

TOWARDS EFFECTIVE PACKET CLASSIFICATION

Yaxuan Qi1 and Jun Li1, 2

1 Research Institute of Information Technology (RIIT), Tsinghua University, Beijing, China, 100084
2 Tsinghua National Lab for Information Science and Technology (TNLIST), Beijing, China, 100084

{yaxuan, junl}@tsinghua.edu.cn

ABSTRACT
A variety of network security services, such as access
control in firewalls and protocol analysis in intrusion
detection systems, require the discrimination of packets
based on the multiple fields of packet header, which is
called Multidimensional Packet Classification. In this
paper, we propose a very effective packet classification
algorithm called Extended Multidimensional Cuttings,
ExCuts in short. As an extension of HyperCuts, which is
the best-known existing decision tree algorithm, ExCuts
refines the node merging mechanism using a two-step
discontiguous space aggregation scheme, which
minimizes the number of child nodes. To further reduce
the memory usage of the decision tree structure, ExCuts
adopts a bit string mapping scheme to compress the large
pointer arrays in internal nodes. Due to the significant
memory reduction, ExCuts is able to pick a fixed number
of cuttings and thus provides explicit worst-case search
time. Experimental results show that ExCuts outperforms
the best result of existing algorithms on both real-life
rulesets and synthetic classifiers.

KEY WORDS
Network security, Packet classification, ACL and IDS

1. Introduction
Multidimensional Packet Classification is crucial to
modern network security devices such as firewalls and
intrusion detection systems. Although hardware like
Ternary CAMs provide multi-Gbps classification rate,
they consume too much power and board area and are not
cost-effective for applications with large number of rules.
To overcome the limits in hardware solutions, there is an
increasing interest in both industry and academia in
finding efficient software approaches for
multidimensional packet classification. The need for
extensive study on novel multidimensional packet
classification algorithms comes from:
a) Performance of Existing Algorithms: Current
algorithms with the best time-space tradeoffs appear to be
HiCuts and its extension HyperCuts. Although it is
reported in [1] and [7] that these two algorithms work
well for real-life rulesets, the performance of HiCuts and
HyperCuts is still limited by the following factors:
• Non-deterministic worst-case search time: Although

worst-case search time is the most important

performance metric in packet classification, both
HiCuts and HyperCuts do not provide explicit worst-
case bounds for it.

• Excessive memory usage for large rulesets: A test on
the largest real-life ruleset with 1,945 rules shows that
even HyperCuts requires more than 1M bytes memory
storage, which precludes the use of a common CPU
cache.

b) Novel Ideas: Although a number of papers on
algorithmic solutions for multidimensional packet
classification have been published [1, 3, 4, 5, 6, 7, 8, 9] in
recent years, there are still novel ideas that can further
improve the performance of existing best algorithms.
Novel ideas spring from:
• New characteristics: Real-life rulesets have some

inherent structure which can be exploited by packet
classification algorithms. In recent literature [17], a
number of statistic results on real-life rulesets are
proposed, providing benefits for algorithmic studies.

• Hybrid algorithms: No single algorithm will perform
well for all cases. Hence a hybrid scheme might be
able to combine the advantages of several different
approaches.

• Efficient search structures: The search structure built
by a lot of algorithms can be significantly compressed.
Carefully designed data-structures may also improve
the search speed [6].

In this paper, we introduce a novel packet classification
algorithm which significantly improves the performance
of existing best-known algorithms. Because the proposed
algorithm originates from HyperCuts [7], we name our
algorithm Extended Multidimensional Cuttings, ExCuts in
short. Compare to the HyperCuts, the improvement of
ExCuts includes:
a) Guarantees the worst-case search time: Worst-case
search time is the most important performance metric in
packet classification. However, due to the unpredictable
depth of the decision tree built by HyperCuts, it appears
to be difficult to provide the worst-case search time.
ExCuts guarantees a worst-case search time by fixing the
number of partitions along each internal node, but on the
same time it remains a modest memory usage.
b) Aggregates discontiguous sub-spaces: Space
aggregation is the key step for packet classification
algorithms to eliminate the structural redundancy in real-

547-058 216

nicholas

life rulesets. To maximize the reuse of child nodes,
ExCuts aggregates not only the contiguous search spaces
(as in HiCuts and HyperCuts), but also the discontiguous
search spaces. This scheme significantly reduces the
memory storage in comparison with HyperCuts.
c) Compresses redundant pointer arrays: HyperCuts
uses pointer array to lead the way for packet search. The
use of pointer array can, however, increase storage
because the size of these arrays might be large. ExCuts
employs an aggregation bit-string mechanism to
effectively compress the pointer array without significant
loss of search rate.

