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Abstract: Today’s firewalls and security gateways are required to not only block unauthorized accesses by 

authenticating packet headers, but also inspect flow payloads against malicious intrusions. Deep inspection 

emerges as a seamless integration of packet classification for access control and pattern matching for intru-

sion prevention. The two function blocks are linked together via well-designed session lookup schemes. This 

paper presents an architecture-aware session lookup scheme for deep inspection on network processors 

(NPs). Test results show that the proposed session data structure and integration approach can achieve the 

OC-48 line rate (2.5 Gbps) with inline stateful content inspection on the Intel IXP2850 NP. This work     

provides an insight into application design and implementation on NPs and principles for performance    

tuning of NP-based programming such as data allocation, task partitioning, latency hiding, and thread    

synchronization.  
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Introduction 

Traditional firewalls are designed to protect local net-
works from unauthorized access according to access 
control lists (ACLs). However, with the emergence of 
stateful inspection in recent decades, various imple-
mentations of stateful session maintenance strategies 
have been developed to achieve high-speed session 
creation, lookup, and teardown inside the security     
appliances. Nowadays, security gateways are taking 
charge of not only blocking malicious attackers     
by verifying packet headers, but also scanning flow 

payloads against deliberate intrusions. These require-
ments have stimulated the research on deep inspection, 
which seamlessly integrates packet classification for 
access control and pattern matching for intrusion pre-
vention through a session lookup strategy. 

With the rapid increase of network bandwidth, gen-
eral purpose processors (GPPs) are becoming more and 
more incompetent to catch up with the performance 
requirement for the categorization of incoming and 
outgoing packets into corresponding network flows at 
the OC-48 speed or higher. In addition, with the 
ever-changing network environments and the 
newly-emerging types of attacks, the long cycle and 
high cost of ASIC research and development makes it 
infeasible to meet the time-to-market demands of to-
day’s network appliances. Consequently, network 
processors (NPs) are becoming extremely attractive 
alternatives in high-end security gateway design.  

NPs are anticipated to provide the same high    
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performance as ASICs and the time-to-market advan-
tage of GPPs. The main characteristics of NPs are the 
highly optimized hardware architecture for high speed 
network computing and packet processing, the distrib-
uted, multiprocessor, multithreaded architectures, and 
the programming flexibility. In recent years, many in-
tegrated circuit companies, such as Intel[1], AMCC[2], 
Freescale[3], and Agere[4], have developed their own 
programmable NPs. Cavium[5] and RMI[6] have also 
paid much attention on NPs with their relatively new 
multiple MIPS core solutions.  

This paper focuses on NP-based high performance 
inline stateful deep inspection, which is the dominant 
function block in intrusion prevention systems (IPSs). 
This requires well-designed session data structures 
along with efficient implementation on NPs. The main 
challenges of this research include:   

(1) Secure stateful processing  The session table 
should support the security mechanisms to guarantee 
secure stateful processing. TCP validations including 
three-way handshake flag checking and sequence 
number and acknowledgement number checking 
should be used to verify the legitimacy of packets and 
flows to eliminate illegal packets or flows. Moreover, 
the session table should be designed with consideration 
of out-of-order packets and reserve memory for unor-
dered packets.  

(2) Flow-level deep inspection  Today’s network 
intrusions are more difficult to detect due to the 
ever-complicated attack modes spanning across pack-
ets. The evasion attack is quite dangerous since its 
signature is not contained in a single packet but di-
vided into several segments and placed in two or more 
consecutive packets of the same flow. The signature is 
reconstructed when the packets reach the victim. Thus, 
interim security devices cannot catch it by packet-level 
intrusion detection. The only way to detect evasion 
attacks is flow-level deep inspection, which scans ma-
licious signatures against the flow content rather than 
the payload of individual packets.  

(3) Efficient implementation on NPs  Although 
NPs provide an excellent candidate for network proc-
essing, programming on multi-core, multithreaded NPs 
is a big challenge because experience with general 
purpose multi-processing programming is not directly 
applicable to such system-on-chip (SoC) architectures. 
For example, latency hiding is an important issue when 

programming on micro-engines (MEs), and mutual 
exclusion operations must be considered when more 
than two MEs are applying to access the same memory 
address. In addition, the implementation should utilize 
the characteristics of the NP platform to achieve high     
performance. 

