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ABSTRACT 
A variety of network security services, such as access 
control in firewalls and protocol analysis in intrusion 
detection systems, require the discrimination of packets 
based on the multiple fields of packet header, which is 
called Multidimensional Packet Classification. In this 
paper, we propose a very effective packet classification 
algorithm called Extended Multidimensional Cuttings, 
ExCuts in short. As an extension of HyperCuts, which is 
the best-known existing decision tree algorithm, ExCuts 
refines the node merging mechanism using a two-step 
discontiguous space aggregation scheme, which 
minimizes the number of child nodes. To further reduce 
the memory usage of the decision tree structure, ExCuts 
adopts a bit string mapping scheme to compress the large 
pointer arrays in internal nodes. Due to the significant 
memory reduction, ExCuts is able to pick a fixed number 
of cuttings and thus provides explicit worst-case search 
time. Experimental results show that ExCuts outperforms 
the best result of existing algorithms on both real-life 
rulesets and synthetic classifiers. 
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1.  Introduction 
Multidimensional Packet Classification is crucial to 
modern network security devices such as firewalls and 
intrusion detection systems. Although hardware like 
Ternary CAMs provide multi-Gbps classification rate, 
they consume too much power and board area and are not 
cost-effective for applications with large number of rules. 
To overcome the limits in hardware solutions, there is an 
increasing interest in both industry and academia in 
finding efficient software approaches for 
multidimensional packet classification. The need for 
extensive study on novel multidimensional packet 
classification algorithms comes from: 
a) Performance of Existing Algorithms: Current 
algorithms with the best time-space tradeoffs appear to be 
HiCuts and its extension HyperCuts. Although it is 
reported in [1] and [7] that these two algorithms work 
well for real-life rulesets, the performance of HiCuts and 
HyperCuts is still limited by the following factors:  
• Non-deterministic worst-case search time: Although 

worst-case search time is the most important 

performance metric in packet classification, both 
HiCuts and HyperCuts do not provide explicit worst-
case bounds for it.  

• Excessive memory usage for large rulesets: A test on 
the largest real-life ruleset with 1,945 rules shows that 
even HyperCuts requires more than 1M bytes memory 
storage, which precludes the use of a common CPU 
cache.  

b) Novel Ideas: Although a number of papers on 
algorithmic solutions for multidimensional packet 
classification have been published [1, 3, 4, 5, 6, 7, 8, 9] in 
recent years, there are still novel ideas that can further 
improve the performance of existing best algorithms. 
Novel ideas spring from: 
• New characteristics: Real-life rulesets have some 

inherent structure which can be exploited by packet 
classification algorithms. In recent literature [17], a 
number of statistic results on real-life rulesets are 
proposed, providing benefits for algorithmic studies. 

• Hybrid algorithms: No single algorithm will perform 
well for all cases. Hence a hybrid scheme might be 
able to combine the advantages of several different 
approaches. 

• Efficient search structures: The search structure built 
by a lot of algorithms can be significantly compressed. 
Carefully designed data-structures may also improve 
the search speed [6]. 

In this paper, we introduce a novel packet classification 
algorithm which significantly improves the performance 
of existing best-known algorithms. Because the proposed 
algorithm originates from HyperCuts [7], we name our 
algorithm Extended Multidimensional Cuttings, ExCuts in 
short. Compare to the HyperCuts, the improvement of 
ExCuts includes: 
a) Guarantees the worst-case search time: Worst-case 
search time is the most important performance metric in 
packet classification. However, due to the unpredictable 
depth of the decision tree built by HyperCuts, it appears 
to be difficult to provide the worst-case search time. 
ExCuts guarantees a worst-case search time by fixing the 
number of partitions along each internal node, but on the 
same time it remains a modest memory usage. 
b) Aggregates discontiguous sub-spaces: Space 
aggregation is the key step for packet classification 
algorithms to eliminate the structural redundancy in real-
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life rulesets. To maximize the reuse of child nodes, 
ExCuts aggregates not only the contiguous search spaces 
(as in HiCuts and HyperCuts), but also the discontiguous 
search spaces. This scheme significantly reduces the 
memory storage in comparison with HyperCuts. 
c) Compresses redundant pointer arrays: HyperCuts 
uses pointer array to lead the way for packet search. The 
use of pointer array can, however, increase storage 
because the size of these arrays might be large. ExCuts 
employs an aggregation bit-string mechanism to 
effectively compress the pointer array without significant 
loss of search rate.  
 
