
From Packet to Flow: Network
Security Algorithms to Break
Bottleneck

Jun Li
Research Institute of Information Technology
School of Information Science and Technology

Tsinghua University, Beijing, China

Many contributions from my colleagues and students,
especially Yaxuan Qi, Bo Xu, and Xin Zhou

Outline
Why from Packet to Flow?

Features and Bottlenecks
Packet Classification

Stateful Inspection

Deep Inspection

Algorithms and Performance
Fast Packet Classification: AggreCuts

Efficient State Management: SigHash

High Performance Content Inspection: MRSI

Summary

Why from Packet to Flow?
Increasing sophistication of applications

Stateful inspection firewalls
Deep inspection in IDS/IPS

Continual growth of network bandwidth
OC192 or higher link speed
Millions of concurrent connections

Requirement for holistic defense
Against complex and blended network threats
Integrated security features in unified security
architecture
Unified Threat Management (UTM)

Features and Bottlenecks
Packet Classification

High-speed with modest memory

Stateful Inspection
Large number of connections
Order-preserving

Deep Inspection
Enormous signatures
Various signature characteristics

Novel Algorithms (1)
Packet classification algorithm (AggreCuts)

Aggregation Cuttings
Multi-dim range match

Worst-case bounded and adjustable
Limited decision tree depth

No linear search

Efficient memory storage
Space aggregation with bitmap

Support different memory hierarchies

Packet Classification Algorithms

Field-independent
Search Algorithms

Field-dependent
Search Algorithms

Trie-Based
Algorithms

Table-Based
Algorithms

Trie-Based
Algorithms

Decision-Tree
Algorithms

BV

ABV

AFBV

Bit-Map
Aggregation

Folded
Bit-Map
Aggregation

CP

RFC

B-RFC

Bit-Map to
store rules

HSM

Prefix
Match

Equivalent
Match

Index
Search

Binary
Search

Bit-Map
Aggregation

H-Trie

SP-Trie

GoT

EGT

No Back
Tracking
No Back
Tracking

No Rule
Duplication

Extend to
Multiple Fields

Bit-Test Range-Test

Modular

Single-Field Multi-Field

HiCuts

AggreCuts

HyperCuts

Bit-Map
Aggregation

Space Aggregation
Space Aggregation

Decision-tree
Data-structure

AggreCuts vs. HiCuts
Performance Evaluation

Memory Usage:
an order of magnitude less

Memory Access:
3~8 times less

Throughput on IXP2850:
3~5 times faster

Novel Algorithms (2)
Stateful inspection algorithm (SigHash)

Signature based hashing
Support large concurrent connections

Efficient memory usage

High speed TCP handshakes

Per-flow packet order preserving
External Packet order preserving

Internal Packet order preserving

Signature-based Hash
Signature-based
Hashing

m signatures for m
different states with
same hash value

Resolving collision
in SRAM (fast,
word-oriented)

Storing states in
DRAM (large, burst-
oriented)

SigHash Performance
Throughput

10Gbps
(SRAM+DRAM)

8Gbps
(DRAM only)

Connections
10M on IXP2850

Collision
Less than 1%
Depends on different
load factors

Handshake-separated Hash
Handshake-
separated Hash
(IntelliHash)

Process handshake
packets in SRAM,
data packets in
DRAM, sharing the
same hash value
Speedup session
creation
Enhance anti-DoS
capability

IntelliHash Procedure
Handshake packets
processing

Process
SYN/SYN_ACK
packets in SRAM

Process ACK
packets in DRAM;
if (LEN==zero &&
session!=exist),
process in SRAM
Zone

Listen

Set SYN_RECV &Store
state

SYN_ACK Seq. No. & Ack.
No. valid?

Set SYN__ACK_RECV
&Update state

ACK Seq. No. & Ack. No.
valid?

Set ESTABLISH
&Update state

Flush whole flow state
into DRAM Session Table

Release
handshake entry

Yes

Incoming SYN packets

Incoming SYN_ACK packets

Session exist & Seq.
No. & Ack. No. in

window size?

Update flow state
Yes

Incoming ACK packets

Yes

SRAM ZONE

DRAM ZONE

LEN == 0?
No Yes

IntelliHash
Performance
Evaluation

Handshake packets
processing speed

8.5G (IntelliHash)

6.5G (DirectHash)

Session Creation
Rate

Up to 2M
connections per
second (IntelliHash)

0

1

2

3

4

5

6

7

8

9

8 16 24 32 40 48 56 64 72

Number of Threads

H
an

ds
ha

ke
 P

ro
ce

ss
in

g
Sp

ee
d

(G
bp

s)

IntelliHash

DirectHash

0.0

0.5

1.0

1.5

2.0

2.5

8 16 24 32 40 48 56 64 72

Number of Threads

Se
ss

io
n

C
re

at
io

n
R

at
e

(M
cp

s)

IntelliHash

Per-flow Packet Ordering
Packet Order-preserving

Typically, only required between packets on the same
flow.