This work investigates architecture-aware session 
design on NPs, and provides an instance of implemen-
tation to exploit the parallelism of the multi-core, mul-
tithreaded NP. The main contributions of this paper 
include: 

(1) Architecture-aware session data structure de-
sign  A well-designed session data structure is pro-
posed to support TCP validation and inline stateful 
deep inspection. The scheme provides fast-path im-
plementation of stateful session lookup and flow-level 
deep inspection, as well as slow-path unordered packet 
buffering and TCP reassembly. Moreover, the design 
takes advantage of the NP characteristics to achieve an 
inline deep inspection speed of 2.5 Gbps.   

(2) Performance optimization on NPs  This paper 
gives an example of how to efficiently implement ap-
plications on NPs and investigates the main program-
ming issues: memory space reduction, data allocation, 
task partitioning, latency hiding, and thread synchro-
nization, which have drastic performance impacts on 
NP-based application implementations.  

(3) Mechanism for integrating inline content in-
spection  By buffering unordered packets in flows 
and reassembling them, flow-level inline content in-
spection is realized based on single packet payload 
inspection. According to a previous observation, the 
proportion of unordered flows is less than 3%[7], so 
there are only a few flows that need buffers to store 
unordered packets. Besides, each flow engages a buffer 
caching the last characters of the previous packet to 
combine the flow contents. The buffer size is typically 
determined by the length of the longest signature. 
Consequently, the flow-level content inspection can 
achieve an inline processing speed of 2.5 Gbps with 
modest memory storage.  

1  Related Work 

Researchers have been trying hard to improve the per-
formance of deep inspection based on FPGAs/ASICs. 
Some have achieved the OC-48 rate for intrusion de-
tection, but not on an NP platform.  
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Schuehler and Lockwood[8] took advantage of FPGA 
to implement stateful flow tracking, TCP stream reas-
sembly, context storage, and flow manipulation ser-
vices in 2004. They designed a circuit capable of 
monitoring bidirectional TCP flows at OC-48 data rate. 
A TCP/IP flow monitoring system called TCP-splitter 
was also implemented based on reconfigurable hard-
ware for analyzing and processing TCP/IP flows at 
OC-48 line rate[9]. 

Dharmapurikar et al.[10] developed a technique based 
on Bloom filters to detect predefined signatures in the 
packet payload. With the state-of-the-art FPGAs, the 
scheme can support 10 000 strings at the OC-48 line 
rate. Moscola et al.[11] designed another con-
tent-scanning module for an Internet firewall using 
finite state machines (FSMs), and it was also imple-
mented on FPGA and reached the OC-48 line speed.  

However, the FPGA-based solutions suffer badly 
from hardware inflexibility. Any change in data struc-
tures or signatures requires recompilation, regeneration, 
and replacement of the circuits on FPGA platforms. In 
contrast, the powerful computing ability and the high 
flexibility of NPs leverage the advantages of GPP and 
FPGA. If the architecture characteristics can be effec-
tively exploited, a high performance inline stateful 
deep inspection system could be realized on NPs.  

Some researchers have focused on NP-based fire-
wall design and implementation. Shen et al.[12] pro-
posed an optimized firewall design based on the Intel 
IXP 2400 NP. They designed a framework for stateful 
firewall systems, and optimized the access control list 
and status session table creation and lookup. The fire-
wall system achieves the OC-48 line speed using 
hardware implementations.  

Zhong et al.[13] presented a comprehensive 
IPv4/IPv6 firewall system based on NPs. They intro-
duced the firmware and software structures of the syn-
thetic firewall system, invoking the multithread char-
acteristics of the Intel IXP 2400 NP. The system is be-
lieved to be adaptable to the next generation Internet.  

Although these previous works have achieved the 
OC-48 line speed, they are at most stateful firewall 
systems rather than deep inspection systems with inline 
stateful content inspection. The demand for high per-
formance deep inspection greatly motivates this    
research.  

