
China Communications • October 2014 106

I. INTRODUCTION

The Internet has been dramatically changing
ever since it appears, and lots of challenges are
emerging in network traffic management [1-2].
Recently, there is a growing demand to identi-
fy Internet traffic application types, especially
by communication carriers. Internet Service
Providers (ISPs) often rely on traffic classifi-
cation to analyze and optimize their networks,
driven by several motivations. First, with the
increase of the network bandwidth, more and
more organizational users prefer different
Quality of Service (QoS) for different appli-
cations, so that the delivery of high priority
traffic can be guaranteed. To meet this need,
service providers must have the capability of
identifying various applications in the net-
work. Second, security is a critical issue in the
Internet. To protect users from financial loss
and information leak, service providers need
to identify offensive traffic passing through
their Autonomous System (AS). Last but not
least, concerning the importance of Big Data,
the value of traffic data is being paid more and
more attentions, especially by those ISPs who
control nearly all entrances of Internet traffic.
There is no doubt that with the knowledge
of application protocol types, ISPs can mine
more information and make better use of their
traffic data.

Abstract: Network traffic classification plays
an important role and benefits many practical
network issues, such as Next-Generation
Firewalls (NGFW), Quality of Service
(QoS), etc. To face the challenges brought by
modern high speed networks, many inspiring
solutions have been proposed to enhance
traffic classification. However, taking many
factual network conditions into consideration,
e.g., diversity of network environment,
traffic classification methods based on Deep
Inspection (DI) technique still occupy the top
spot in actual usage. In this paper, we propose
a novel classification system employing
Deep Inspection technique, aiming to achieve
Parallel Protocol Parsing (PPP). We start with
an analytical study of the existing popular DI
methods, namely, regular expression based
methods and protocol parsing based methods.
Motivated by their relative merits, we extend
traditional protocol parsers to achieve parallel
matching, which is the representative merit
of regular expression. We build a prototype
system, and evaluation results show that
significant improvement has been made
comparing to existing open-source solutions in
terms of both memory usage and throughput.
Keywords: traffic classification; deep
inspection; regular expression; protocol
parsing

PPP: Towards Parallel Protocol Parsing

SHAO Yiyang1, 2, XUE Yibo2, 3, LI Jun2, 3

1 Department of Automation, Tsinghua University, Beijing 100084, China
2 Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
3 Tsinghua National Lab for Information Science and Technology, Beijing 100084, China

NETWORK TECHNOLOGY AND APPLICATIONS

China Communications • October 2014107

meanwhile, it is time consuming because of
the sequential matching.

Despite many real concerns such as en-
cryption and privacy regulations, DI tech-
nique continuously plays the leading role on
the stage of traffic classification. In theory,
exact knowledge of application protocol syn-
tax and full examination of packet payload
according to signatures will lead to a perfect
result. This leads DI technique to be more
competitive compared with other solutions.
However, in most scenarios, we need to ex-
amine all possible protocols of traffic, and this
will cause either memory explosion or time
consuming under the deployment of state-of-
the-art solutions. With the increase of network
bandwidth, this problem becomes dramatically
compelling. In summary, traffic classification
is still not out of the woods, and existing DI
techniques can not completely meet practical
requirements.

In this paper, we propose PPP, a Parallel
Protocol Parsing system, which achieves
practical traffic classification. Inheriting the
merit of parallel matching in regular expres-
sion based methods, we extend original appli-
cation protocol parser by pre-filtering traffic
into different corresponding candidate subsets,
thus make the protocol parsers work efficient-
ly. In this way, traffic identification system
based on PPP can organically gain both high
classification speed and low memory usage.

Main contributions of this paper include:
		Inheriting main merits of existing DI tech-

niques. An in-depth analytical study has
been made to motivate the PPP, which
organically combines merits of existing
popular DI techniques to enhance traffic
classification.

