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I. INTRODUCTION

The Internet has been dramatically changing 
ever since it appears, and lots of challenges are 
emerging in network traffic management [1-2]. 
Recently, there is a growing demand to identi-
fy Internet traffic application types, especially 
by communication carriers. Internet Service 
Providers (ISPs) often rely on traffic classifi-
cation to analyze and optimize their networks, 
driven by several motivations. First, with the 
increase of the network bandwidth, more and 
more organizational users prefer different 
Quality of Service (QoS) for different appli-
cations, so that the delivery of high priority 
traffic can be guaranteed. To meet this need, 
service providers must have the capability of 
identifying various applications in the net-
work. Second, security is a critical issue in the 
Internet. To protect users from financial loss 
and information leak, service providers need 
to identify offensive traffic passing through 
their Autonomous System (AS). Last but not 
least, concerning the importance of Big Data, 
the value of traffic data is being paid more and 
more attentions, especially by those ISPs who 
control nearly all entrances of Internet traffic. 
There is no doubt that with the knowledge 
of application protocol types, ISPs can mine 
more information and make better use of their 
traffic data.
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meanwhile, it is time consuming because of 
the sequential matching.

Despite many real concerns such as en-
cryption and privacy regulations, DI tech-
nique continuously plays the leading role on 
the stage of traffic classification. In theory, 
exact knowledge of application protocol syn-
tax and full examination of packet payload 
according to signatures will lead to a perfect 
result. This leads DI technique to be more 
competitive compared with other solutions. 
However, in most scenarios, we need to ex-
amine all possible protocols of traffic, and this 
will cause either memory explosion or time 
consuming under the deployment of state-of-
the-art solutions. With the increase of network 
bandwidth, this problem becomes dramatically 
compelling. In summary, traffic classification 
is still not out of the woods, and existing DI 
techniques can not completely meet practical 
requirements.

In this paper, we propose PPP, a Parallel 
Protocol Parsing system, which achieves 
practical traffic classification. Inheriting the 
merit of parallel matching in regular expres-
sion based methods, we extend original appli-
cation protocol parser by pre-filtering traffic 
into different corresponding candidate subsets, 
thus make the protocol parsers work efficient-
ly. In this way, traffic identification system 
based on PPP can organically gain both high 
classification speed and low memory usage.

Main contributions of this paper include:
		Inheriting main merits of existing DI tech-

niques. An in-depth analytical study has 
been made to motivate the PPP, which 
organically combines merits of existing 
popular DI techniques to enhance traffic 
classification.

		Fast speed and low memory usage. Our 
approach requires a light-weighted finite 
automata and needs a few times of parsing, 
which guarantees fast processing speed as 
well as efficient memory usage.
The design of PPP system makes a novel 

attempt aiming to achieve parallel protocol 
parsing in the area of traffic classification. 
With the trace datasets collected from campus 

For the reason that the aggregation from 
packets to flows effectively reduces the pro-
cessing complexity while guaranteeing enough 
fine-granularity, many traffic identification 
works focus on the flow level [3-7]. A flow is 
commonly referred as packets having several 
identical header tuples, i.e., the five tuples 
including the source and destination IP ad-
dresses, source and destination port numbers, 
and the transport layer protocol. Definition 
of a flow is same in this paper. In the early 
days of the Internet, traffic classification was 
easy because the designs of applications were 
relatively simplex and normalized. Almost all 
popular network applications obey the TCP 
and UDP ports specified by Internet Assigned 
Numbers Authority (IANA) [8]. According 
to these pre-defined port numbers, a direct in-
spection over packet headers tells which pro-
tocol the flow belongs to. However, with more 
and more applications using ports beyond the 
IANA specification, port numbers can hardly 
be associated with certain protocol. There-
fore, inspecting packet headers is no longer 
sufficient to identify the traffic. Deep Inspec-
tion (DI), also known as Payload Inspection, 
becomes necessary in the scenario of traffic 
classification.