The rest of the paper is organized as follows: Section 2
states the problem of packet classification; Section 3 and
Section 4 describe the proposed algorithm ExCuts;
Section 5 illustrates the experimental results; and as a
summary, Section 6 shows our conclusions.

2. Problem Definition
Multidimensional packet classification classifies a packet
based on F fields of the packet header header. Each rule
has F components, and the ith component of rule R,
referred to as R[i], is a regular expression on the ith field
of the packet header. A packet P is said to match a
particular rule R, if i∀ , the ith field of the header of P
satisfies the regular expression R[i]. It is possible for a
packet P to match multiple rules, and in this case, the
final classification result is the matching rule with the
highest priority in the ruleset.

From a geometric point of view, all possible attributes in
F fields of the packet header form a multidimensional
space, which is called the search space. Each of the F
fields is a dimension of the search space and a packet P is
a point located in the multidimensional search space. For
range matching in generalized packet classification, the
regular expression R[i] refers to a range in the ith
dimension of the search space and all ranges specified by
rule R compose an F-dimensional hyper-rectangle. If a
packet P matches a particular rule R, the point represented
by P will fall into the hyper-rectangle specified by R.
Therefore, one possible approach in theoretical analysis is
to map packet classification into a geometric point
location problem in a multidimensional search space.

It has been proved in [2] that the best bounds for point
location in N non-overlapping F-dimensional hyper-
rectangles are 1(log)F N−Θ search time with ()NΘ
storage, or (log)NΘ search time with ()FNΘ storage. In
packet classification problem, rules (hyper-rectangles)
may overlap, making classification at least as hard as
point location. Moreover, the need to match on ranges as
well as prefixes makes multidimensional packet
classification yet more complex. According to [19], the
range-to-prefix conversion for a rule with W-bit range
specification in each of the F fields will generate up to
(2(W-1)) F times more rules.

3. Extended Multidimensional Cuttings
Due to the worst-case theoretical bounds found in
computational geometry, it seems to be impossible to
design a single algorithm that performs well for all cases.
Fortunately, real-life rulesets have some inherent
characteristics that can be exploited to reduce the
complexity both in search time and memory space [19]. In
recent literature, a number of multidimensional packet
classification algorithms have been proposed [1, 3, 4, 5, 6,
7, 8, 9], some of which achieve promising results by
exploiting the structural redundancy found in real-life
ruleset. In this paper, the proposed algorithm, Extended-
multidimensional Cuttings, improves the performance of
the best reported algorithm HyperCuts by introducing the
following novel ideas.

3.1 Fixed Number of Cuttings
Worst-case bound of search time is critically important
for packet classification algorithms. Unfortunately, both
HiCuts and HyperCuts can hardly provide an explicit
worst-case search time because the number of cuttings at
each level of the decision tree is not a constant. However
in ExCuts, the number of cuttings is fixed by setting a
constant stride w, i.e. at each internal node the current
search space is partitioned into 2w cuttings along each

dimension. This guarantees a worst-case bound of ()W
wf

Θ ,

where W is the bit-width of packet header and f is the
number of dimensions to cut. By choosing a larger
constant stride w, the worst-case search time can be
improved.

Although the choice of a larger number of cuttings tends
to require more memory storage, ExCuts makes the
memory requirement not sensitive to the number of
cuttings by effective space compressing mechanism.
Experiment results show that when stride w varies from 4
to 7, the total memory space occupied by the search
structure varies within the same order of magnitude.

Preprocessing for heuristic algorithms is time-consuming
when dealing with large rulesets. To determine a proper
number of cuttings for an internal node, HiCuts and
HyperCuts will search for an optimized stride
exhaustively within a set of possible values. While in
ExCuts, the complicated optimizations are significantly
simplified by using a fixed number of cuttings, and hence
the preprocessing time in building the decision tree is
greatly reduced.