The rest of the paper is organized as follows: Section 2 
states the problem of packet classification; Section 3 and 
Section 4 describe the proposed algorithm ExCuts; 
Section 5 illustrates the experimental results; and as a 
summary, Section 6 shows our conclusions. 
 
2.  Problem Definition 
Multidimensional packet classification classifies a packet 
based on F fields of the packet header header. Each rule 
has F components, and the ith component of rule R, 
referred to as R[i], is a regular expression on the ith field 
of the packet header. A packet P is said to match a 
particular rule R, if i∀ , the ith field of the header of P 
satisfies the regular expression R[i]. It is possible for a 
packet P to match multiple rules, and in this case, the 
final classification result is the matching rule with the 
highest priority in the ruleset. 
 
From a geometric point of view, all possible attributes in 
F fields of the packet header form a multidimensional 
space, which is called the search space. Each of the F 
fields is a dimension of the search space and a packet P is 
a point located in the multidimensional search space. For 
range matching in generalized packet classification, the 
regular expression R[i] refers to a range in the ith 
dimension of the search space and all ranges specified by 
rule R compose an F-dimensional hyper-rectangle. If a 
packet P matches a particular rule R, the point represented 
by P will fall into the hyper-rectangle specified by R. 
Therefore, one possible approach in theoretical analysis is 
to map packet classification into a geometric point 
location problem in a multidimensional search space. 
 
It has been proved in [2] that the best bounds for point 
location in N non-overlapping F-dimensional hyper-
rectangles are 1(log )F N−Θ  search time with ( )NΘ  
storage, or (log )NΘ search time with ( )FNΘ  storage. In 
packet classification problem, rules (hyper-rectangles) 
may overlap, making classification at least as hard as 
point location. Moreover, the need to match on ranges as 
well as prefixes makes multidimensional packet 
classification yet more complex. According to [19], the 
range-to-prefix conversion for a rule with W-bit range 
specification in each of the F fields will generate up to 
(2(W-1)) F times more rules.  

3.  Extended Multidimensional Cuttings 
Due to the worst-case theoretical bounds found in 
computational geometry, it seems to be impossible to 
design a single algorithm that performs well for all cases. 
Fortunately, real-life rulesets have some inherent 
characteristics that can be exploited to reduce the 
complexity both in search time and memory space [19]. In 
recent literature, a number of multidimensional packet 
classification algorithms have been proposed [1, 3, 4, 5, 6, 
7, 8, 9], some of which achieve promising results by 
exploiting the structural redundancy found in real-life 
ruleset. In this paper, the proposed algorithm, Extended-
multidimensional Cuttings, improves the performance of 
the best reported algorithm HyperCuts by introducing the 
following novel ideas. 
 
3.1 Fixed Number of Cuttings 
Worst-case bound of search time is critically important 
for packet classification algorithms. Unfortunately, both 
HiCuts and HyperCuts can hardly provide an explicit 
worst-case search time because the number of cuttings at 
each level of the decision tree is not a constant. However 
in ExCuts, the number of cuttings is fixed by setting a 
constant stride w, i.e. at each internal node the current 
search space is partitioned into 2w cuttings along each 

dimension. This guarantees a worst-case bound of ( )W
wf

Θ , 

where W is the bit-width of packet header and f is the 
number of dimensions to cut. By choosing a larger 
constant stride w, the worst-case search time can be 
improved. 
 