External Packet Order-preserving (EPO)
Sufficient for processing packets at network layer.
Fine-grained workload distribution (packet-level)
Need locking

Internal Packet Order-preserving (IPO)
Required by applications that process packets at
semantic levels.
Coarse-grained workload distribution (flow-level)
No need for locking

Per-flow Packet Ordering
External Packet Order-preserving (EPO)

Ordered-thread Execution
Ordered critical section to read the packet handles off
the scratch ring
The threads then process the packets, which may get
out of order during packet processing
Another ordered critical section to write the packet
handles to the next stage

Mutual Exclusion by Atomic Operation
Packets belong to the same flow may be allocated to
different threads to process
Mutual exclusion can be implemented by locking
SRAM atomic instructions

Per-flow Packet Ordering
Internal Packet Order-preserving (IPO)

SRAM Q-Array

Workload Allocation by CRC Hashing on Headers

Per-flow Packet Ordering
Performance
Evaluation

Throughput
EPO is faster, 10Gbps

IPO has linear speed
up, 7Gbps

Workload
Allocation

Hashing via On-chip
CRC

Nearly balanced
workload

Novel Algorithms (3)
RSI (Recursive Shift Indexing)

Reduce the number of useless matching

Pro: trade-off space with time
Directly using four-character block to create the BLT will
use memory up to 2564 → 4 GB

RSI Data Structure
Bitmaps are
used for
preprocessing
and deleted
after that

RSI Temporal Performance

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

4

4.5

5

Pattern Number

To
ta

l S
ea

rc
hi

ng
 T

im
e

(s
)

AC
AC-BM
WM
SBMH
RSI

RSI Spatial Performance

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Pattern Number

M
em

or
y

O
cc

up
at

io
n

(k
B

)

AC
AC-BM
WM
SBMH
RSI

Break the Real Bottleneck
Current version of Clam-AV

The basic signatures are handled by BMEXT that uses the last 3
characters of a signature to generate shifts

Large dataset characteristics
ClamAV: 78k basic rules

Our proposal: hybrid algorithms
DFA for short signatures: DFA-based algorithm
implemented on fast on-chip memory

Space efficient
High performance (5.5G vs 1.2G on Octeon)

HASH for long signatures: Hash-based algorithm with
larger shifts than BMEXT

Search with shifts/skips: i.e. MRSI

DFA Performance Limit

DFA size = 100KB, Len=512Byte
5.5Gbps on Octeon 3860

DFA size = 100MB, Len=512Byte
1.2Gbps on Octeon 3860

Statistics of ClamAV Signatures

Idx
Tota

Number
l Average

Length
Min

Length
Len<9

Num
0 29611 67.5 10 0
1 46954 123.7 4 8
2 164 106.8 28 0
3 1402 110.7 14 0
4 355 46.6 17 0
5 0 n/a n/a 0
6 15 105.1 17 0

Large scale signature set

Longer average length

Very few short signatures

MRSI
Use three BLTs

Increase the probability of getting leap
Omit Phase 2 in original RSI data structure

Solve memory occupation expansion
Improve preprocessing speed

MRSI Performance

MRSI vs. BMEXT: Scanning Speed MRSI vs. BMEXT: Memory Usage

MRSI Performance

MRSI vs. BMEXT: Scalability MRSI vs. BMEXT: Performance under Attacks

MRSI Performance in AV

Real System Performance on Clam-AV

Summary

Analyze the real problem
Packet classification
Stateful Inspection
Deep Inspection

Propose new algorithms
Hardware aware
Time-space tradeoff

Break the real bottleneck

Reference
[1] Yaxuan Qi, Bo Xu, Fei He, Baohua Yang, Jianming Yu and Jun
Li, Towards High-performance Flow-level Packet Processing on
Multi-core Network Processors, Proc. ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(ANCS), 2007.
[2] Yaxuan Qi, Baohua Yang, Bo Xu, and Jun Li, Towards System-
level Optimization for High Performance Unified Threat
Management, Proc. 3rd International Conference on Networking
and Services (ICNS), 2007.
[3] Bo Xu, Yaxuan Qi, Fei He, Zongwei Zhou, Yibo Xue and Jun Li,
Fast Path Session Creation on Network Processors, Proc. 28th
International Conference on Distributed Computing Systems
(ICDCS), 2008. (to appear)
[4] Xin Zhou, Bo Xu, Yaxuan Qi and Jun Li, MRSI: A Fast Pattern
Matching Algorithm for Anti-virus Applications, Proc. 7th
International Conference on Networking, 2008.

Thanks
http://security.riit.tsinghua.edu.cn

	From Packet to Flow: Network Security Algorithms to Break Bottleneck
	Outline
	Why from Packet to Flow?
	Features and Bottlenecks
	Novel Algorithms (1)
	Slide Number 6
	Space Aggregation
	Decision-tree
	AggreCuts vs. HiCuts
	Novel Algorithms (2)
	Signature-based Hash
	SigHash Performance
	Handshake-separated Hash
	IntelliHash Procedure
	IntelliHash
	Per-flow Packet Ordering
	Per-flow Packet Ordering
	Per-flow Packet Ordering
	Per-flow Packet Ordering
	Novel Algorithms (3)
	RSI Data Structure
	RSI Temporal Performance
	RSI Spatial Performance
	Break the Real Bottleneck
	DFA Performance Limit
	Statistics of ClamAV Signatures
	MRSI
	MRSI Performance
	MRSI Performance
	MRSI Performance in AV
	Summary
	Reference
	Thanks�http://security.riit.tsinghua.edu.cn