		Fast speed and low memory usage. Our
approach requires a light-weighted finite
automata and needs a few times of parsing,
which guarantees fast processing speed as
well as efficient memory usage.
The design of PPP system makes a novel

attempt aiming to achieve parallel protocol
parsing in the area of traffic classification.
With the trace datasets collected from campus

For the reason that the aggregation from
packets to flows effectively reduces the pro-
cessing complexity while guaranteeing enough
fine-granularity, many traffic identification
works focus on the flow level [3-7]. A flow is
commonly referred as packets having several
identical header tuples, i.e., the five tuples
including the source and destination IP ad-
dresses, source and destination port numbers,
and the transport layer protocol. Definition
of a flow is same in this paper. In the early
days of the Internet, traffic classification was
easy because the designs of applications were
relatively simplex and normalized. Almost all
popular network applications obey the TCP
and UDP ports specified by Internet Assigned
Numbers Authority (IANA) [8]. According
to these pre-defined port numbers, a direct in-
spection over packet headers tells which pro-
tocol the flow belongs to. However, with more
and more applications using ports beyond the
IANA specification, port numbers can hardly
be associated with certain protocol. There-
fore, inspecting packet headers is no longer
sufficient to identify the traffic. Deep Inspec-
tion (DI), also known as Payload Inspection,
becomes necessary in the scenario of traffic
classification.

Generally, Deep Inspection utilizes detail
information of packet payload and matches
it with exact signatures, which are often de-
scribed in the style of Regular Expressions or
Protocol Parsers. Compressing packet signa-
tures into pieces of regular expressions, Deter-
ministic Finite Automaton (DFA) is common-
ly used in the stage of classifying. Compiling
multiple regular expressions into a single DFA
matching engine can achieve parallel classifi-
cation effect, however, this will lead that DFA
needs too many states as well as transitions
and may cause state explosion in practical
usage. As a comparison, protocol parser
translates raw packet payload into high-level
representations. Protocol parser has flexible
expression ability, which allows the parsers
to describe and identify complex protocols.
In case of multiple protocols’ classification,
parsers still achieve low memory usage, but

In this paper, we pro-
pose a novel classifi-
cation system employ-
ing Deep Inspection
technique, aiming to
achieve Parallel Proto-
col Parsing (PPP).

China Communications • October 2014 108

pattern matching [13]. Using this kind of hard-
ware acceleration, a DI solution can inspect
packets at a very high speed, and thus is more
suitable for deployment in backbone routers.

III. MOTIVATION

Our origin idea starts from the analytical study
of existing popular DI techniques, which will
be shown in this section. We introduce the
usage of regular expression in traffic classifi-
cation first, and then analyze application pro-
tocol parser to inspire our design.

3.1 Regular expressions matching
engine

Regular expression has been widely used to
represent signatures in deep inspection sys-
tems, due to its expressive power and flex-
ibility for describing protocol patterns. All
protocol signatures in the L7-filter are written
in regular expression. In addition, Bro, which
is a famous intrusion detection system, uses
regular expressions as its pattern language
in the protocol identification module [14].
Meanwhile, matching engines used in traffic
classification usually have multiple regular ex-
pression patterns.

Deterministic Finite Automaton (DFA) and
Nondeterministic Finite Automaton (NFA)
are commonly used for high-speed regular
expression matching. Theoretically, a regular
expression of length n can be compiled into
an NFA with O(n) states. In the worst case,
when an NFA with m-state is converted into
a DFA, it may generate O(2m) states. Howev-
er, the processing complexity is O(1) to DFA
and O(n2) to NFA for each input character.
Considering regular expression matching for
high speed packet payload scanning, both
DFA and NFA are not feasible. To handle k
regular expressions with total length of kn (k
is usually in hundreds or even in thousands, n
is average length of these regular expressions)
using NFA, they can be compiled in one or
k automata. In either way, O(n) states may
be active concurrently, which results in low
performance and large per-flow states to be

network, experimental results illustrate that
PPP system has great superiority over existing
open-source application identification systems,
either in classification speed or memory usage.

The rest of this paper is organized as fol-
lows. Section II introduces the related work
of traffic classification. Section III analyzes
respective merits of existing popular DI tech-
niques and section IV proposes our algorithm
design. PPP classification system’s archi-
tecture is presented in section V. Section VI
shows evaluation and analysis of experimental
results. Finally in section VII, we concludes
the paper.

II. RELATED WORK

In the area of traffic classification, research
of Deep Inspection commonly involves two
aspects. One is the construction of protocol
patterns (also known as signatures), the other
is the detection algorithm based on these pat-
terns.

Construction of protocol patterns is usually
done offline. Patterns of protocol with public
specifications are easy to be established under
the specifications’ guidance. To those proto-
cols without specifications, patterns are usu-
ally constructed by analyzing captured traces,
which often involve a lot of manual effort
and additional complexity during validation.
Meanwhile, the diversity of Internet appli-
cations and their frequent updates also drive
the classifier to regenerate patterns to ensure
accuracy. L7-filter community depends on
volunteers all around the world to contribute
the construction and update of patterns. Many
researches study to generate protocol signa-
tures automatically to fundamentally solve this
problem [9-12].