Generally, Deep Inspection utilizes detail 
information of packet payload and matches 
it with exact signatures, which are often de-
scribed in the style of Regular Expressions or 
Protocol Parsers. Compressing packet signa-
tures into pieces of regular expressions, Deter-
ministic Finite Automaton (DFA) is common-
ly used in the stage of classifying. Compiling 
multiple regular expressions into a single DFA 
matching engine can achieve parallel classifi-
cation effect, however, this will lead that DFA 
needs too many states as well as transitions 
and may cause state explosion in practical 
usage. As a comparison, protocol parser 
translates raw packet payload into high-level 
representations. Protocol parser has flexible 
expression ability, which allows the parsers 
to describe and identify complex protocols. 
In case of multiple protocols’ classification, 
parsers still achieve low memory usage, but 

In this paper, we pro-
pose a novel classifi-
cation system employ-
ing Deep Inspection 
technique, aiming to 
achieve Parallel Proto-
col Parsing (PPP).
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pattern matching [13]. Using this kind of hard-
ware acceleration, a DI solution can inspect 
packets at a very high speed, and thus is more 
suitable for deployment in backbone routers.

III. MOTIVATION

Our origin idea starts from the analytical study 
of existing popular DI techniques, which will 
be shown in this section. We introduce the 
usage of regular expression in traffic classifi-
cation first, and then analyze application pro-
tocol parser to inspire our design.

3.1 Regular expressions matching 
engine

Regular expression has been widely used to 
represent signatures in deep inspection sys-
tems, due to its expressive power and flex-
ibility for describing protocol patterns. All 
protocol signatures in the L7-filter are written 
in regular expression. In addition, Bro, which 
is a famous intrusion detection system, uses 
regular expressions as its pattern language 
in the protocol identification module [14]. 
Meanwhile, matching engines used in traffic 
classification usually have multiple regular ex-
pression patterns.

Deterministic Finite Automaton (DFA) and 
Nondeterministic Finite Automaton (NFA) 
are commonly used for high-speed regular 
expression matching. Theoretically, a regular 
expression of length n can be compiled into 
an NFA with O(n) states. In the worst case, 
when an NFA with m-state is converted into 
a DFA, it may generate O(2m) states. Howev-
er, the processing complexity is O(1) to DFA 
and O(n2) to NFA for each input character. 
Considering regular expression matching for 
high speed packet payload scanning, both 
DFA and NFA are not feasible. To handle k 
regular expressions with total length of kn (k 
is usually in hundreds or even in thousands, n 
is average length of these regular expressions) 
using NFA, they can be compiled in one or 
k automata. In either way, O(n) states may 
be active concurrently, which results in low 
performance and large per-flow states to be 

network, experimental results illustrate that 
PPP system has great superiority over existing 
open-source application identification systems, 
either in classification speed or memory usage.

The rest of this paper is organized as fol-
lows. Section II introduces the related work 
of traffic classification. Section III analyzes 
respective merits of existing popular DI tech-
niques and section IV proposes our algorithm 
design. PPP classification system’s archi-
tecture is presented in section V. Section VI 
shows evaluation and analysis of experimental 
results. Finally in section VII, we concludes 
the paper.

II. RELATED WORK

In the area of traffic classification, research 
of Deep Inspection commonly involves two 
aspects. One is the construction of protocol 
patterns (also known as signatures), the other 
is the detection algorithm based on these pat-
terns.

Construction of protocol patterns is usually 
done offline. Patterns of protocol with public 
specifications are easy to be established under 
the specifications’ guidance. To those proto-
cols without specifications, patterns are usu-
ally constructed by analyzing captured traces, 
which often involve a lot of manual effort 
and additional complexity during validation. 
Meanwhile, the diversity of Internet appli-
cations and their frequent updates also drive 
the classifier to regenerate patterns to ensure 
accuracy. L7-filter community depends on 
volunteers all around the world to contribute 
the construction and update of patterns. Many 
researches study to generate protocol signa-
tures automatically to fundamentally solve this 
problem [9-12].

With discovered patterns, OpenDPI imple-
ments the pattern matching with string com-
parison in C programs, while L7-filter calls the 
POSIX regexec() API for regular expression 
matching (more technique details of L7-filter 
and OpenDPI are described in Section III). 
Some semiconductor companies, such as Cav-
ium, build DFA/NFA based coprocessor for 
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flow’s application-level protocol, SSH proto-
col parser follows two stages:
  Packet length judging stage: if a flow is 

classified to be SSH traffic, the prerequisite 
is that it must have a packet payload length 
between 7 and 100.

  Packet content judging stage: the presence 
of precise signature “SSH-” at the start of 
packet payload is also a must for SSH traf-
fic.
And as a comparison to protocol parser, 

classification of SSH protocol based on regular 
expression follows the pattern ^SSH-[12]\.[0-
9], which only processes the content of packet 
payload, ignoring other information such as 
packet length.