Although the choice of a larger number of cuttings tends 
to require more memory storage, ExCuts makes the 
memory requirement not sensitive to the number of 
cuttings by effective space compressing mechanism. 
Experiment results show that when stride w varies from 4 
to 7, the total memory space occupied by the search 
structure varies within the same order of magnitude.  
 
Preprocessing for heuristic algorithms is time-consuming 
when dealing with large rulesets. To determine a proper 
number of cuttings for an internal node, HiCuts and 
HyperCuts will search for an optimized stride 
exhaustively within a set of possible values. While in 
ExCuts, the complicated optimizations are significantly 
simplified by using a fixed number of cuttings, and hence 
the preprocessing time in building the decision tree is 
greatly reduced. 
 
3.2 Discontiguous Space Aggregation 
Space aggregation is the key step to reduce the spatial 
redundancy in real-life rulesets [19]. Existing decision 
tree algorithms, such as HiCuts and HyperCuts, only 
aggregated contiguous sub-space.  
 
Discontiguous space aggregation will generate minimized 
number of child nodes for each internal node. Compared 
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to HyperCuts, where child nodes with discontiguous 
search space will not be aggregated even if they share the 
same set of rules, ExCuts generates only one child node 
for each unique ruleset. Consequently, the number of 
child nodes is significantly reduced and thus the memory 
space occupied by the decision tree is greatly saved. 
Although preprocessing of ExCuts to generate a single 
internal node is slower than HyperCuts (need a search in 
f-dimensions), the overall preprocessing time of ExCuts is 
much shorter in most of the cases because the total 
number of nodes is significantly reduced.  
 
3.3 Compressed Point Arrays 
To further reduce the memory storage, ExCuts 
compresses the large pointer arrays in HyperCuts by a 
two-step mapping: 
• In the first step, contiguous cuttings are aggregated 

along each dimension. ExCuts uses aggregation bit 
strings to compress the pointer array. 

• In the next step space aggregation is performed in f 
dimensions. Pointers correspond to aggregated sub-
spaces are associated with the child node. 

 
3.3 An Example 
For easy understanding of the novel ideas in ExCuts, we 
provide an example on a toy ruleset shown in Figure 1. 
Assume that there are 4 cuttings along both X and Y 
dimensions. The search space is partitioned into 4*4=16 
sub-spaces (Figure 2). 
 
In the first aggregation step, contiguous cuttings are 
aggregated if they share the same set of rules. In Figure 3, 
Cut1x and Cut2x are aggregated in X dimension, and 
similarly, Cut1y and Cut2y are combined along Y 
dimension. Thus the 16 sub-spaces are aggregated to 9 
sub-spaces. Figure 4 shows how to map a Cut to the 
corresponding AC (aggregated cutting) using aggregation 
bit strings (ABS). 
 
To further cut down the number of sub-spaces, ExCuts 
aggregates discontiguous sub-spaces by creating a 3*3 
pointer array. These pointers (indexed by ACs) are 
pointed to 5 child nodes, each of which has distinct rules. 
Figure 5 shows the pointer array build by ExCuts, and for 
comparison, Figure 6 shows the pointer array build by 
HyperCuts. 
 
From this example we see that ExCuts significantly 
reduces the number of child nodes, as well as the size of 
the pointer array. We will describe details of ExCuts in 
the next section. 
 
4.  The Proposed Algorithm 
To hierarchically decompose the multidimensional search 
space, ExCuts adopts a decision tree structure. At each 
internal node the current search space along with the 
corresponding ruleset is split based on information from 
multiple fields in the rules. 

 
Figure 1. A Toy Ruleset of Four 2-D Rules. The search space is 
the X-Y plane {[000, 111], [000, 111]}. The ranges specified by 
rules R1~R4 are: R1{[100, 100], [101, 101]}, R2{[000, 111], 
[100, 100]}, R3{[100, 111], [000, 111]} and R4{[000, 111], 
[000, 111]}. R1~R4 are assiged with decremental priorities.  

 
Figure 2. Space Partition. There are 4 cuttings along both X 
(Cuts1x~Cuts4x) and Y (Cuts1y~Cuts4y) dimensions. The 
search space {[000, 111], [000, 111]} is partitioned into 4*4=16 
equal-sized sub-spaces. 