2  Architecture-Aware Session Design  

The session design aims to achieve deep inspection on 
NPs, with packet classification for access control and 
pattern matching for intrusion prevention into a seam-
less integration. This objective poses two main chal-
lenges: (1) the integrated system has a tighter per-
formance budget for each single packet to traverse 
through the session table; (2) the integration with 
inline content inspection raises the demand for session 
entries to store the out-of-order flag, cache the unor-
dered packets, and store the current characters of each 
flow. Hence, the session data structure is of great im-
portance to inline deep inspection, and its design 
should take advantage of the parallelism of the 
multi-core, multithreaded NPs, while consider the mu-
tual exclusion of memory accesses in different MEs. 
Session data structure includes two components:   
session entry data structure and session table data  
structure.  

2.1  Session entry data structure 

The session entry data structure is the data structure of 
each session entry. The session entry data structure 
designed in this paper is illustrated in Table 1. The total 
structure size is 72 bytes. LW is short for long word, 
with each long word 4 bytes in length. The session 
entry data structure can be segmented into three parts. 

Part 1 includes LW0 to LW3 where the higher 16 
bits of LW0 indicate the next session pointer of the 
session entry, while the lower 16 bits of LW0 are used 
to store the IP protocol, classification policy, IDS flag, 
and the mutual exclusion (mutex) lock for avoiding 
access collisions between threads of the MEs. Once a 
thread accesses the session entry data structure, the 
mutex lock is set true so that no other thread can access 
the same session entry. Concurrent read operations by 
different threads do not need to be excluded since they 
do not change the memory data. LW1 to LW3 store the 
four-tuple header information of the flow. 

Part 2 from LW4 to LW13 maintains all the neces-
sary information for the upstream and downstream 
flows of the same connection. The upstream represents 
the flow from the originating client to the replying 
server while the downstream represents the flow in the 
opposite direction. The upstream or downstream con-
nection information includes the sequence number, the  
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Table 1  Session data structure  

LW Bits Size Field description 
0 31:16 16 Next session pointer 
0 15:15  1 Mutex Lock 
0 14:12  3 IDS flag 
0 11:8    4 Classification policy 
0  7:0   8 Protocol 
1 31:0   32 Source IP address 
2 31:0   32 Destination IP address 
3 31:16 16 Source port 
3 15:0   16 Destination port 
4 31:0   32 Upstream Seq No. 
5 31:0   32 Upstream Ack No. 
6 31:16 16 Upstream code bits 
6 15:0   16 Upstream win size 
7 31:0   32 Upstream time stamp 
8 31:0   32 Upstream session length 
9 31:0   32 Downstream Seq No. 

10 31:0   32 Downstream Ack No. 
11 31:16 32 Downstream code bits 
11 15:0   32 Downstream win size 
12 31:0   32 Downstream time stamp 
13 31:0   32 Downstream session length 
14 31:31  1 Upstream out-of-order flag 
14 30:24  7 Upstream out-of-order No. 
14 23:0   24 Upstream buffer head pointer 
15 31:0   32 Upstream joint buffer address 
16 31:31  1 Downstream out-of-order flag  
16 30:24  7 Downstream out-of-order No. 
16 23:0   24 Downstream buffer head pointer 
17 31:0   32 Downstream joint buffer address 

 

acknowledge sequence number, the TCP code bits, the 
windows size, the time stamp, and the session traffic 
length. These fields are reserved to do TCP validation 
and check the packet ordering. 

Part 3 from LW14 to LW17 enables the session to 
deal with out-of-order flow packets as well as inline 
stateful content inspection. Bit 31 of LW14 indicates 
whether there are unordered packets in upstream flow. 
Bits 30-24 count the unordered packet number while 
bits 23-0 store the header pointer of the buffer that 
caches the out-of-order packets. Based on prior statis-
tics[7], less than 5% of the out-of-order flows have 
more than one hole. Therefore, we only cache the 
flows with one hole and set a threshold of unordered 
packets number in one flow. LW15 indicates the ad-
dress of the joint buffer which stores the last characters 
of the previous packet. These characters are combined 
with the coming packet payload for flow-level content 
inspection. The joint buffer is placed in scratchpad to 
accelerate access. The size of the joint buffer should be 
adjusted according to the longest length of signatures. 
LW16 to LW17 indicate the out-of-order buffer address 
and the joint buffer address for the downstream flow.  

The dedicated session entry data structure design fa-
cilitates inline deep inspection based on stateful packet 
processing and single packet payload inspection.  