3.2 Discontiguous Space Aggregation
Space aggregation is the key step to reduce the spatial
redundancy in real-life rulesets [19]. Existing decision
tree algorithms, such as HiCuts and HyperCuts, only
aggregated contiguous sub-space.

Discontiguous space aggregation will generate minimized
number of child nodes for each internal node. Compared

217

to HyperCuts, where child nodes with discontiguous
search space will not be aggregated even if they share the
same set of rules, ExCuts generates only one child node
for each unique ruleset. Consequently, the number of
child nodes is significantly reduced and thus the memory
space occupied by the decision tree is greatly saved.
Although preprocessing of ExCuts to generate a single
internal node is slower than HyperCuts (need a search in
f-dimensions), the overall preprocessing time of ExCuts is
much shorter in most of the cases because the total
number of nodes is significantly reduced.

3.3 Compressed Point Arrays
To further reduce the memory storage, ExCuts
compresses the large pointer arrays in HyperCuts by a
two-step mapping:
• In the first step, contiguous cuttings are aggregated

along each dimension. ExCuts uses aggregation bit
strings to compress the pointer array.

• In the next step space aggregation is performed in f
dimensions. Pointers correspond to aggregated sub-
spaces are associated with the child node.

3.3 An Example
For easy understanding of the novel ideas in ExCuts, we
provide an example on a toy ruleset shown in Figure 1.
Assume that there are 4 cuttings along both X and Y
dimensions. The search space is partitioned into 4*4=16
sub-spaces (Figure 2).

In the first aggregation step, contiguous cuttings are
aggregated if they share the same set of rules. In Figure 3,
Cut1x and Cut2x are aggregated in X dimension, and
similarly, Cut1y and Cut2y are combined along Y
dimension. Thus the 16 sub-spaces are aggregated to 9
sub-spaces. Figure 4 shows how to map a Cut to the
corresponding AC (aggregated cutting) using aggregation
bit strings (ABS).

To further cut down the number of sub-spaces, ExCuts
aggregates discontiguous sub-spaces by creating a 3*3
pointer array. These pointers (indexed by ACs) are
pointed to 5 child nodes, each of which has distinct rules.
Figure 5 shows the pointer array build by ExCuts, and for
comparison, Figure 6 shows the pointer array build by
HyperCuts.

From this example we see that ExCuts significantly
reduces the number of child nodes, as well as the size of
the pointer array. We will describe details of ExCuts in
the next section.

4. The Proposed Algorithm
To hierarchically decompose the multidimensional search
space, ExCuts adopts a decision tree structure. At each
internal node the current search space along with the
corresponding ruleset is split based on information from
multiple fields in the rules.

Figure 1. A Toy Ruleset of Four 2-D Rules. The search space is
the X-Y plane {[000, 111], [000, 111]}. The ranges specified by
rules R1~R4 are: R1{[100, 100], [101, 101]}, R2{[000, 111],
[100, 100]}, R3{[100, 111], [000, 111]} and R4{[000, 111],
[000, 111]}. R1~R4 are assiged with decremental priorities.

Figure 2. Space Partition. There are 4 cuttings along both X
(Cuts1x~Cuts4x) and Y (Cuts1y~Cuts4y) dimensions. The
search space {[000, 111], [000, 111]} is partitioned into 4*4=16
equal-sized sub-spaces.

Figure 3. Contiguous Space Aggregation (16-to-9). Cut1x and
Cut2x are aggregated in X dimension to form Aggregated
Cuttings AC1x. Similarly, Cut1y and Cut2y are aggregated to
form AC1y. Now the 3*3 Aggregated Cuttings reduce the
number of sub-spaces from 16 to 9.

Figure 4. Aggregation Bits String. If a packet drops in Cuts3x,
then by computing the sum of the first 3 bits of the ABS:
1+0+1=2, we know this packet belongs to AC2x.

218

Figure 5. Pointer array Discontiguous Space Aggregation (9-to-
5). For example, sub-space (AC1x, AC1y)={[000, 001], [000,
011]} and sub-space (AC1x, AC3y)={[000, 001], [110, 111]}
have the same colliding ruleset {R4}, they are aggregated to
Child Space C1{[000, 011], [000, 111]}, which is the tight
bound of them.