With discovered patterns, OpenDPI imple-
ments the pattern matching with string com-
parison in C programs, while L7-filter calls the
POSIX regexec() API for regular expression
matching (more technique details of L7-filter
and OpenDPI are described in Section III).
Some semiconductor companies, such as Cav-
ium, build DFA/NFA based coprocessor for

China Communications • October 2014109

flow’s application-level protocol, SSH proto-
col parser follows two stages:
 Packet length judging stage: if a flow is

classified to be SSH traffic, the prerequisite
is that it must have a packet payload length
between 7 and 100.

 Packet content judging stage: the presence
of precise signature “SSH-” at the start of
packet payload is also a must for SSH traf-
fic.
And as a comparison to protocol parser,

classification of SSH protocol based on regular
expression follows the pattern ^SSH-[12]\.[0-
9], which only processes the content of packet
payload, ignoring other information such as
packet length.

When using protocol parsers to identify
network traffic, input packets are serially
analyzed by each corresponding parser until
it matches one specific protocol parser. Com-
pared with regular expression matching based
on finite automata, protocol parser can be
compiled as a light-weighted tree structure,
and quickly determine whether a flow match
a specific application-level protocol. Thus,
traffic classification based on protocol parser
can achieve high identification speed as well
as low memory usage. However, when the
number of protocols to be identified increases,
classifier has to serially scan each correspond-
ing protocol parser until the result of “match”
or “unknown” has been given. If there are
N candidate protocols, in the worst case, the
classifier gets the final result after N times
parsing. On the contrast, regular expression
matching based on finite automata can deter-
mine different application types through its
final state, which attains the effect of parallel
matching.

Motivated by the parallel matching effect
of regular expression matching engine, carry-
ing on the flexibility and low memory usage
of application protocol parser, our design of
parallel protocol parser aims to inherit these
two merits aiming to achieve practical traffic
classification.

maintained. While considering DFA, since the
composite DFA may experience exponential
growth in state size in most cases, it is usually
infeasible to compile a large signature set into
a single composite DFA.

Even so, in practice, DFA is widely used
for the concerning of time-efficiency. In order
to reducing memory usage, many novel solu-
tions have been proposed, which are beyond
the topic of this paper. The main merit of DFA
we attempt to inherit in this paper is parallel
matching effect on the premise of low memo-
ry usage. To achieve the goal, we organically
combine DFA with protocol parser, which will
be introduced next.

3.2 Application protocol parser

In computing, a semantic parser refers an in-
terpreter or compiler that constructs structural
representation based on input text, checking
for correct syntax in the process. Particularly,
in the scenario of traffic classification, based
on prior knowledge of each specific protocol,
application protocol parsers translate raw
packet payload into high-level representations
of the traffic [15]. As a result, additional infor-
mation such as behavioral patterns and statis-
tical indicators can be employed to precisely
describe application protocols, thus achieving
more flexibility and higher accuracy than
regular expression based methods. A protocol
parser can be built manually, or automatically
generated by compilers, and each different
application needs to build its own protocol
parser.

Derived from the commercial PACE prod-
uct from IPOQUE, OpenDPI is an open-source
protocol parser library for traffic classification.
OpenDPI shares a parser library up to 101 dif-
ferent protocols in latest version, including a
majority of common application protocols. All
parsers in OpenDPI are demonstrated in the
style of C program, and a real-time detection
rate with near 100% reliability is officially an-
nounced, including popular P2P protocols.

To demonstrate the flexibility of parsers
clearly, we use SSH protocol parser of OpenD-
PI as an example. In the process of judging a

China Communications • October 2014 110

and then compile these partial patterns into a
DFA. The final state of DFA can illustrate cor-
responding partial pattern. Then based on this
matched pattern, we can conclude the candi-
date original patterns and protocol types.

4.2 Parallel parser based on pre
filtering

In the scenario that there are many candidate
protocol patterns to be classified, a single DFA
compiled by all original protocol patterns will
cause state explosion and use up memory. In-
spired by the characteristics of regular expres-
sion patterns using for traffic classification, we
simplify original patterns aiming to avoid ex-
plosion and filter the traffic into few possible
protocols. Then we use corresponding proto-
col parsers to identify the accurate application
of traffic. In this way, we achieve the goal of
Parallel Protocol Parser (PPP), ensuring low
memory usage as well as fast classification
speed. Main aspects of PPP are introduced as
follow.