 
Figure 3. Contiguous Space Aggregation (16-to-9). Cut1x and 
Cut2x are aggregated in X dimension to form Aggregated 
Cuttings AC1x. Similarly, Cut1y and Cut2y are aggregated to 
form AC1y. Now the 3*3 Aggregated Cuttings reduce the 
number of sub-spaces from 16 to 9. 

 

 
Figure 4. Aggregation Bits String. If a packet drops in Cuts3x, 
then by computing the sum of the first 3 bits of the ABS: 
1+0+1=2, we know this packet belongs to AC2x. 
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Figure 5. Pointer array Discontiguous Space Aggregation (9-to-
5). For example, sub-space (AC1x, AC1y)={[000, 001], [000, 
011]} and sub-space (AC1x, AC3y)={[000, 001], [110, 111]} 
have the same colliding ruleset {R4}, they are aggregated to 
Child Space C1{[000, 011], [000, 111]}, which is the tight 
bound of them. 

 
Figure 6. Pointer array in HyperCuts. HyperCuts builds for each 
of the 4*4 sub-spaces a pointer. The pointers are indexed by the 
original cuttings rather than the aggregated cuttings.   

Each time a packet arrives, the decision tree is traversed 
based on information in the packet header to reach a leaf 
node, where a small number of matching rules are stored 
for linear search. Although this basic structure is similar 
to the work in [1] [7], ExCuts employs novel ideas that 
significantly optimize the shape of the decision tree.  
 
4.1 Space Partition with Fixed Number of Cuttings 
In HiCuts and HyperCuts, the process to partition the 
search space at each internal node includes two steps: (1) 
Identifying the most suitable set of dimensions to partition 
and (2) determining the number of partitions to be done in 
each of the chosen dimensions. Both of the two 
algorithms use a number of sophisticated heuristics and 
optimizations to choose a proper number of cuttings for 
each internal node and hence build variable-stride tries as 
the search structure.  
 
Different from HiCuts and HyperCuts, ExCuts leaves out 
the process to choose the number of cuttings and set for 
each internal node a fixed number of cuttings, which 
results in a fixed-stride trie as the search structure. 
Experiment results show that when stride w varies from 4 
to 7, the total memory space occupied by the search 
structure varies within the same order of magnitude. To 
guarantee an ideal worst-case search time, we set stride 
w=6. 
 

Having a fixed number of cuttings, the only challenge left 
for space partition process is to pick the most 
discriminative dimensions which will lead to as few as 
possible number of child nodes and as less as possible 
number of rules in each child node. To the best of our 
knowledge there is no consummate method of picking the 
most suitable dimensions. A number of local optimized 
solutions in existing work can be used in ExCuts: 
• Minimizing max ( ( ))j jNumberRules child  in an 

attempt to decrease the worst-case depth of the tree. 
This simple heuristic is suggested in [1]. While easy 
to implement, it has proved to be ineffective in our 
experiment. 

• Minimizing avg ( ( ))j jNumberRules child  in an 
attempt to decrease the overall memory usage. We 
suggest using this heuristic in ExCuts because it has 
proved to be more effective than other heuristics and 
also very easy to implement.  

• Maximizing the number of unique sub-sets of rules in 
an attempt to search for the most uniform distribution 
of the rules in child nodes. This heuristic is used in 
HyperCuts. Although it is effective compared to other 
methods, searching for unique sub-sets is time 
consuming in multiple dimensions. 

Once the number of cuttings is set and the dimensions are 
chosen, the current search space is uniformly partitioned 
in to equal-sized 2wf sub-spaces, where w is the fixed 
stride and d is the number of dimensions on which the 
partitions are to be executed. From the view of spatial 
projection, F-dimensional hyper-rectangles (rules) are 
projected to the f-dimensional projection-space according 
to the first w bits along each chosen dimensions of the 
current search space. 
 