2.2  Session table data structure 

The session table data structure defines how the ses-
sion entries are organized. The conventional hash table 
is modified to allow dynamic link lists in our imple-
mentation as shown in Fig. 1. Furthermore, a memory  

 

Fig. 1  Hash table data structure 
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ring is designed in this paper, as shown in Fig. 2, to 
facilitate the insertion and deletion of the dynamic ses-
sion entries. 

 
Fig. 2  Memory ring for dynamic allocation 

As shown in Fig. 1, the left column of the hash table 
is an array called the fixed session table, which stores 
the header entry of each hash link list. The mutex lock 
in this session entry is the access token for the whole 
link list. The session entries linked behind the pointers 
are dynamically allocated when there are collisions. A 
memory block-named the dynamic session table is re-
served for these dynamic allocations and repeals and 
an indicator-named the session allocation flag is used 
to maintain the allocation and release of the dynamic 
session entries.  

Assuming a load factor of 1/2, with 100K (K=1024) 
simultaneous sessions at the same time, a total of 200K 
session entries are required for the fixed session table. 
In addition, 100K session entries are reserved for dy-
namic entry allocations. The load factor  is defined 
by n/m, where m is the total number of buckets in the 
hash table and n is the maximum number of buckets 
that are simultaneously occupied. As a result, the total  

memory used for the hash table will be (200K 100K)  
72 8 bits 172.8 Mbit , which can be stored in SRAM 
on the Intel IXP2850 NP.  

3  Implementation on Network  
Processors 

Network processors, beneficial from their programma-
ble architectures, are emerging as attractive candidates 
for network processing and will gradually be widely 
used for applications in network appliances such as 
switches, firewalls, and security gateways. Being 
highly optimized for fast network computing and 
packet processing, NPs are capable of hiding memory 
access latencies to attain high processing rates typi-
cally by the distributed, multiprocessor, multithreaded 
architectures. In this paper, the Intel IXP2850 NP is      
chosen as the implementation platform. 

3.1  Intel IXP2850 NP and processing stages 

Figure 3 illustrates the components of the Intel 
IXP2850 NP, which include 1 XScale core, 16 MEs, 4 
SRAM controllers, 3 DRAM controllers, and 
high-speed bus interfaces. The XScale core is a general 
purpose 32-bit RISC processor, which initializes and 
manages the MEs and handles higher layer network 
processing tasks. Each ME has eight hardware-assisted 
execution threads and 640 words single-cycle access 
local memory. There is no cache on the MEs. Each ME 
uses the shared buses to access off-chip SRAM and  

 
Fig. 3  Intel IXP2850 hardware blocks 
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DRAM banks. The average access latency for SRAM 
is about 150 cycles and that for DRAM is about 300 
cycles. The session prototype is implemented with 
inline content inspection with assistance of the IXA 
SDK4.0 Workbench and simulated on a cycle-accurate 
simulator. In the following, the packet processing 
stages and hardware design issues in the implementa-
tion of the session prototype are discussed for achiev-
ing the high speed of OC-48. 

The session prototype utilizes six packet processing 
stages (PPSs). First, the packet receive PPS receives 
the Ethernet packets from the MSF RBUF and    

reassembles the RBUF data into one or more packet 
buffers. Then, the session lookup PPS with the inline 
content inspection is evoked along with a bypassing 
session update PPS to update corresponding fields in 
the session data structure. After that, the IPv4 packets 
are forwarded to the packet scheduling PPS to protect 
the order and finally the packets are transmitted 
through the CSIX fabric with a queue manager PPS 
that enqueues and dequeues the packets. The process-
ing stages are shown in Fig. 4 and the pseudo-code for 
the session processing PPS is shown in Fig. 5.  

 
Fig. 4  NP processing stages 

 
Fig. 5  Session processing PPS pseudo-code 

3.2  NP-based design principles 

Since the session prototype is implemented on a 
multi-core, multithreaded NP, the programming needs 
to be architecture-aware to take advantage of the 
hardware characteristics. For instance, to hide memory 
access latencies, fine-grained interactions are used to 
connect tasks on the same ME. Furthermore, the NP 
needs to process packets in real time, which makes the 
performance budget for single packet processing rather 
tight. To achieve the OC-48 line rate, at most 228 ME 
clock cycles are allowed on the Intel IXP2850 NP to 
process a minimal IPv4 packet. With such a rigid re-
striction, the data-path programming on the multi-core, 
multithreaded NPs must consider the following    
aspects: 