4.2.1 Extracting max-prefix from original
patterns

An anchored pattern means it starts with
several exact chars, for example the pattern
^abc.*def has an anchored subpattern abc.
Thus, we define the max-prefix of a pattern as
the longest exact anchored subpattern in the
original pattern. So the max-prefix of pattern
^abc.*def is abc. Because most original regu-
lar expression patterns using for traffic classi-
fication are anchored, we can extract max-pre-
fix of these patterns. Using regular expression
library of L7-filter as testbed, max-prefix of all
anchored patterns are extracted. The max-pre-
fix length are shown in figure 1. Noted that
among all 114 original patterns there are 82
anchored patterns, however, the total number
of max-prefixes is beyond the number of an-
chored patterns. This is because some patterns
have multiple max-prefixes, for example,
pattern ^abc[1-5].*def have five different
max-prefixes.

IV. PARALLEL PROTOCOL PARSING

Inspired by the relative merits of regular ex-
pression and protocol parser, we extend tra-
ditional protocol parsing methods to achieve
parallel search via single match. We analyze
the characteristics of regular expressions in
traffic classification first in this section, and
then demonstrate our design in detail.

4.1 Characteristics of regular
expressions in traffic classification

Traffic classification and Intrusion Detection
System (IDS) are two most widely used forms
of deep inspection technique. Although the
cores of both DI system leverage similar reg-
ular expression matching engine, they have
some essential differences. The first is the
matching rate. Little traffic finds a match in
IDS system when processing real life traffic.
For example, over 90 percent of the traffic
does not match any signature in the IDS pre-
sented in [16]. On the contrary, almost all the
flows match certain signature in a traffic clas-
sification system.

The second difference is that most of the
signatures used for traffic classification are
anchored, which means the signatures should
be matched only from the beginning of a
flow. Around 80% percent of the signatures
in L7-filter are anchored [17]. Through a
detailed study of popular application-layer
protocols, we found that this characteristic
in signature-set is reasonable. Generally it
has four classes of Internet application-layer
protocols: struct-style binary protocols, IETF-
style protocols, structured binary protocols,
and structured text protocols [18]. The parsers
of these kinds of protocols need to parse from
the beginning, and most of the Internet ap-
plication-layer protocols belong to these four
classes. That’s the reason why the majority of
signatures using for traffic classification are
anchored.

Knowing the characteristics of regular ex-
pression in traffic classification, we extract the
partially exact part from anchored patterns,

China Communications • October 2014111

of max-prefixes. So in the first step, we re-
move those empty entries. Then we merge the
groups based on their similarity and rewrite
corresponding patterns. Algorithm 1 shows the
steps of group merging.

The similarity between Gi and Gj is defi ned
as below:

where |Gi| means the number of protocols in
this hash entry.

Each non-empty hash entry has two ele-
ments: hash key and its corresponding pro-
tocols. In the condition that the similarity of
two hash entries is greater than the threshold,
which is set as 0.8 in our experiment, we
merge hash keys and corresponding protocols
of the two entries. Mergence of hash keys
means to combine two hash keys into a single
regular expression. For example, two hash
keys abc and abd will be merged as regular
expression ab[cd]. Noted that the new reg-
ular expressions generated in this way only
contains exact characters, character classes,
alternation and other necessary metacharacter,
without quantifiers like star and plus, which
are the crime culprit of state explosion.

After merging all possible entries, we get
a new set of regular expressions with its cor-
responding protocols. The size of this new
set reduce a lot compared with original hash
table. And the size of DFA generated by all
new regular expressions is reasonable. The
merging result is shown in fi gure 2, which il-
lustrates the relationship between each regular
expression and its corresponding protocols.
From fi gure 2 we can see that about 65% regu-
lar expressions only relate to a single protocol,
and the average number of corresponding pro-
tocols is 1.44. So after being fi ltered by these
newly generated regular expressions, traffi c to
be classifi ed only need to be parsed within two
times on average.

4. 2.4 Parsing candidate protocols

Given the result of DFA matching state based
on newly generated regular expressions, we

4.2.2 Hashing max-prefi xes into diff erent
groups

After the extraction of max-prefi xes, we hash
them into different groups. As fi gure 1 shows,
over 89% of max-prefi xes have a length lon-
ger than three. So we select the first three
chars of each max-prefi x as hash key, and for
those max-prefixes which length are shorter
than three, they will be hashed into all possi-
ble hash entries. As an example, a pattern with
max-prefix ab will be hashed into all entries
that begin with ab. Noted that some entries
in hash table may have more than one items,
which means different protocols may have
same max-prefi x (limited within the fi rst three
chars).

