules cannot be updated on-the-fly with the basic design. 

Our optimization maps the HyperSplit tree onto a linear 
pipeline with controlled memory distribution over each stage. 
The proposed leaf-pushing algorithm is based on the 
following two features of the HyperSplit algorithm:  

First, because the number tree nodes in the top l-level is 
small (less than 4l), it is not efficient to instantiate the 1024-
entry (or larger [19]) block RAMs for those levels. Instead, we 
allow those entries in distributed RAMs. 

Second, because pushing down the leaf nodes does not 
change the search semantics of the original tree [19] and the 
number of leaf nodes is comparable to non-leaf nodes [4], we 
can reshape the tree by pushing leaf nodes down to lower 
levels to reduce the memory usage at certain stages.  

The pseudo code leaf-pushing algorithm is shown in Figure 
7. With this algorithm, the memory usage at the l-th stage can 
be limited by bucket[l]. The maximum value of bucket[l] can 
be determined by the overall available memory of the FPGA 
chip. If we set bucket[l] to have the same value, a balanced 
memory allocation is achieved, i.e. the number of block 
RAMs pre-allocated for all pipeline stages (l>5) shares the 
same value. 

C. Dual-packet Search Architecture 
To further improve the performance, we exploit the 

advanced features of modern FPGA. Because the block RAMs 

support dual-port reads, i.e. two memory reads can be done in 
a single clock cycle, a dual-packet search pipeline can be 
implemented to achieve a 2x speedup. The new pipeline in 
Figure 8 uses the same dual-port block RAM in each stage 
with two search logics to classify two packets per clock cycle.  

 

V. PERFORMANCE EVALUATION 

A. Test bed and data set 
We evaluated the effectiveness of our design by conducting 

experiments with publicly available 5-dimensional packet 
classification rule sets [8]. The number of rules in our tested 
rule sets ranges from 100 to 50,000. The rule sets in our tests 
are denoted by acl1_num. For example, acl1_10K represents 
the rule set with 10,000 rules and generated by the Classbench 
with acl1 seeds [22]. 

The FPGA device used in our tests is the Xilinx Virtex-6, 
(model: XC6VSX475T) containing 7,640 Kb Distributed 
RAM and 38,304 Kb block RAMs. All the experimental 
results on FPGA are obtained by post place and route 
simulation. To compare our design with state-of-the-art multi-
core solutions, we have also implemented the HyperSplit 
algorithm on a 16-MIPS-core Cavium OCTEON3860 
processor, which is the same platform used in existing work 
[4]. 

B. Node-merging Optimization 
Figure 9 and Figure 10 show the effectiveness of the node-

merging algorithm. From Figure 9, the node-merging 
algorithm effectively reduces the pipeline stages. Regardless 
of the size of the rule set, the node-merging algorithm reduces 
the number of pipeline stages of the basic design (without 
node merging) by 50%. According Figure 10, the memory 
usage is increased slightly by the node-merging scheme.  

C. Leaf-pushing  Optimization 
Because the number of block RAMs is predetermined, to 

support on-the-fly rule update, the leaf-pushing algorithm is 
used to limit the number of nodes in each stage. According to 
Figure 11, we can see that without leaf-pushing, the memory 
required by each pipeline stage is uncontrolled. In comparison, 
Figure 12 shows the memory distribution after leaf-pushing. 
In this test, we use a balanced memory allocation scheme and 
set each bucket[l] to 10,000. Compared to Figure 11, the 
memory usage of each stage is strictly limited to the bucket 
size. This allows the new data structure to be adjusted to fit 
within the original block RAM sizes without reconfiguring the 
FPGA. 

D. FPGA Performance 
Table 4 shows the performance of our FPGA 

implementation. The maximum clock rate is obtained from the 
post place and route report. Even with 10K rules, the clock 
achieved is 115.4 MHz. This is equivalent to a throughput of 
118 Gbps for the minimum-size (64 bytes) Ethernet packets. 

 
 

Figure 8. Dual-search pipeline implementation 



 
Table 4. FPGA performance and resource utilization 

Rules Max 
Clock 
(MHz) 

Max 
Thrupt 
(Gbps) 

Tree 
depth 

 

#slices 
used / 

available 

#RAMs 
used / 

available
acl1_100 139.1 142 7 444/37440 10/516 
acl1_1K 134.0 137 11 602/37440 18/516 
acl1_10K 115.4 118 12 747/37440 103/516 

 
Table 5. Comparison with FPGA-based approaches 

Approaches Max 
#rules 

Max 
Thrupt 
(Gbps) 

for acl1_10K 
Pipeline 

depth 
#slices
used

#RAMs
used  

Our approach 
 50K 142  12 747 103 

HyperCuts on 
FPGA [19] 10K 128  20 10307 407 

HyperCuts 
Simplified [17] 10K 7.22 -- -- -- 

 
Table 6. Comparison with multi-core based approaches 

Approaches Max Throughput (Gbps) 
Our approach 142 
HyperSplit on OCTEON [4] 6.4 
RFC on IXP2850 [3] 10 

 
Table 5 compares our approach with start-of-the-art FPGA-

based packet classification solutions. From this table, our 
approach uses significantly less block RAMs (e.g. 103 vs. 407 
for acl1_10K). This is mainly because our approach does not 

store the original rules at each pipeline stage for doing the 
linear search. According to our test, we can support more than 
50,000 rules with a single Virtex-6 chip (model: 
XC6VSX475T). The number of slices used by our approach is 
also significantly smaller (747 vs. 10307 for acl1_10K). One 
reason is our approach uses a linear pipeline while their 
approach is a two dimensional pipeline. Another reason is 
their approach has deeper pipeline due to multiple linear 
searches at leaf nodes.  

Table 6 compares the performance of our approach with 
state-of-the-art multi-core based solutions. From this table we 
can see that our approach has at least a 10x speedup compared 
with based solutions. The main performance bottleneck of I/O 
bandwidth and latency is solved in our approach by using on-
chip block RAMs. 

 

VI. CONCLUSION 
With the rapid growth of network bandwidth, wire speed 

multi-dimensional packet classification has become a 
challenge for next-generation network processing devices. In 
this paper, we propose an FPGA-based architecture to support 
100 Gbps packet classification. Two optimization algorithms 
are proposed to reduce the number of pipeline stages and 
control the memory usage in each stage. The implementation 
results show that our architecture can achieve more than 100 
Gbps throughput for the minimum-size Ethernet packet. 
Compared to state-of-the-art FPGA based solutions, our 
approach uses significantly less FPGA resources and can 

  
Figure 9. Tree heights with and without node-merging 

 

 
Figure 10. Memory usage with and without node-merging 

 

 
Figure 11. Nodes distribution without leaf pushing 

 

 
Figure 12. Nodes distribution with leaf pushing 
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support over 50K rules with a single FPGA chip. Compared to 
multi-core based solutions, our approach has at least a 10x 
speedup.  
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