(1) Primary parallel programming issues, such as 
data allocation and task partitioning, to minimize 
memory access latencies; 

(2) Hardware architecture specific factors that have 
crucial impact on performance, such as instruction se-
lection and intrinsic function invoking; 

PPS Session_Lookup_Pps(void) 
{ 
 for (;;) 
 { 

dlNextBlock = Dl_Source(); 
dlNextBlock == Ether_Decap(); 
/* Session Lookup */ 
hashKey = Hash (ipv4TcpHdr); 
while (1) 
{ 

 If (0 == atomic_test_and_set(mutex_lock) ) 
 { 
 session_exist = Check_Session_LinkList_Exist(hashKey); 
 if (! Session_exist) 
 Session_Create(currentSessionPtr, ipv4TcpHdr); 
 else  
 { 
 while (1) 
 { 
  If (Match_Ipv4TcpHdr(currentSessionPtr,  

ipv4TcpHdr)) 
 Session_Update(currentSessionPtr, ipv4TcpHdr); 
  else 

{ 
 currentSessionPtr->nextSessionPtr =  

Session_Alloc(); 
 Session_Create (currentSessionPtr->nextSessionPtr, 

 Ipv4TcpHdr); 
} 

} 
 } 
 atomic_clear (mutex_lock); 

} 
} 
dlNextBlock == Ipv4_Forward(); 
Dl_Sink(); 
} 

} 
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(3) Thread-level parallelism for hiding memory ac-
cess latencies; 

(4) Thread synchronization and mutual exclusion for 
coordinating potential parallelism between threads; 

(5) Limitations of on-chip local memory or control 
store for the code size, and the register numbers allo-
cated for each thread. 

The benefits from these optimization strategies may 
vary from a few cycles to hundreds of cycles. For ex-
ample, reallocating data from DRAM to SRAM on the 
Intel IXP2850 can save nearly 150 clock cycles per 
memory access. Besides, if two memory accesses are 
scheduled in consecutive cycles, the issuing cycles of 
the second memory access can be completely hidden. 
Through deliberate application design and appropriate 
hardware mapping from high-level decisions on data 
allocation and task partitioning down to low-level de-
cisions such as instruction selection and scheduling, 
high performance can be achieved on NPs. The ex-
traordinary hardware characteristics of the NPs must 
be excavated to obtain the performance gain. Detailed 
experiments of the optimization techniques will be 
discussed in Section 4.2. 

4  Simulation and Performance 
Analysis 

To evaluate the performance of the session prototype 
proposed in this paper, we set a series of experiments 
that mainly focused on the session lookup performance 
with inline stateful content inspection and the per-
formance impact of the architecture-aware optimiza-
tion decisions, which provide insight into program-
ming on the multi-core, multithreaded NPs.  

4.1  Session lookup performance evaluation 

Since the objective is to achieve high performance ses-
sion lookup with inline stateful content inspection, the 
performance was evaluated on three aspects: (1) ses-
sion creation speed that reflects the ability of the ses-
sion prototype to meet the requests for creating new 
concurrent sessions; (2) session lookup speed without 
content inspection that reflects the performance of flow 
classification; and (3) session lookup speed with inline 
stateful content inspection, which provides the overall 
performance of the session prototype with deep in-
spection enabled.  

4.1.1  Experiment setup 
The flow traces were real-life packets collected at the 
edge firewall of the Research Institute of Information 
Technology, Tsinghua University. The four-tuple 
packet header information was used to generate hash 
keys with CRC Hash selected for this implementation. 
Thus, with a load factor of 1/2, the hash collision rate 
is 10.68% in the tests. Moreover, if 100K concurrent 
sessions are to be supported, 200K session entries 
should be reserved in the fixed session table and an-
other 100K session entries should be reserved in the 
dynamic session table, organized in memory rings. 
Thus, a total of 172.8M (M=10242) memory is needed.  

The hash table data structure is allocated in SRAM 
with the simulation platform being the Intel IXP2850 
NP with the IXA SDK4.0 Workbench.  

The session update PPS is responsible for eliminat-
ing out-of-date sessions, which ensures the renewing 
of the session entries. Referring to some industrial 
products, the session timeout interval was set to 30 s. 