When using protocol parsers to identify 
network traffic, input packets are serially 
analyzed by each corresponding parser until 
it matches one specific protocol parser. Com-
pared with regular expression matching based 
on finite automata, protocol parser can be 
compiled as a light-weighted tree structure, 
and quickly determine whether a flow match 
a specific application-level protocol. Thus, 
traffic classification based on protocol parser 
can achieve high identification speed as well 
as low memory usage. However, when the 
number of protocols to be identified increases, 
classifier has to serially scan each correspond-
ing protocol parser until the result of “match” 
or “unknown” has been given. If there are 
N candidate protocols, in the worst case, the 
classifier gets the final result after N times 
parsing. On the contrast, regular expression 
matching based on finite automata can deter-
mine different application types through its 
final state, which attains the effect of parallel 
matching.

Motivated by the parallel matching effect 
of regular expression matching engine, carry-
ing on the flexibility and low memory usage 
of application protocol parser, our design of 
parallel protocol parser aims to inherit these 
two merits aiming to achieve practical traffic 
classification.

maintained. While considering DFA, since the 
composite DFA may experience exponential 
growth in state size in most cases, it is usually 
infeasible to compile a large signature set into 
a single composite DFA.

Even so, in practice, DFA is widely used 
for the concerning of time-efficiency. In order 
to reducing memory usage, many novel solu-
tions have been proposed, which are beyond 
the topic of this paper. The main merit of DFA 
we attempt to inherit in this paper is parallel 
matching effect on the premise of low memo-
ry usage. To achieve the goal, we organically 
combine DFA with protocol parser, which will 
be introduced next.

3.2 Application protocol parser

In computing, a semantic parser refers an in-
terpreter or compiler that constructs structural 
representation based on input text, checking 
for correct syntax in the process. Particularly, 
in the scenario of traffic classification, based 
on prior knowledge of each specific protocol, 
application protocol parsers translate raw 
packet payload into high-level representations 
of the traffic [15]. As a result, additional infor-
mation such as behavioral patterns and statis-
tical indicators can be employed to precisely 
describe application protocols, thus achieving 
more flexibility and higher accuracy than 
regular expression based methods. A protocol 
parser can be built manually, or automatically 
generated by compilers, and each different 
application needs to build its own protocol 
parser.

Derived from the commercial PACE prod-
uct from IPOQUE, OpenDPI is an open-source 
protocol parser library for traffic classification. 
OpenDPI shares a parser library up to 101 dif-
ferent protocols in latest version, including a 
majority of common application protocols. All 
parsers in OpenDPI are demonstrated in the 
style of C program, and a real-time detection 
rate with near 100% reliability is officially an-
nounced, including popular P2P protocols.

To demonstrate the flexibility of parsers 
clearly, we use SSH protocol parser of OpenD-
PI as an example. In the process of judging a 
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and then compile these partial patterns into a 
DFA. The final state of DFA can illustrate cor-
responding partial pattern. Then based on this 
matched pattern, we can conclude the candi-
date original patterns and protocol types.

4.2 Parallel parser based on pre
filtering

In the scenario that there are many candidate 
protocol patterns to be classified, a single DFA 
compiled by all original protocol patterns will 
cause state explosion and use up memory. In-
spired by the characteristics of regular expres-
sion patterns using for traffic classification, we 
simplify original patterns aiming to avoid ex-
plosion and filter the traffic into few possible 
protocols. Then we use corresponding proto-
col parsers to identify the accurate application 
of traffic. In this way, we achieve the goal of 
Parallel Protocol Parser (PPP), ensuring low 
memory usage as well as fast classification 
speed. Main aspects of PPP are introduced as 
follow.

4.2.1 Extracting max-prefix from original 
patterns

An anchored pattern means it starts with 
several exact chars, for example the pattern 
^abc.*def has an anchored subpattern abc. 
Thus, we define the max-prefix of a pattern as 
the longest exact anchored subpattern in the 
original pattern. So the max-prefix of pattern 
^abc.*def is abc. Because most original regu-
lar expression patterns using for traffic classi-
fication are anchored, we can extract max-pre-
fix of these patterns. Using regular expression 
library of L7-filter as testbed, max-prefix of all 
anchored patterns are extracted. The max-pre-
fix length are shown in figure 1. Noted that 
among all 114 original patterns there are 82 
anchored patterns, however, the total number 
of max-prefixes is beyond the number of an-
chored patterns. This is because some patterns 
have multiple max-prefixes, for example, 
pattern ^abc[1-5].*def have five different 
max-prefixes.