4.2 Two-step Search Space Aggregation 
Because the number of child nodes has a direct 
relationship to the memory space occupied by the search 
structure, it should be reduced as much as possible. Both 
HiCuts and HyperCuts use a set of heuristics to try to 
maximize the reuse of child nodes. Because they only 
merge adjacent child nodes which have associated with 
them the same set of rules, only contiguous regions 
covered by the child nodes are aggregated. However, 
discontiguous regions may also share the same set of rules. 
To minimize the number of child nodes, we should 
aggregate all the sub-spaces sharing the same set of rules. 
ExCuts uses the following two-step space aggregation 
process to optimize the reuse of the child nodes. 
 
a) STEP I: Contiguous Space Aggregation 
After space partition, many child nodes share identical 
rules. The first step is to aggregate contiguous sub-spaces 
along each of the d dimensions. ExCuts employs a series 
of elegantly designed data-structures to reduce the 
memory usage. 
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In HiCuts and HyperCuts, the direct way to traverse the 
decision tree is to create a pointer array with 2wf pointers, 
and each of them points to a corresponding child node. If 
the search space is partitioned along f dimensions at each 
internal node, the pointer array requires (2 )wfΘ  memory 
storage. For example, if there are 26 cuttings in 2 
dimensions, the internal node needs to store about 4k 32-
bit pointers. To avoid memory blow-up, both HiCuts and 
HyperCuts use variable-strides to limit the number of 
cuttings at each internal node. However, the stride is a 
constant in ExCuts, so building such pointer arrays will 
consume a lot of memory storages. Fortunately, in most 
of the cases, these pointer arrays can be compressed using 
the following data-structure: 
• Assign Aggregated Cuttings (AC) with incremental 

space IDs, from 0 to mi, i=1, ..., f.  

• Create a 
1

f

i
i

m
=
∏ -entry Compressed Pointer Array 

(CPA). 
• Create for each of the f dimensions a 2w-entry 

Aggregating Bit String (ABS). Set the bit if the 
corresponding cutting is not aggregated with the 
previous one. 

When a packet P falls into sub-space (Cut1, Cut2, ..., Cutf), 
the offsets of the corresponding pointer along each of the f 
dimensions in CPA can be obtained by adding the first 
Cuti bits in ABS (1 i f≤ ≤ ). Thus ExCuts compresses the 

2wf-entry PA into the 
1

f

i
i

m
=
∏ -entry CPA. Since mi 

(1 i f≤ ≤ ) is always much smaller than 2w (due to the 
contiguous space aggregation), the memory space 
occupied by the search structure is significantly reduced.  
 
b) STEP II: Discontiguous Space Aggregation 
To further eliminate spatial redundancy, ExCuts 
aggregates discontiguous sub-spaces by setting pointers in 
CPA to child nodes with distinct set of rules. Because the 
search space to partition in any internal node must be a 
contiguous hyper-rectangle, aggregation of discontiguous 
sub-spaces seems infeasible. Fortunately, we can find a 
big enough hyper-rectangle that tightly contains all the 
sub-spaces to aggregate, and associate the child node this 
with hyper-rectangle as the corresponding search space.  
 
Actually, experimental results show that, in most of the 
cases, non-rectangle regions do not need further partitions. 
 
4. 3 Packet Search Structure 
Like HiCuts and HyperCuts, ExCuts works by carefully 
preprocessing the rulesets to build a decision tree data 
structure. Each time a packet arrives, the decision tree is 
traversed down to a certain leaf node, where a small 
number of rules are stored. Linear search among these 
rules yields the final matching result. We use a flowchart 
to describe how to build the packet search structure for of 
ExCuts. Figure 7 depicts how to build the ExCuts tree. 