Figure 6. Pointer array in HyperCuts. HyperCuts builds for each
of the 4*4 sub-spaces a pointer. The pointers are indexed by the
original cuttings rather than the aggregated cuttings.

Each time a packet arrives, the decision tree is traversed
based on information in the packet header to reach a leaf
node, where a small number of matching rules are stored
for linear search. Although this basic structure is similar
to the work in [1] [7], ExCuts employs novel ideas that
significantly optimize the shape of the decision tree.

4.1 Space Partition with Fixed Number of Cuttings
In HiCuts and HyperCuts, the process to partition the
search space at each internal node includes two steps: (1)
Identifying the most suitable set of dimensions to partition
and (2) determining the number of partitions to be done in
each of the chosen dimensions. Both of the two
algorithms use a number of sophisticated heuristics and
optimizations to choose a proper number of cuttings for
each internal node and hence build variable-stride tries as
the search structure.

Different from HiCuts and HyperCuts, ExCuts leaves out
the process to choose the number of cuttings and set for
each internal node a fixed number of cuttings, which
results in a fixed-stride trie as the search structure.
Experiment results show that when stride w varies from 4
to 7, the total memory space occupied by the search
structure varies within the same order of magnitude. To
guarantee an ideal worst-case search time, we set stride
w=6.

Having a fixed number of cuttings, the only challenge left
for space partition process is to pick the most
discriminative dimensions which will lead to as few as
possible number of child nodes and as less as possible
number of rules in each child node. To the best of our
knowledge there is no consummate method of picking the
most suitable dimensions. A number of local optimized
solutions in existing work can be used in ExCuts:
• Minimizing max (())j jNumberRules child in an

attempt to decrease the worst-case depth of the tree.
This simple heuristic is suggested in [1]. While easy
to implement, it has proved to be ineffective in our
experiment.

• Minimizing avg (())j jNumberRules child in an
attempt to decrease the overall memory usage. We
suggest using this heuristic in ExCuts because it has
proved to be more effective than other heuristics and
also very easy to implement.

• Maximizing the number of unique sub-sets of rules in
an attempt to search for the most uniform distribution
of the rules in child nodes. This heuristic is used in
HyperCuts. Although it is effective compared to other
methods, searching for unique sub-sets is time
consuming in multiple dimensions.

Once the number of cuttings is set and the dimensions are
chosen, the current search space is uniformly partitioned
in to equal-sized 2wf sub-spaces, where w is the fixed
stride and d is the number of dimensions on which the
partitions are to be executed. From the view of spatial
projection, F-dimensional hyper-rectangles (rules) are
projected to the f-dimensional projection-space according
to the first w bits along each chosen dimensions of the
current search space.

4.2 Two-step Search Space Aggregation
Because the number of child nodes has a direct
relationship to the memory space occupied by the search
structure, it should be reduced as much as possible. Both
HiCuts and HyperCuts use a set of heuristics to try to
maximize the reuse of child nodes. Because they only
merge adjacent child nodes which have associated with
them the same set of rules, only contiguous regions
covered by the child nodes are aggregated. However,
discontiguous regions may also share the same set of rules.
To minimize the number of child nodes, we should
aggregate all the sub-spaces sharing the same set of rules.
ExCuts uses the following two-step space aggregation
process to optimize the reuse of the child nodes.

a) STEP I: Contiguous Space Aggregation
After space partition, many child nodes share identical
rules. The first step is to aggregate contiguous sub-spaces
along each of the d dimensions. ExCuts employs a series
of elegantly designed data-structures to reduce the
memory usage.

219

In HiCuts and HyperCuts, the direct way to traverse the
decision tree is to create a pointer array with 2wf pointers,
and each of them points to a corresponding child node. If
the search space is partitioned along f dimensions at each
internal node, the pointer array requires (2)wfΘ memory
storage. For example, if there are 26 cuttings in 2
dimensions, the internal node needs to store about 4k 32-
bit pointers. To avoid memory blow-up, both HiCuts and
HyperCuts use variable-strides to limit the number of
cuttings at each internal node. However, the stride is a
constant in ExCuts, so building such pointer arrays will
consume a lot of memory storages. Fortunately, in most
of the cases, these pointer arrays can be compressed using
the following data-structure:
• Assign Aggregated Cuttings (AC) with incremental

space IDs, from 0 to mi, i=1, ..., f.