IV. PARALLEL PROTOCOL PARSING

Inspired by the relative merits of regular ex-
pression and protocol parser, we extend tra-
ditional protocol parsing methods to achieve 
parallel search via single match. We analyze 
the characteristics of regular expressions in 
traffic classification first in this section, and 
then demonstrate our design in detail.

4.1 Characteristics of regular 
expressions in traffic classification

Traffic classification and Intrusion Detection 
System (IDS) are two most widely used forms 
of deep inspection technique. Although the 
cores of both DI system leverage similar reg-
ular expression matching engine, they have 
some essential differences. The first is the 
matching rate. Little traffic finds a match in 
IDS system when processing real life traffic. 
For example, over 90 percent of the traffic 
does not match any signature in the IDS pre-
sented in [16]. On the contrary, almost all the 
flows match certain signature in a traffic clas-
sification system.

The second difference is that most of the 
signatures used for traffic classification are 
anchored, which means the signatures should 
be matched only from the beginning of a 
flow. Around 80% percent of the signatures 
in L7-filter are anchored [17]. Through a 
detailed study of popular application-layer 
protocols, we found that this characteristic 
in signature-set is reasonable. Generally it 
has four classes of Internet application-layer 
protocols: struct-style binary protocols, IETF-
style protocols, structured binary protocols, 
and structured text protocols [18]. The parsers 
of these kinds of protocols need to parse from 
the beginning, and most of the Internet ap-
plication-layer protocols belong to these four 
classes. That’s the reason why the majority of 
signatures using for traffic classification are 
anchored.

Knowing the characteristics of regular ex-
pression in traffic classification, we extract the 
partially exact part from anchored patterns, 
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of max-prefixes. So in the first step, we re-
move those empty entries. Then we merge the 
groups based on their similarity and rewrite 
corresponding patterns. Algorithm 1 shows the 
steps of group merging.

The similarity between Gi and Gj is defi ned 
as below:

where |Gi| means the number of protocols in 
this hash entry.

Each non-empty hash entry has two ele-
ments: hash key and its corresponding pro-
tocols. In the condition that the similarity of 
two hash entries is greater than the threshold, 
which is set as 0.8 in our experiment, we 
merge hash keys and corresponding protocols 
of the two entries. Mergence of hash keys 
means to combine two hash keys into a single 
regular expression. For example, two hash 
keys abc and abd will be merged as regular 
expression ab[cd]. Noted that the new reg-
ular expressions generated in this way only 
contains exact characters, character classes, 
alternation and other necessary metacharacter, 
without quantifiers like star and plus, which 
are the crime culprit of state explosion.

After merging all possible entries, we get 
a new set of regular expressions with its cor-
responding protocols. The size of this new 
set reduce a lot compared with original hash 
table. And the size of DFA generated by all 
new regular expressions is reasonable. The 
merging result is shown in fi gure 2, which il-
lustrates the relationship between each regular 
expression and its corresponding protocols. 
From fi gure 2 we can see that about 65% regu-
lar expressions only relate to a single protocol, 
and the average number of corresponding pro-
tocols is 1.44. So after being fi ltered by these 
newly generated regular expressions, traffi c to 
be classifi ed only need to be parsed within two 
times on average.

4. 2.4 Parsing candidate protocols

Given the result of DFA matching state based 
on newly generated regular expressions, we 

4.2.2 Hashing max-prefi xes into diff erent 
groups

After the extraction of max-prefi xes, we hash 
them into different groups. As fi gure 1 shows, 
over 89% of max-prefi xes have a length lon-
ger than three. So we select the first three 
chars of each max-prefi x as hash key, and for 
those max-prefixes which length are shorter 
than three, they will be hashed into all possi-
ble hash entries. As an example, a pattern with 
max-prefix ab will be hashed into all entries 
that begin with ab. Noted that some entries 
in hash table may have more than one items, 
which means different protocols may have 
same max-prefi x (limited within the fi rst three 
chars).