 
 
5.  Experimental Results 
5.1 Rulesets and Metrics 
We evaluate ExCuts both on real-life firewall and core 
router rulesets as well as on synthetic rulesets. The real-
life rulesets are obtained from large enterprise networks 
and major ISPs. Firewall rulesets are named FW1, FW2, 
FW3; Core router rulesets are named CR1, CR2, CR3 and 
CR4. Synthetic rulesets include synthetic firewall sets 
(SF1~SF20) and synthetic core router sets (SC1~SC10). 
The largest real-life ruleset (CR4) contains 1945 rules, 
and the largest synthetic ruleset contains 10000 rules. All 
rules are 5-dimensional with 32-bit source/destination IP 
addresses represented as prefixes, 16-bit 
source/destination port numbers represented as ranges and 
8-bit transport layer protocol. It is reported in [3] [7] [8] 
and [18] that the structural characteristics of firewall 
policy tables (rulesets) are different from core router 
access control list (ACL, also rulesets), e.g. most source 
port ranges in core routers are [0, 65535], while in 
firewall policy tables source port ranges are assigned 
more specifically.  
 

 
Figure 7. Flowchart of Building the ExCuts Tree. 
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Although the number of sets available to us is quite small, 
we believe that experimental results obtained using real-
life rulesets are more convincing than those tested on 
synthetic rules. Actually, we use the synthetic rulesets just 
to test the stability of algorithms. Different synthetic 
rulesets in our experiments have same statistic 
characteristics, but differ in size. 
 
To test the performance of all the algorithms on both real-
life and synthetic rulesets, we examine, for each ruleset, 
the number of memory accesses as the search time (Time) 
and the amount of memory usage (Space) for the whole 
data structure for search built by the algorithms. Different 
from [7] [8] (where one memory access is a single 32-bit 
word access), one memory access here refers to reading a 
certain number (1~8) of continuous memory words. This 
metric is in accordance with the experimental evaluation 
in paper [19]. 
 
5.2 Variation with Stride w 
Table I shows the memory usage of the search structure 
build by ExCuts with different choice of stride w. It can 
be seen from the table that the memory usage is not 
sensitive to the choice of w. In most of the cases, a larger 
w even leads to smaller memory usage. This seems to be a 
contradiction to the conclusion made in HiCuts and 
HyperCuts that the number of cuttings is in direct 
proportion to the memory usage. In fact, such an increase 
of memory usage results from increase of the pointer 
arrays. However in ExCuts, the pointer arrays are 
efficiently compressed. Thus the total memory usage is 
just in proportion to the number of tree nodes. Because 

the choice of a larger w implies more particular space 
decomposition, larger number of cuttings can eliminate 
some intermediate tree nodes and generate an overall 
decision tree with fewer nodes. So the memory usage 
decreases with a larger w. To guarantee an ideal worst-
case search time, we set stride w=6. Too large strides will 
cause slow preprocessing speed due to the aggregation in 
multidimensional cuttings. 
 
5.3 Performance on Real-life Rulesets 
We first compare ExCuts with the algorithms of the best 
reported performance, including HiCuts, HyperCuts, RFC 
and HSM, on real-life rulesets. Due to patent issues, we 
were not able to obtain source codes from the authors and 
thus the codes of these algorithms are all written by 
ourselves. We make our best effort to make sure the 
fairness of our result analysis. Experimental results show 
that our codes achieved nearly the same performance 
compared to the experimental results reported in [7]. 
 
In comparison with algorithms using decision trees, Table 
II and Table III compare ExCuts with HiCuts & 
HyperCuts respectively on spatial and temporal 
performance. We can see from these tables that, for all 
real-life rulesets, ExCuts achieves at least an order of 
improvement in memory usage, as well as superior worst-
case search time.  
 