• Create a
1

f

i
i

m
=
∏ -entry Compressed Pointer Array

(CPA).
• Create for each of the f dimensions a 2w-entry

Aggregating Bit String (ABS). Set the bit if the
corresponding cutting is not aggregated with the
previous one.

When a packet P falls into sub-space (Cut1, Cut2, ..., Cutf),
the offsets of the corresponding pointer along each of the f
dimensions in CPA can be obtained by adding the first
Cuti bits in ABS (1 i f≤ ≤). Thus ExCuts compresses the

2wf-entry PA into the
1

f

i
i

m
=
∏ -entry CPA. Since mi

(1 i f≤ ≤) is always much smaller than 2w (due to the
contiguous space aggregation), the memory space
occupied by the search structure is significantly reduced.

b) STEP II: Discontiguous Space Aggregation
To further eliminate spatial redundancy, ExCuts
aggregates discontiguous sub-spaces by setting pointers in
CPA to child nodes with distinct set of rules. Because the
search space to partition in any internal node must be a
contiguous hyper-rectangle, aggregation of discontiguous
sub-spaces seems infeasible. Fortunately, we can find a
big enough hyper-rectangle that tightly contains all the
sub-spaces to aggregate, and associate the child node this
with hyper-rectangle as the corresponding search space.

Actually, experimental results show that, in most of the
cases, non-rectangle regions do not need further partitions.

4. 3 Packet Search Structure
Like HiCuts and HyperCuts, ExCuts works by carefully
preprocessing the rulesets to build a decision tree data
structure. Each time a packet arrives, the decision tree is
traversed down to a certain leaf node, where a small
number of rules are stored. Linear search among these
rules yields the final matching result. We use a flowchart
to describe how to build the packet search structure for of
ExCuts. Figure 7 depicts how to build the ExCuts tree.

5. Experimental Results
5.1 Rulesets and Metrics
We evaluate ExCuts both on real-life firewall and core
router rulesets as well as on synthetic rulesets. The real-
life rulesets are obtained from large enterprise networks
and major ISPs. Firewall rulesets are named FW1, FW2,
FW3; Core router rulesets are named CR1, CR2, CR3 and
CR4. Synthetic rulesets include synthetic firewall sets
(SF1~SF20) and synthetic core router sets (SC1~SC10).
The largest real-life ruleset (CR4) contains 1945 rules,
and the largest synthetic ruleset contains 10000 rules. All
rules are 5-dimensional with 32-bit source/destination IP
addresses represented as prefixes, 16-bit
source/destination port numbers represented as ranges and
8-bit transport layer protocol. It is reported in [3] [7] [8]
and [18] that the structural characteristics of firewall
policy tables (rulesets) are different from core router
access control list (ACL, also rulesets), e.g. most source
port ranges in core routers are [0, 65535], while in
firewall policy tables source port ranges are assigned
more specifically.

Figure 7. Flowchart of Building the ExCuts Tree.

220

Although the number of sets available to us is quite small,
we believe that experimental results obtained using real-
life rulesets are more convincing than those tested on
synthetic rules. Actually, we use the synthetic rulesets just
to test the stability of algorithms. Different synthetic
rulesets in our experiments have same statistic
characteristics, but differ in size.

To test the performance of all the algorithms on both real-
life and synthetic rulesets, we examine, for each ruleset,
the number of memory accesses as the search time (Time)
and the amount of memory usage (Space) for the whole
data structure for search built by the algorithms. Different
from [7] [8] (where one memory access is a single 32-bit
word access), one memory access here refers to reading a
certain number (1~8) of continuous memory words. This
metric is in accordance with the experimental evaluation
in paper [19].