4.2.3 Optimizing grouping result

The hash table has 256*256*256 = 16,777,216 
entries, which is far more beyond the number 

Fig.1 Max-prefi x length of original patterns
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 Algorithm 1: Group merging algorithm

Input: Set G, where G = { Gi | Gi is a hash entry, Gi ≠ ∅}
Begin:
1:  for Gi ∈ G do
2:      for Gj ∈ G do
3:          if similarity(Gi, Gj) ≥ threshold then
4:              Gi.hashkey.mix(Gj.hashkey)
5:              Gi.protocols.mix(Gj.protocols)
6:              G.remove(Gj)
7:          end if
8:      end for
9:  end for
 



China Communications • October 2014 112

		Classifying Component. Based on the 
matching state of pre-filtering component 
and pre-defined candidate protocols cor-
responding to this state, a bitmask is com-
piled by the bitmask generator. Then, this 
bitmask is used to efficiently decrease the 
protocols to be scanned in the parsing en-
gine.

5.2 Pre-fi ltering component

Figure 4 demonstrates the detailed processing 
procedures of PPP system. Pre-fi ltering com-
ponent extracts each input packet’s header 
fi rst, and then involves a query of fl ow table. 
If fl ow record of this packet does not exist in 
fl ow table, a new fl ow will be settled into fl ow 
table. Next goes with the judgment that if this 

get all candidate protocols of the traffi c. Traf-
fi c to be classifi ed will be parsed by each can-
didate protocol’s parser in turn. What’s more, 
the protocol parser library should be rewritten 
according to each corresponding regular ex-
pression, because the regular expression not 
only fi lters the traffi c into candidate protocol 
set, but also provides string matching informa-
tion. Reducing duplicated string matching pro-
cess in parsers can optimize processing time 
of protocol parsers.

4.2.5 Processing non-anchored patterns

Above we describe the processing of anchored 
patterns. For those non-anchored patterns, we 
remain them original. If the result “not match” 
is given by DFA matching engine, which 
means the traffi c belongs to non-anchored pat-
terns, original protocol parsers will be used. 
Though this will lead a poor performance, we 
argue that it is negligible for the reason that 
most popular protocols are anchored and leave 
this possible promotion in our future work.

V. P CLASSIFICATION SYSTEM

According to the design above, we construct 
our prototype system towards practical traffi c 
classification, and the system architecture is 
introduced in this section.

5.1 System overview

Classification of a flow in PPP system in-
volves a number of steps. Each network 
packet is sent to DFA matching engine at fi rst. 
Given the result of DFA matching state based 
on newly generated regular expressions and 
its corresponding protocols, we can get the 
candidate protocol set of this packet. Then 
the protocol parsing engine gives the packet’s 
application-level classifi cation result based on 
the candidate protocol set. Generally, as fi gure 
3 shows, the series of procedures above can be 
divided as two components:
  Pre-filtering Component. In this compo-

nent, the input packet is processed by DFA 
engine to gain the matching state that marks 
the candidate protocols of this packet.

Fig.2 Number of corresponding protocols of each regular expression
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ping relationship among the matching state, 
candidate protocol set and bitmask. Then, the 
bitmask is used to activate the engine to parse 
related protocols. Candidate parsers have to 
sequentially identify the packet. Once any pro-
tocol parser gives the result “match”, the clas-
sification phase will be terminated and mark 
the result of this packet with this parser’s ap-
plication protocol type. If all parsers mi  smatch 
the packet, result will be “unknown”. Finally, 
the classifying component feedbacks the result 
to fl ow table to make later classifi cation effi -
cient.

VI. EVALUATION AND ANALYSIS

In this section, we evaluate the effectiveness 
of PPP system. Methodology, testbed setup 
and evaluation metrics are introduced fi rst to 
make our experiment clear. Then the perfor-
mance result of PPP system shows that signif-
icant improvement has been made comparing 
with existing open-source classifi er in terms of 
both memory usage and throughput.

6.1 Methodology

Widely used in many academic research [19-
21], L7-filter and OpenDPI are open-source 
traffic classification system employing DI 
technique. Protocol patterns in L7-fi lter are de-
scribed in regular expressions, while OpenDPI 
uses protocol parsers. Based on regular ex-
pression library of L7-filter we construct the 
pre-filter component of PPP system, and the 
parsers in PPP evolve according to OpenDPI. 
At the same time, the performance of these 
two systems have been set as benchmark in 
our experiment.