4.2.3 Optimizing grouping result

The hash table has 256*256*256 = 16,777,216
entries, which is far more beyond the number

Fig.1 Max-prefi x length of original patterns

6

14

34

4242

2828

1616

5
33

77
10

4
1 22 1 22 22

4

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
um

be
r

of
 p

at
te

rn
s

Max-Max-Max prefix length

 Algorithm 1: Group merging algorithm

Input: Set G, where G = { Gi | Gi is a hash entry, Gi ≠ ∅}
Begin:
1: for Gi ∈ G do
2: for Gj ∈ G do
3: if similarity(Gi, Gj) ≥ threshold then
4: Gi.hashkey.mix(Gj.hashkey)
5: Gi.protocols.mix(Gj.protocols)
6: G.remove(Gj)
7: end if
8: end for
9: end for

China Communications • October 2014 112

		Classifying Component. Based on the
matching state of pre-filtering component
and pre-defined candidate protocols cor-
responding to this state, a bitmask is com-
piled by the bitmask generator. Then, this
bitmask is used to efficiently decrease the
protocols to be scanned in the parsing en-
gine.

5.2 Pre-fi ltering component

Figure 4 demonstrates the detailed processing
procedures of PPP system. Pre-fi ltering com-
ponent extracts each input packet’s header
fi rst, and then involves a query of fl ow table.
If fl ow record of this packet does not exist in
fl ow table, a new fl ow will be settled into fl ow
table. Next goes with the judgment that if this

get all candidate protocols of the traffi c. Traf-
fi c to be classifi ed will be parsed by each can-
didate protocol’s parser in turn. What’s more,
the protocol parser library should be rewritten
according to each corresponding regular ex-
pression, because the regular expression not
only fi lters the traffi c into candidate protocol
set, but also provides string matching informa-
tion. Reducing duplicated string matching pro-
cess in parsers can optimize processing time
of protocol parsers.

4.2.5 Processing non-anchored patterns

Above we describe the processing of anchored
patterns. For those non-anchored patterns, we
remain them original. If the result “not match”
is given by DFA matching engine, which
means the traffi c belongs to non-anchored pat-
terns, original protocol parsers will be used.
Though this will lead a poor performance, we
argue that it is negligible for the reason that
most popular protocols are anchored and leave
this possible promotion in our future work.

V. P CLASSIFICATION SYSTEM

According to the design above, we construct
our prototype system towards practical traffi c
classification, and the system architecture is
introduced in this section.

5.1 System overview

Classification of a flow in PPP system in-
volves a number of steps. Each network
packet is sent to DFA matching engine at fi rst.
Given the result of DFA matching state based
on newly generated regular expressions and
its corresponding protocols, we can get the
candidate protocol set of this packet. Then
the protocol parsing engine gives the packet’s
application-level classifi cation result based on
the candidate protocol set. Generally, as fi gure
3 shows, the series of procedures above can be
divided as two components:
 Pre-filtering Component. In this compo-

nent, the input packet is processed by DFA
engine to gain the matching state that marks
the candidate protocols of this packet.

Fig.2 Number of corresponding protocols of each regular expression

Fig.3 Framework of PPP system

126

57

7
1 1

0

20

40

60

80

100

120

140

1 2 3 7 8

N
um

be
r

of
 re

gu
la

r
ex

pr
es

si
on

s

Number of corresponding protocols

State 0

Pre-filtering Component

DFA
Matching

Engine

Input
Packets

State 1

Not
match

...

State M

Classifying Component

Candidate Set 0

Candidate Set 1

Candidate Set All

...

Candidate Set M

Bitmask
Generator

Protocol
Parsing
Engine

Output
Results

PP

China Communications • October 2014113

ping relationship among the matching state,
candidate protocol set and bitmask. Then, the
bitmask is used to activate the engine to parse
related protocols. Candidate parsers have to
sequentially identify the packet. Once any pro-
tocol parser gives the result “match”, the clas-
sification phase will be terminated and mark
the result of this packet with this parser’s ap-
plication protocol type. If all parsers mi smatch
the packet, result will be “unknown”. Finally,
the classifying component feedbacks the result
to fl ow table to make later classifi cation effi -
cient.