5.2 Variation with Stride w
Table I shows the memory usage of the search structure
build by ExCuts with different choice of stride w. It can
be seen from the table that the memory usage is not
sensitive to the choice of w. In most of the cases, a larger
w even leads to smaller memory usage. This seems to be a
contradiction to the conclusion made in HiCuts and
HyperCuts that the number of cuttings is in direct
proportion to the memory usage. In fact, such an increase
of memory usage results from increase of the pointer
arrays. However in ExCuts, the pointer arrays are
efficiently compressed. Thus the total memory usage is
just in proportion to the number of tree nodes. Because

the choice of a larger w implies more particular space
decomposition, larger number of cuttings can eliminate
some intermediate tree nodes and generate an overall
decision tree with fewer nodes. So the memory usage
decreases with a larger w. To guarantee an ideal worst-
case search time, we set stride w=6. Too large strides will
cause slow preprocessing speed due to the aggregation in
multidimensional cuttings.

5.3 Performance on Real-life Rulesets
We first compare ExCuts with the algorithms of the best
reported performance, including HiCuts, HyperCuts, RFC
and HSM, on real-life rulesets. Due to patent issues, we
were not able to obtain source codes from the authors and
thus the codes of these algorithms are all written by
ourselves. We make our best effort to make sure the
fairness of our result analysis. Experimental results show
that our codes achieved nearly the same performance
compared to the experimental results reported in [7].

In comparison with algorithms using decision trees, Table
II and Table III compare ExCuts with HiCuts &
HyperCuts respectively on spatial and temporal
performance. We can see from these tables that, for all
real-life rulesets, ExCuts achieves at least an order of
improvement in memory usage, as well as superior worst-
case search time.

To compare with the algorithms using lookup tables,
Table IV shows the memory usage of RFC, HSM and
ExCuts. For the largest real-life ruleset CR4, ExCuts uses
16 times less memory than HSM and 27 times less than

Table 1. ExCuts with Different Strides from 4 to 7
Rulesets No. Rules ExCuts-4 ExCuts-5 ExCuts-6 ExCuts-7
FW1 68 1,805 1,928 1,316 1,199
FW2 136 3,630 3,876 2,643 2,423
FW3 340 9,150 9,924 6,732 6,287
CR1 500 8,239 7,325 6,189 5,641
CR2 1,000 54,211 45,973 32,693 36,533
CR3 1,530 44,097 42,297 38,984 35,564
CR4 1,945 69,195 65,480 58,105 51,007

(Unit: 32-bit memory word)

Table 2. Memory usage comparison: ExCuts vs. HiCuts & HyperCuts
Rulesets No. Rules HiCuts HyperCuts ExCuts
FW1 68 5,443 35,401 1,316
FW2 136 10,779 69,782 2,643
FW3 340 24,645 172,932 6,732
CR1 500 29,409 89,005 6,189
CR2 1,000 979,736 871,541 32,693
CR3 1,530 13,606,858 480,225 38,984
CR4 1,945 5,928,724 672,442 58,105

(Unit: 32-bit memory word)

Table 3. Worst-case search time comparison: ExCuts vs. HiCuts & HyperCuts
Rulesets No. Rules HiCuts HyperCuts ExCuts
FW1 68 30 24 20
FW2 136 32 24 20
FW3 340 32 24 20
CR1 500 40 26 24
CR2 1,000 52 26 24
CR3 1,530 64 28 24
CR4 1,945 60 28 24

(Unit: Memory Access)

221

RFC. Although the search speed of RFC and HSM are
20%~120% faster that of ExCuts (see Table V), they may
require parallel searches while ExCuts can be fully
pipelined to implement for fast search.

5.4 Performance on Synthetic Rulesets
In order to compare the ability to handle large number of
rules, we test ExCuts and HyperCuts on a series of
synthetic rulesets. Although we believe that tests on real-
life rulesets are more persuasive, the task is made harder
because the real-life rulesets available to us is quite
limited. To guarantee the fairness of experimental
comparison, we create these rulesets in the same way as
the synthetic rules in [7], and all of these rules have
identical distribution at each field.

Table VI shows the test on synthetic firewall rulesets
SF1~SF20 (SF1 has 100 rules and SF20 has 2000 rules).
We see that both HyperCuts and ExCuts perform stably
with the number of rules less than 1700. But when the
number of rules becomes larger (than 1700), the memory
usage of HyperCuts has a sharp increase in comparison
with that of ExCuts. The total memory used by HyperCuts
on SF20 is 10 times larger than that on SF17, while
ExCuts on SF20 uses no more than 30% more memory as
on SF17. Similar results are obtained when we test other
algorithms on these synthetic rulesets. ExCuts is proved
to be more stable than all other algorithms we have tested.
Such a conclusion is also supported by the results in Table
I and Table II with real-life rulesets.