To compare with the algorithms using lookup tables, 
Table IV shows the memory usage of RFC, HSM and 
ExCuts. For the largest real-life ruleset CR4, ExCuts uses 
16 times less memory than HSM and 27 times less than 

Table 1. ExCuts with Different Strides from 4 to 7
Rulesets No. Rules ExCuts-4 ExCuts-5 ExCuts-6 ExCuts-7 
FW1 68 1,805 1,928 1,316 1,199 
FW2 136 3,630 3,876 2,643 2,423 
FW3 340 9,150 9,924 6,732 6,287 
CR1 500 8,239 7,325 6,189 5,641 
CR2 1,000 54,211 45,973 32,693 36,533 
CR3 1,530 44,097 42,297 38,984 35,564 
CR4 1,945 69,195 65,480 58,105 51,007 

(Unit: 32-bit memory word) 

Table 2. Memory usage comparison: ExCuts vs.  HiCuts & HyperCuts 
Rulesets No. Rules HiCuts HyperCuts ExCuts 
FW1 68 5,443 35,401 1,316 
FW2 136 10,779 69,782 2,643 
FW3 340 24,645 172,932 6,732 
CR1 500 29,409 89,005 6,189 
CR2 1,000 979,736 871,541 32,693 
CR3 1,530 13,606,858 480,225 38,984 
CR4 1,945 5,928,724 672,442 58,105 

(Unit: 32-bit memory word) 

Table 3. Worst-case search time comparison: ExCuts vs. HiCuts & HyperCuts 
Rulesets No. Rules HiCuts HyperCuts ExCuts 
FW1 68 30 24 20 
FW2 136 32 24 20 
FW3 340 32 24 20 
CR1 500 40 26 24 
CR2 1,000 52 26 24 
CR3 1,530 64 28 24 
CR4 1,945 60 28 24 

(Unit: Memory Access) 

221



RFC. Although the search speed of RFC and HSM are 
20%~120% faster that of ExCuts (see Table V), they may 
require parallel searches while ExCuts can be fully 
pipelined to implement for fast search. 
 
5.4 Performance on Synthetic Rulesets 
In order to compare the ability to handle large number of 
rules, we test ExCuts and HyperCuts on a series of 
synthetic rulesets. Although we believe that tests on real-
life rulesets are more persuasive, the task is made harder 
because the real-life rulesets available to us is quite 
limited. To guarantee the fairness of experimental 
comparison, we create these rulesets in the same way as 
the synthetic rules in [7], and all of these rules have 
identical distribution at each field.  
 
Table VI shows the test on synthetic firewall rulesets 
SF1~SF20 (SF1 has 100 rules and SF20 has 2000 rules). 
We see that both HyperCuts and ExCuts perform stably 
with the number of rules less than 1700. But when the 
number of rules becomes larger (than 1700), the memory 
usage of HyperCuts has a sharp increase in comparison 
with that of ExCuts. The total memory used by HyperCuts 
on SF20 is 10 times larger than that on SF17, while 
ExCuts on SF20 uses no more than 30% more memory as 
on SF17. Similar results are obtained when we test other 
algorithms on these synthetic rulesets. ExCuts is proved 
to be more stable than all other algorithms we have tested. 
Such a conclusion is also supported by the results in Table 
I and Table II with real-life rulesets. 
 
Table VII shows the experimental result on large 
synthetic core router sets SC1~SC10 (SC1 has 1000 rules 
and SC10 has 10000 rules). The results prove that the 
memory space occupied by ExCuts scales linearly in 
number of rules. However, just like F. Baboescu said in 
[8], this should be taken with a grain of salt because the 
large ruleset generation methodology preserves the 
source-destination structure of the original real-life ruleset. 
If this assumption does not hold as rulesets scale up, 

ExCuts may not linearly scale. However, it is not sure that 
if there will be such complicated real-life routers in near 
future. 
 
6.  Conclusion 
Packet classification has received tremendous attention in 
recent years. While hardware like Ternary CAMs offers a 
good solution for small rulesets, they may use too much 
power and board area for large rulesets. Thus, it is worth 
looking for alternatives to overcome the limits in 
hardware solutions, and the challenge of finding efficient 
algorithmic approaches for packet classification to 
achieve high performance with comparatively low 
hardware requirement still motivates the research today. 
 