The session lookup speed with inline stateful content 
inspection was evaluated using the recursive shift in-
dexing algorithm[14] as the pattern matching algorithm 
in the session lookup PPS, due to its higher matching 
speed compared with other pattern string matching 
algorithms. The 2835 intrusion signatures used in the 
tests are seized from Snort 2.6[15], the well-known open 
source IDS. Besides, the red traffic and orange traffic 
archives on the Snort website were used to generate the 
packet payloads for the flows. Thus, the tests simulate 
real-life circumstances, with real signatures in the traf-
fic payload. Moreover, to achieve stateful content in-
spection, joint buffers are hired in session table for 
each live flow. The joint buffers were allocated in 
scratchpad in our experiments, in order to accelerate 
the memory accesses at the buffer content switches. 
Generally, one scratchpad access needs 60 clock cycles 
while the average access latency for SRAM is 150 cy-
cles and for DRAM is 300 cycles.  
4.1.2  Experimental results 
Table 2 shows the memory requirements for the ses-
sion data structure, which show that the memory oc-
cupation is proportional to the session size m, i.e., the 
number of buckets. If the number of supported con-
current sessions is k, then for the load factor of 1/2, m 
equals 2k. In our implementation, m entries were re-
served in the fixed session table and m/2 entries were 
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reserved in the dynamic session table. The total mem-
ory size was (2k + k) multiplied by the size of one ses-
sion entry, which is 72 bytes in this design.  

Table 2  Memory occupation of session table structure 

Concurrent session number Memory (KB) 
   10 000   17 280 
  100 000  172 800 
  500 000  864 000 
1 000 000 1 728 000 

 
Figure 6 shows the session creation rate for the ses-

sion prototype. Aiming at being placed at edge net-
works as security gateways, the prototype is designed 
to support a large number of concurrent sessions. With 
real-life flow packets, the flow rate was about 14.5M 
connections per second (14.5 Mcps) with the load fac-
tor of 1/2. Moreover, the time performance scales well 
as the number of concurrent sessions increases, indi-
cating that the hash function time performance is 
mostly influenced by the load factor.  

 
Fig. 6  Session creation performance 

Figure 7 compares the session lookup performance 
with and without inline content inspection. The proto-
type achieves a lookup speed of 7.5 Gbps without con-
tent inspection with all the TCP states tracked and 
verified in the session data structure. A simple version 
of Layer 3 IP validation and Layer 4 TCP validation is 
synthesized in the implementation, including payload 
length checking, sequence/acknowledgement number 
checking, and TCP code bits checking. It is believed a 
complete protocol validation via stateful trace tracking 
can be performed based on this platform. Besides, the 
session lookup time scalability indicates that the sys-
tem can support more concurrent sessions.  

Figure 7 also shows the session lookup rate with 
inline stateful content inspection. The recursive shift 

 
Fig. 7  Session lookup performance 

indexing algorithm reduces unnecessary comparisons 
via recursive shifting. It shows that when embedded in 
the session lookup stage, the algorithm reaches a proc-
essing speed higher than the OC-48 line rate, which is 
an appealing result on NPs.  

4.2  Architecture-aware design issues 

4.2.1  Data allocation 
Like many other NPs, the Intel IXP2850 has a rich 
memory hierarchy including local memory, scratchpad, 
SRAM, and DRAM. For the session prototype, the 
allocation of the session table structure greatly affects 
the session creation and lookup speeds. Meanwhile, for 
the content inspection algorithm, the allocation of the 
preprocessing data structures also drastically influ-
ences the signature matching speed.  

To evaluate the memory distribution impacts, we 
tested four data allocation schemes on the session 
lookup performance with inline content inspection. 
The session table size was set to 100K entries and ex-
perimental results are shown in Table 3.  