Table VII shows the experimental result on large
synthetic core router sets SC1~SC10 (SC1 has 1000 rules
and SC10 has 10000 rules). The results prove that the
memory space occupied by ExCuts scales linearly in
number of rules. However, just like F. Baboescu said in
[8], this should be taken with a grain of salt because the
large ruleset generation methodology preserves the
source-destination structure of the original real-life ruleset.
If this assumption does not hold as rulesets scale up,

ExCuts may not linearly scale. However, it is not sure that
if there will be such complicated real-life routers in near
future.

6. Conclusion
Packet classification has received tremendous attention in
recent years. While hardware like Ternary CAMs offers a
good solution for small rulesets, they may use too much
power and board area for large rulesets. Thus, it is worth
looking for alternatives to overcome the limits in
hardware solutions, and the challenge of finding efficient
algorithmic approaches for packet classification to
achieve high performance with comparatively low
hardware requirement still motivates the research today.

Although theoretical bounds tell us that it is not possible
to arrive at a practical worst-case solution, real-life
rulesets have characteristics that can be exploited in
algorithms to generate different search structures for
various kinds of packet classification applications.
Thorough studies in theoretical analysis, as well as new
observation in data characteristics, are examples of
research effort in designing more efficient and practical
packet classification algorithms. Despite the vast amount
of genius ideas explored in prior work, there are still
novel ideas springing out together with the advancing of
theories and technologies, which can further improve the
performance of existing best algorithms.

Recently, pioneering work on packet classification based
on decision trees and geometric cuts provide high search
rate using modest memories. As an extension of the best-
known existing decision tree scheme HyperCuts, the
proposed algorithm ExCuts significantly improves the
performance of existing decision tree algorithms in terms
of both search rate and memory usage. First, ExCuts
refines the space aggregation step in HyperCuts with a
discontiguous space aggregation scheme, which greatly
reduces the number of tree nodes; Secondly, ExCuts
adopts a bit string to compress the size of the large pointer

Table 4. Memory usage comparison: ExCuts vs. RFC & HSM
Rulesets No. Rules RFC HSM ExCuts
FW1 68 200,652 10,223 1,316
FW2 136 209,602 27,657 2,643
FW3 340 296,382 65,581 6,732
CR1 500 264,987 29,814 6,189
CR2 1,000 530,539 230,716 32,693
CR3 1,530 863,476 486,857 38,984
CR4 1,945 1,580,005 989,161 58,105

(Unit: 32-bit word)

Table 5. Worst-case search time comparison: ExCuts vs. RFC & HSM
Rulesets No. Rules RFC HSM ExCuts
FW1 68 9 17 20
FW2 136 9 17 20
FW3 340 9 21 20
CR1 500 9 23 24
CR2 1,000 9 25 24
CR3 1,530 9 25 24
CR4 1,945 9 25 24

(Unit: Memory Access)

222

arrays in internal nodes. Finally, both of these techniques
make it feasible and practical for ExCuts to pick a fixed
number of cuttings at each internal node, and hence
provide ExCuts with an explicit worst-case search time.

Experimental results show that ExCuts outperforms the
best result of existing heuristic algorithms on both real-
life rulesets and synthetic classifiers. Compared to the
best-known decision tree algorithms, ExCuts uses 11 to
27 times less memory storage and 10% to 50% less time
in worst-case search. ExCuts also outperforms other
popular algorithms such as RFC and HSM with best
time/space tradeoffs.

Acknowledgements
This work is sponsored by the Intel IXA University
Program.