6.2 Testbed setup

The trace set we use for evaluation is real 
traffic traces, which were collected at 1) a 
campus network (includes over ten thousands 
of servers), 2) a large offi ce building network 
(includes thousands of servers). The trace sets 
consist of four traces: trace_riit, trace_seg, 
trace_ap01 and trace_ap02, and the global 
statistics of these traces are shown in Table 

fl ow has been classifi ed before (in the scenar-
io of a new fl ow, it will directly skip to DFA 
matching engine). In case of a pre-classified 
flow, subsequent packets of this flow will be 
forwarded directly. Otherwise if the flow’s 
application-level information still remains 
unknown, it needs to determine whether this 
fl ow already has corresponding candidate pro-
tocol set. For the fl ow which has been pre-fi l-
tered before, a corresponding bitmask will be 
returned for next component’s processing. The 
fl ow without candidate protocol set, however, 
has to be matched in DFA engine. Finally, the 
matching state of DFA engine represents out-
put result of pre-fi ltering component, and will 
be utilized in the classifying component.

5.3 Classifying component

Inheriting the matching state of pre-filtering 
component, the fi rst step in this part is to gen-
erate corresponding bitmask. This step is easy 
to accomplish because there is a direct map-

Fig.4 Processing procedures of PPP system
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paper.

6.4.2 Throughput analysis

Under the assumption that network traffi c pro-
tocols are subject to random distribution and 
each protocol’s parsing time is same, theoret-
ically, OpenDPI needs (N+1)/2 times parsing 
to get a final result, where N stands for the 
number of active protocols. In the latest ver-
sion of OpenDPI, there are 101 different pro-
tocols, so averagely it needs 51 times parsing 
per classifi cation in theory. Ignoring the time 
cost by DFA matching engine, PPP system 
only needs 1.44 times parsing, about 35 times 
faster than OpenDPI. However, this theoretical 
value could hardly to achieve. Our experiment 
result shows in figure 5. We can see that on 

I. All these traces were collected in different 
months during the year 2010. The evaluation 
platform is a generic PC, with an Intel(R) 
Core(TM)2 Duo CPU P7450 (2 cores@2.13 
GHz) and 2 GB DDR-III memory.

6.3 Evaluation metrics

To characterize the classifier’s accuracy, we 
use common metrics known as True Positive 
(TP), True Negative (TN), False Positive (FP) 
and False Negative (FN). The correct results 
consist of two parts: true positive samples 
and true negative samples. Utilizing these 
concepts, we use the performance parameters: 
Precision, Recall and Accuracy [22].

To characterize the classifier’s classifica-
tion speed, we use the concept of throughput, 
which is defi ned as the size of trace fi le divid-
ed by the execution time. And we use average 
memory usage during the execution period to 
evaluate memory occupation.

6.4 Performance result

  6.4.1 Accuracy analysis

The accuracy of PPP system is not the most 
important issue in this paper because the 
libraries of regular expressions and proto-
col parsers are employed from open-source 
achievements, so the accuracy of PPP is not 
determined by itself. Here we demonstrate the 
accuracy of PPP system aiming to ensure that 
our design is reasonable, which means the de-
sign of parallel protocol parser based on regu-
lar expression is compatible in majority cases. 
Table II shows the classification accuracy of 
several popular protocols.

From the metrics shown in table 2 we can 
see that in nearly all cases the classification 
results are correct. So we can conclude that 
protocol parsers are compatible with the fi lter-
ing by regular expressions. The only outlier in 
table II shows that regular expression pattern 
of BitTorrent protocol confl icts with its parser 
in some cases. After manual examination, we 
find that this is caused by the difference in 
patterns between latest version OpenDPI and 
L7-fi ter, which is out of consideration of this 

Fig.5 Comparison of throughput
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Table I Global statistics of traces
Trace Packet # Flow # Size (MB)

trace_riit 1,217,285 18802 1901.6

trace_seg 889,967 13890 673.7

trace_ap01 1,529,375 19699 1903.5

trace_ap02 1,217,285 12738 1900.8

Table II Classifi cation results
Protocol Accuracy Recall Precision

HTTP 97.12% 97.19% 99.50%

POP3 100% 100% 100%

SMTP 100% 99.45% 99.99%

SSH
BitTorrent

100%
100%

100%
66.7%

100%
99.97
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single match, which is the representative merit 
of regular expression methods. We build a 
prototype system and evaluation results show 
that significant improvement has been made 
comparing to existing open-source classifier in 
terms of both memory usage and throughput. 

In our future work, we will deploy PPP 
system on multi-core platform to make further 
promotion. We will also try to optimize the 
design of protocol parsers, aiming to achieve 
the parallel effect naturally by the parser itself.
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