Table 3  Lookup rate on various data allocations 

 SRAM Hybrid-1 Hybrid-2 DRAM 
2 MEs 1.97G 1.86G 1.23G 1.14G 
4 MEs 3.90G 3.75G 2.47G 2.35G 
8 MEs 7.85G 7.58G 4.79G 4.63G 

Note: G=10243 

 

In Table 3, the SRAM scheme places both the fixed 
session table and the dynamic session table in SRAM 
while the DRAM scheme places both tables in DRAM. 
The Hybrid-1 scheme places the fixed session table in 
SRAM and the dynamic session table in DRAM, while 
the Hybrid-2 scheme places the fixed session table in 
DRAM and the dynamic session table in SRAM. The 
results show that placing data in SRAM gives better 
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performance than in DRAM. Thus, NP programs 
should allocate data in faster memory banks as much 
as possible. However, the faster memory banks are 
always smaller in size so programmers must balance 
the memory allocation verses the overall performance.  
4.2.2  Task partitioning 
The IXP2850 NP has 16 MEs in total, which raises a 
question as to how to distribute the computation power. 
Generally, the computing resources of MEs should be 
divided according to two principles: (1) the different 
functions of the microblocks; and (2) the performance 
budget and overhead of the microblocks. The session 
prototype has six PPSs. The 16 MEs are distributed as 
follows: 2 for the packet receive PPS, 8 for the session 
lookup PPS, 2 for the session update PPS, 1 for the 
packet scheduling PPS, 1 for the queue manager PPS, 
and 2 for the CSIX transmit PPS.  

Tests showed that the session lookup PPS is the bot-
tleneck that intensively limits the overall throughput. 
The results for various task partitioning strategies in-
cluding multi-processing and context-pipelining are 
shown in Table 4. The context-pipelining is not suit-
able for the session prototype due to the dynamic na-
ture of the workload.  

Table 4  Lookup rate under different task partitioning 
schemes 

 Multi-processing Context-pipelining 
2 MEs 1.97G  
4 MEs 3.90G  
6 MEs 5.93G 2.11G 
8 MEs 7.85G 2.01G 

 
4.2.3  Latency hiding 
Hiding memory latencies is the key issue in achieving 
high performance applications. The memory access 
latencies are hidden typically by overlapping the 
memory access with the arithmetic computations in the 
same thread. The microengineC compiler provides a 
switch to turn latency hiding optimizations on or off. 
Thus, the compiler can schedule ALU instructions into 
the delay slots of a conditional branch instruction and a 
memory access instruction. When using microcode, 
programmers should be conscious of hiding memory 
latencies, though the assembler also has its own opti-
mization options. In Fig. 5, line 8 is for calculating the 
hash key while line 11 is for writing the SRAM to set 
the mutex lock. These two instructions can run in    

parallel so that the hash key computation is hidden 
completely by the memory write operation. There are 
more instances in the real code.  
4.2.4  Thread synchronization 
Thread synchronization is a typical problem that pro-
grammers face on NPs due to their multi-core and 
multithreaded architectures. Different threads on the 
same ME or different MEs may compete for the shar-
ing resources such as SRAM channels, or even the 
same SRAM entry addresses when there are collisions 
in the hash function. Therefore, atomic read and write 
operations on SRAM are engaged in this implementa-
tion. The mutex locking is needed for ensuring the 
logical correctness of the application. However, it 
brings a 6%-10% overhead according to the test results 
listed in Table 5. The session lookup without inline 
content inspection is taken in this test.  

Table 5  Thread synchronization overhead 

 With mutex Without mutex Overhead (%) 
2 MEs 1.97G 2.13G  8.1 
4 MEs 3.90G 4.30G 10.3 
6 MEs 5.93G 6.42G  8.3 
8 MEs 7.85G 8.37G  6.6 

5  Conclusions and Future Work 

Current firewalls and security gateways not only block 
unauthorized accesses by inspecting packet headers, 
but also inspect flow contents against malicious intru-
sions, which significantly motivate the research on 
deep inspection. Deep inspection aims at combining 
packet classification for access control and pattern 
matching for intrusion prevention into a seamless inte-
gration. This paper proposed a well-designed session 
lookup scheme for inline stateful content inspection 
and implemented it efficiently on the IXP2850 NP 
platform. With the dedicated session data structure and 
integration approach, the OC-48 line rate stateful inline 
content inspection is achieved. By means of excavating 
the principles on NP-based performance tuning such as 
data allocation, task partitioning, latency hiding, and 
thread synchronization, we realized an architec-
ture-aware session design to promote the performance 
of the integration system and provide an insight into 
application design and implementation on NP. Future 
work will be conducted to implement high level deep 
inspection such as Layer 7 protocol analysis and Web 
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content filtering. Moreover, security mechanisms such 
as TCP proxy and anti-DoS are within our future re-
search interests.  
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