VI. EVALUATION AND ANALYSIS

In this section, we evaluate the effectiveness
of PPP system. Methodology, testbed setup
and evaluation metrics are introduced fi rst to
make our experiment clear. Then the perfor-
mance result of PPP system shows that signif-
icant improvement has been made comparing
with existing open-source classifi er in terms of
both memory usage and throughput.

6.1 Methodology

Widely used in many academic research [19-
21], L7-filter and OpenDPI are open-source
traffic classification system employing DI
technique. Protocol patterns in L7-fi lter are de-
scribed in regular expressions, while OpenDPI
uses protocol parsers. Based on regular ex-
pression library of L7-filter we construct the
pre-filter component of PPP system, and the
parsers in PPP evolve according to OpenDPI.
At the same time, the performance of these
two systems have been set as benchmark in
our experiment.

6.2 Testbed setup

The trace set we use for evaluation is real
traffic traces, which were collected at 1) a
campus network (includes over ten thousands
of servers), 2) a large offi ce building network
(includes thousands of servers). The trace sets
consist of four traces: trace_riit, trace_seg,
trace_ap01 and trace_ap02, and the global
statistics of these traces are shown in Table

fl ow has been classifi ed before (in the scenar-
io of a new fl ow, it will directly skip to DFA
matching engine). In case of a pre-classified
flow, subsequent packets of this flow will be
forwarded directly. Otherwise if the flow’s
application-level information still remains
unknown, it needs to determine whether this
fl ow already has corresponding candidate pro-
tocol set. For the fl ow which has been pre-fi l-
tered before, a corresponding bitmask will be
returned for next component’s processing. The
fl ow without candidate protocol set, however,
has to be matched in DFA engine. Finally, the
matching state of DFA engine represents out-
put result of pre-fi ltering component, and will
be utilized in the classifying component.

5.3 Classifying component

Inheriting the matching state of pre-filtering
component, the fi rst step in this part is to gen-
erate corresponding bitmask. This step is easy
to accomplish because there is a direct map-

Fig.4 Processing procedures of PPP system

Packet header
processing

Input Packet

Flow table
processing Y

NN

Has been
pre-filtered?

Pass the packetHas been
classified?

Y

Parsing engine

NN

DFA matching
engine

Bitmask
generator

China Communications • October 2014 114

paper.

6.4.2 Throughput analysis

Under the assumption that network traffi c pro-
tocols are subject to random distribution and
each protocol’s parsing time is same, theoret-
ically, OpenDPI needs (N+1)/2 times parsing
to get a final result, where N stands for the
number of active protocols. In the latest ver-
sion of OpenDPI, there are 101 different pro-
tocols, so averagely it needs 51 times parsing
per classifi cation in theory. Ignoring the time
cost by DFA matching engine, PPP system
only needs 1.44 times parsing, about 35 times
faster than OpenDPI. However, this theoretical
value could hardly to achieve. Our experiment
result shows in figure 5. We can see that on

I. All these traces were collected in different
months during the year 2010. The evaluation
platform is a generic PC, with an Intel(R)
Core(TM)2 Duo CPU P7450 (2 cores@2.13
GHz) and 2 GB DDR-III memory.

6.3 Evaluation metrics

To characterize the classifier’s accuracy, we
use common metrics known as True Positive
(TP), True Negative (TN), False Positive (FP)
and False Negative (FN). The correct results
consist of two parts: true positive samples
and true negative samples. Utilizing these
concepts, we use the performance parameters:
Precision, Recall and Accuracy [22].

To characterize the classifier’s classifica-
tion speed, we use the concept of throughput,
which is defi ned as the size of trace fi le divid-
ed by the execution time. And we use average
memory usage during the execution period to
evaluate memory occupation.

6.4 Performance result

 6.4.1 Accuracy analysis

The accuracy of PPP system is not the most
important issue in this paper because the
libraries of regular expressions and proto-
col parsers are employed from open-source
achievements, so the accuracy of PPP is not
determined by itself. Here we demonstrate the
accuracy of PPP system aiming to ensure that
our design is reasonable, which means the de-
sign of parallel protocol parser based on regu-
lar expression is compatible in majority cases.
Table II shows the classification accuracy of
several popular protocols.