Although theoretical bounds tell us that it is not possible 
to arrive at a practical worst-case solution, real-life 
rulesets have characteristics that can be exploited in 
algorithms to generate different search structures for 
various kinds of packet classification applications. 
Thorough studies in theoretical analysis, as well as new 
observation in data characteristics, are examples of 
research effort in designing more efficient and practical 
packet classification algorithms. Despite the vast amount 
of genius ideas explored in prior work, there are still 
novel ideas springing out together with the advancing of 
theories and technologies, which can further improve the 
performance of existing best algorithms. 
 
Recently, pioneering work on packet classification based 
on decision trees and geometric cuts provide high search 
rate using modest memories. As an extension of the best-
known existing decision tree scheme HyperCuts, the 
proposed algorithm ExCuts significantly improves the 
performance of existing decision tree algorithms in terms 
of both search rate and memory usage. First, ExCuts 
refines the space aggregation step in HyperCuts with a 
discontiguous space aggregation scheme, which greatly 
reduces the number of tree nodes; Secondly, ExCuts 
adopts a bit string to compress the size of the large pointer 

Table 4. Memory usage comparison: ExCuts vs. RFC & HSM
Rulesets No. Rules RFC HSM ExCuts 
FW1 68 200,652 10,223 1,316 
FW2 136 209,602 27,657 2,643 
FW3 340 296,382 65,581 6,732 
CR1 500 264,987 29,814 6,189 
CR2 1,000 530,539 230,716 32,693 
CR3 1,530 863,476 486,857 38,984 
CR4 1,945 1,580,005 989,161 58,105 

(Unit: 32-bit word) 

Table 5. Worst-case search time comparison: ExCuts vs. RFC & HSM 
Rulesets No. Rules RFC HSM ExCuts 
FW1 68 9 17 20 
FW2 136 9 17 20 
FW3 340 9 21 20 
CR1 500 9 23 24 
CR2 1,000 9 25 24 
CR3 1,530 9 25 24 
CR4 1,945 9 25 24 

(Unit: Memory Access) 
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arrays in internal nodes. Finally, both of these techniques 
make it feasible and practical for ExCuts to pick a fixed 
number of cuttings at each internal node, and hence 
provide ExCuts with an explicit worst-case search time. 
 
Experimental results show that ExCuts outperforms the 
best result of existing heuristic algorithms on both real-
life rulesets and synthetic classifiers. Compared to the 
best-known decision tree algorithms, ExCuts uses 11 to 
27 times less memory storage and 10% to 50% less time 
in worst-case search. ExCuts also outperforms other 
popular algorithms such as RFC and HSM with best 
time/space tradeoffs.  
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Table 6. Memory Usage Comparison on Synthetic Firewall Rulesets: ExCuts vs. HyperCuts 
Rulesets No. Rules HyperCuts ExCuts Rulesets No. Rules HyperCuts ExCuts 
SF1 100 1,661 837 SF11 1,100 19,551 8,896 
SF2 200 2,109 1,485 SF12 1,200 20,162 10,234 
SF3 300 2,396 1,972 SF13 1,300 22,335 11,225 
SF4 400 3,630 2,400 SF14 1,400 22,456 12,084 
SF5 500 3,826 2,800 SF15 1,500 23,009 13,939 
SF6 600 5,060 3,230 SF16 1,600 25,586 13,637 
SF7 700 11,526 3,870 SF17 1,700 29,044 14,522 
SF8 800 12,068 4,581 SF18 1,800 57,612 15,310 
SF9 900 17,096 5,749 SF19 1,900 78,479 16,030 
SF10 1,000 18,301 7,007 SF20 2,000 286,010 17,898 

(Unit: 32-bit memory word) 

Table 7. Memory Usage on Synthetic Core Router Rulesets 
Rulesets No. Rules ExCuts Rulesets No. Rules ExCuts 
SC1 1,000 19,632 SC6 6,000 117,914 
SC2 2,000 39,317 SC7 7,000 137,573 
SC3 3,000 58,991 SC8 8,000 157,294 
SC4 4,000 78,646 SC9 9,000 176,812 
SC5 5,000 98,298 SC10 10,000 196,578 

(Unit: 32-bit memory word) 
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