References
[1] P. Gupta and N. McKeown, Packet classification using
hierarchical intelligent cuttings, Proc. Hot Interconnects, 1999.
[2] M.H. Overmars and A.F. van der Stappen, Range searching
and point location among fat objects, Journal of Algorithms,
21(3), 1996, 629-656.
[3] P. Gupta and N. McKeown, Packet classification on multiple
fields, Proc. ACM SIGCOMM, 1999, 147~160.
[4] B. Xu, D. Jiang, and J. Li, HSM: A fast packet classification
algorithm, Proc. 19th IEEE International Conference on
Advanced Information Networking and Applications (AINA),
Taiwan, 2005, 1: 987-992.
[5] V. Srinivasan, G. Varghese, S. Suri and M. Waldvogel, Fast
and scalable layer four switching, Proc. ACM SIGCOMM, 1998,
191-202.
[6] F. Baboescu and G. Varghese, Scalable packet classification,
Proc. ACM SIGCOMM, 2001, 199-210.
[7] S. Singh, F. Baboescu, G. Varghese and J. Wang, Packet
classification using multidimensional cutting. Proc. ACM
SIGCOMM, 2003, 213-224.

[8] F. Baboescu, S. Singh and G. Varghese, Packet classification
for core routers: Is there an alternative to CAMs? Proc. IEEE
INFOCOM, 2003, 1:53-63.
[9] V.Srinivasan, S.Suri and G.Varghese, Packet classification
using tuple space search, Proc. ACM SIGCOMM, 1999, 135-146.
[10] J. van Lunteren and T. Engbersen, Fast and scalable packet
classification, IEEE Journal on Selected Areas in
Communications 21(4), 2003, 560-571.
[11] A. Feldman and S. Muthukrishnan. Tradeoffs for packet
classification, Proc. IEEE INFOCOM, 2000, 3: 1193-1202.
[12] T. Lakshman and D. Stiliadis, High speed policy-based
packet forwarding using efficient multi-dimensional range
matching, Proc. ACM SIGCOMM, 1998, 203-214.
[13] T.Y.C Woo, A modular approach to packet classification:
algorithms and results, Proc. IEEE INFOCOM, 2000, 3:1213-
1222.
[14] F. Geraci, M. Pellegrini and P. Pisati, Packet classification
via improved space decomposition Techniques, Proc. IEEE
INFOCOM, 2005, 1:304-312.
[15] Y. Qi and J. Li, Dynamic cuttings: packet classification
with network traffic statistics, 3rd Proc. International Trusted
Internet Workshop, 2004.
[16] P. Gupta and N. McKewon, Algorithms for packet
classification, IEEE Network 15(2), 2001, 24-32.
[17] D. E. Taylor, Survey and taxonomy of packet classification
techniques, ACM Computing Surveys 37(3), 2005, 238-275.
[18] M.E. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A.T.
Campbell, Directions in packet classification for network
processors, Proc. 2nd Workshop on Network Processors, 2003.
[19] Y. Qi, B. Xu and J. Li, Performance evaluation and
improvement of algorithmic approaches for packet classification,
Proc. International Conference on Network and Services, 2005.

Table 6. Memory Usage Comparison on Synthetic Firewall Rulesets: ExCuts vs. HyperCuts
Rulesets No. Rules HyperCuts ExCuts Rulesets No. Rules HyperCuts ExCuts
SF1 100 1,661 837 SF11 1,100 19,551 8,896
SF2 200 2,109 1,485 SF12 1,200 20,162 10,234
SF3 300 2,396 1,972 SF13 1,300 22,335 11,225
SF4 400 3,630 2,400 SF14 1,400 22,456 12,084
SF5 500 3,826 2,800 SF15 1,500 23,009 13,939
SF6 600 5,060 3,230 SF16 1,600 25,586 13,637
SF7 700 11,526 3,870 SF17 1,700 29,044 14,522
SF8 800 12,068 4,581 SF18 1,800 57,612 15,310
SF9 900 17,096 5,749 SF19 1,900 78,479 16,030
SF10 1,000 18,301 7,007 SF20 2,000 286,010 17,898

(Unit: 32-bit memory word)

Table 7. Memory Usage on Synthetic Core Router Rulesets
Rulesets No. Rules ExCuts Rulesets No. Rules ExCuts
SC1 1,000 19,632 SC6 6,000 117,914
SC2 2,000 39,317 SC7 7,000 137,573
SC3 3,000 58,991 SC8 8,000 157,294
SC4 4,000 78,646 SC9 9,000 176,812
SC5 5,000 98,298 SC10 10,000 196,578

(Unit: 32-bit memory word)

223

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