From the metrics shown in table 2 we can
see that in nearly all cases the classification
results are correct. So we can conclude that
protocol parsers are compatible with the fi lter-
ing by regular expressions. The only outlier in
table II shows that regular expression pattern
of BitTorrent protocol confl icts with its parser
in some cases. After manual examination, we
find that this is caused by the difference in
patterns between latest version OpenDPI and
L7-fi ter, which is out of consideration of this

Fig.5 Comparison of throughput

0

0.5

1

1.5

2

2.5

3

trace_riit trace_seg trace_ap01 trace_ap02

L7-Filter OpenDPI PPP

Table I Global statistics of traces
Trace Packet # Flow # Size (MB)

trace_riit 1,217,285 18802 1901.6

trace_seg 889,967 13890 673.7

trace_ap01 1,529,375 19699 1903.5

trace_ap02 1,217,285 12738 1900.8

Table II Classifi cation results
Protocol Accuracy Recall Precision

HTTP 97.12% 97.19% 99.50%

POP3 100% 100% 100%

SMTP 100% 99.45% 99.99%

SSH
BitTorrent

100%
100%

100%
66.7%

100%
99.97

China Communications • October 2014115

single match, which is the representative merit
of regular expression methods. We build a
prototype system and evaluation results show
that significant improvement has been made
comparing to existing open-source classifier in
terms of both memory usage and throughput.

In our future work, we will deploy PPP
system on multi-core platform to make further
promotion. We will also try to optimize the
design of protocol parsers, aiming to achieve
the parallel effect naturally by the parser itself.

ACKNOWLEDGEMENTS

This work was supported by the National Key
Technology R&D Program of China under
Grant No.2012BAH46B04.

References
[1] LABOVITZ C, IEKEL-JOHNSON S, MCPHERSON

D, et al. Internet Inter-Domain Traffic[J]. ACM
SIGCOMM Computer Communication Review,
2011, 41(4): 75-86.

[2] CALLADO A, KAMIENSKI C, SZABÓ G, et al. A
Survey on Internet Traffic Identification[J]. Com-
munications Surveys & Tutorials, IEEE, 2009,
11(3): 37-52.

[3] KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS
M. BLINC: Multilevel Traffic Classification in the
Dark[J]. ACM SIGCOMM Computer Communi-
cation Review, 2005, 35(4): 229-240.

[4] Moore A W, Zuev D. Internet traffic classifica-
tion using bayesian analysis techniques[J]. ACM
SIGMETRICS Performance Evaluation Review,
2005, 33(1): 50-60.

[5] YANG B, HOU G, RUAN L, et al. SMILER: To-
wards Practical Online Traffic Classification[C]//
Proceedings of the 7th ACM/IEEE Symposium
on Architectures for Networking and Communi-
cations Systems. ACM, 2011: 178-188.

[6] L7-Filter[EB/OL]. http://l7-filter.clearfoundation.
com/

[7] OpenDPI[EB/OL]. http://www.opendpi.org/
[8] IANA Service Name and Transport Protocol Port

Number Registry[EB/OL]. http://www.iana.org/
assignments/service-names-port

-numbers/service-names-port-numbers.xml
[9] HAFFNER P, SEN S, SPATSCHECK O, et al. ACAS:

Automated Construction of Application Sig-
natures[C]//Proceedings of the 2005 ACM
SIGCOMM Workshop on Mining Network Data.
ACM, 2005: 197-202.

[10] YE M, XU K, WU J, et al. Autosig-Automatically
Generating Signatures for Applications[C]//
Proceedings of the 9th IEEE International Con-

average PPP’s throughput is 2.3 times faster
than OpenDPI. This is mainly because the fol-
lowing reasons:
		A majority of Internet applications includ-

ing Web use HTTP/HTTPS protocol to
transfer data, and OpenDPI designs to start
classification from HTTP/HTTPS proto-
col parser. So the average parsing times of
OpenDPI reduce a lot compared with the
theoretical value.

		Matching time of DFA engine cannot be
ignored compared with parsing time, and
the difference between protocols result in
different parsing time among parsers.
Despite the gap between theoretical value

and experiment result, as figure 5 shows, the
throughput of PPP performs much better than
that of OpenDPI as well as L7-filter, illustrat-
ing a novel design of PPP.

6.4.3 Memory usage analysis

During multiple times of experiments, our
PPP system occupies about 47.2 MB memory
on average, while the number of OpenDPI is
41.7 MB. This is reasonable because we filter
the traffic with a light-weighted DFA matching
engine to achieve the effect of parallel pars-
ing. We leaves the memory usage of L7-filter
to be “undeterminable” because during the
experiments of L7-filter, memory allocation is
almost full, illustrating the appearance of state
explosion. However, this does not influence
the conclusion that PPP system achieves low
memory usage as well as fast classification
speed compared with existing open-source
traffic classification system.

VII. CONCLUSIONS

In this paper, we propose a novel traffic clas-
sification system employing Deep Inspection,
aiming to achieve Parallel Protocol Parsing
(PPP). We start with an analytical study of
the existing popular DI methods, namely, reg-
ular expression based methods and protocol
parsing based methods. Motivated by their
relative merits, we extend traditional protocol
parsing methods to achieve parallel search via

China Communications • October 2014 116

59.
[21] MUNOZ A, SEZER S, BURNS D, et al. An Ap-

proach for Unifying Rule Based Deep Packet
Inspection[C]// Proceedings of the IEEE Inter-
national Conference on Communications. IEEE,
2011: 1-5.

[22] NGUYEN T T T, ARMITAGE G. A Survey of Tech-
niques for Internet Traffic Classification Using
Machine Learning[J]. Communications Surveys
& Tutorials, IEEE, 2008, 10(4): 56-76.

Biographies
SHAO Yiyang, is currently a Ph.D. student at Tsin-
ghua University, Beijing, China. He received the B.S.
degree in the Department of Automation from Tsin-
ghua University, Beijing, China, in 2011. He has been
an IEEE student member since 2013. His research in-
terests focus on security issues of network especially
on traffic measurement and classification. Email:
shaoyy11@mails.tsinghua.edu.cn

XUE Yibo, is IEEE/ACM member and CCF senior
member. He received his B.S. degree and M.S. degree
in Computer Science from Harbin Institute of Tech-
nology in 1989 and 1992, respectively, Ph.D. degree
in Institute of Computer Technology from Chinese
Academy of Science in 1995. He is currently a profes-
sor in the Research Institute of Information Technol-
ogy (RIIT) at Tsinghua University. His main research
interests are in the areas of network security and
computer architecture. *The corresponding author of
this paper. Email: yiboxue@tsinghua.edu.cn

LI Jun, is currently Professor and Dean of Research
Institute of Information Technology (RIIT), Tsinghua
University. He is also Executive Deputy Director of the
Tsinghua National Lab for Information Science and
Technology. He holds a PhD degree in CS from New
Jersey Institute of Technology (NJIT), and MS and
BS degrees in Automation from Tsinghua University.
He is a member of IEEE since 1996, and his research
interest is in network security and Software Defined
Network (SDN). Email: junl@tsinghua.edu.cn

ference on Computer and Information Technol-
ogy. IEEE, 2009, 2: 104-109.

[11] WANG Y, XIANG Y, ZHOU W, et al. Generating
Regular Expression Signatures for Network
Traffic Classification in Trusted Network Man-
agement[J]. Journal of Network and Computer
Applications, 2012, 35(3): 992-1000.

[12] YUAN Z, XUE Y, DONG Y. Harvesting Unique
Characteristics in Packet Sequences for Effective
Application Classification[C]// Proceedings of
the 1st IEEE Conference on Communications
and Network Security. IEEE, 2013: 341-349.

[13] Cavium[EB/OL]. http://www.cavium.com/
[14] Bro[EB/OL]. http://www.bro.org/
[15] PANG R, PAXSON V, SOMMER R, et al. binpac:

a YACC for Writing Application Protocol Pars-
ers[C]//Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement. ACM,
2006: 289-300.

[16] SOURDIS I, DIMOPOULOS V, PNEVMATIKATOS
D, et al. Packet Pre-Filtering for Network In-
trusion Detection[C]// Proceedings of the 2nd
ACM/IEEE Symposium on Architecture for Net-
working and Communications Systems. ACM,
2006: 183-192.

[17] HE F, XIANG F, SHAO Y, et al. Accelerating Ap-
plication Identification with Two-Stage Match-
ing and Pre-Classification[J]. Tsinghua Science
& Technology, 2011, 16(4): 422-431.

[18] ALBRECHT D R. High Performance Network
Intrusion Detection: a New Paradigm is Need-
ed[D]. University of Illinois, 2010.

[19] GUO D, LIAO G, BHUYAN L N, et al. A Scalable
Multithreaded L7-Filter Design for Multi-Core
Servers[C]//Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking
and Communications Systems. ACM, 2008: 60-
68.

[20] GUO D, LIAO G, BHUYAN L N, et al. An Adaptive
Hash-Based Multilayer Scheduler for L7-Filter
on a Highly Threaded Hierarchical Multi-Core
Server[C]//Proceedings of the 5th ACM/IEEE
Symposium on Architectures for Networking
and Communications Systems. ACM, 2009: 50-

