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Abstract: Modern datacenter and enterprise networks require application identification to enable granular 

traffic control that either improves data transfer rates or ensures network security. Providing application visi-

bility as a core network function is challenging due to its performance requirements, including high through-

put, low memory usage, and high identification accuracy. This paper presents a payload-based application 

identification method using a signature matching engine utilizing characteristics of the application identifica-

tion. The solution uses two-stage matching and pre-classification to simultaneously improve the throughput 

and reduce the memory. Compared to a state-of-the-art common regular expression engine, this matching 

engine achieves 38% memory use reduction and triples the throughput. In addition, the solution is orthogo-

nal to most existing optimization techniques for regular expression matching, which means it can be lever-

aged to further increase the performance of other matching algorithms. 

Key words: application identification; deep inspection; regular expression; traffic classification 

 

Introduction 

Modern datacenter and enterprise networks require 
granular traffic control to either improve data transfer 
rates or ensure network security. Flow-based policy 
control and traffic management are being more and 
more widely used in both datacenter and enterprise 
networks[1,2]. Application visibility is critical to under-
standing network risks and to achieving flow-based 
traffic control in these networks. However, identifying 
application-layer protocols is more challenging than 
traditional traffic classification based on packet head-
ers (also called packet classification). Application 

identification (App-ID) in network devices needs to 
meet the high throughput requirement of large net-
works (e.g., 40 Gbps and beyond) and also be able to 
scale up with emerging application protocols. 

The problem of determining application-layer pro-
tocols of network traffic is known as application iden-
tification or traffic classification at the application 
layer. Traditionally network devices depend on well-     
known port numbers to identify applications. Port-      
based methods were effective since many applications 
use IANA registered port numbers (for example, 
HTTP traffic uses TCP port 80 and DNS traffic uses 
TCP/UDP port 25). However, emerging applications 
such as audio and video streaming, file sharing, and 
social networks are capable of using non-standard or 
dynamic ports, encapsulated inside commonly used 
protocols as a means of evading port-based identifica-
tion. Several application identification technologies 
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have been recently proposed which can be categorized 
into payload-based methods[3,4] and statistical     
methods[5-10].  

Statistical methods usually use machine learning 
techniques to classify the traffic based on flow statis-
tics such as duration, mean packet size or inter-arrival 
time. However, statistical methods are known to have 
limitations which make them not suitable for practical 
usage in production systems. First, statistical methods 
are currently not able to provide fine-grained applica-
tion identification. Second, the accuracy of statistical 
methods is usually not acceptable for in-line network 
devices. Moreover, the statistical characteristics of 
traffic on a link may vary with the link usage which 
further affects the accuracy of statistical methods. For 
these reasons, most production App-ID systems, such 
as PaloAlto[11], Juniper[12], and the open source system 
L7-filter[13], are based on payload-based methods 
which provide fine-grained, accurate results.  

Payload-based methods are accurate in most cases 
and are similar to other deep inspection (DI) systems, 
such as intrusion detection systems, which inspect 
packet payload to search against a set of signatures. 
However, these methods require more resources (both 
computational and memory) since every byte of sev-
eral packets at the beginning of an application session 
need to be inspected. Nowadays, these signatures are 
usually defined by regular expressions (regexes) for 
their expressiveness[13-15]. A rich set of studies[16-19] has 
been published that give methods to optimize regular 
expression matching. Unfortunately, few solutions can 
keep up with the increasing data rates while matching 
every packet against hundreds of regular expression 
signatures.  

To provide application visibility as the core function 
of modern networks, the application identification sys-
tem should meet the following requirements: 

(1) High throughput: The application identification 
system must support wire-speed processing for fine-    
grained control or traffic management. 

(2) Low memory usage: For high speed application 
identification, the data structures need to be deployed 
on fast memory (e.g., SRAMs) that has limited capac-
ity due to the high price. Therefore, the memory usage 
should be as low as possible. 

(3) Identification accuracy: Application identifica-
tion must provide both low false-negative and low 

false-positive rates. 
This paper focuses on payload-based methods that 

are more accurate, and proposing a matching engine 
designed to meet both the requirements of high 
throughput and low memory usage.  

Existing research has mostly focused on common 
multiple regular expression matching. However, for 
regular expression matching in App-ID systems, if the 
App-ID characteristics are taken into account, 
high-level optimizations become possible. The paper 
uses the App-ID characteristics to divide the problem 
space and optimize the expected (common) case. The 
proposed two-stage matching engine is able to split the 
signature set into smaller sets, and each flow only 
needs to match one or two of them. Most existing re-
gex matching algorithms can be used to further in-
crease the performance of the sub-matching procedure 
in this solution. 

The main contributions of this study include: 
(1) A two-stage matching engine is proposed to pro-

vide much higher throughput than a state-of-the-art 
multi-DFA matching engine[18]. Evaluations using real 
world traces show that the algorithm is up to 3 times 
faster than multi-DFA matching. 

(2) Group merging algorithms are proposed to opti-
mize the memory usage of the matching engine. The 
total memory usage of the algorithm is more than 60% 
less than that of multi-DFA matching. 

(3) A trace-driven application identification system 
is implemented to support evaluations using real world 
traces. 

1  Payload-Based Application  
Identification 

1.1  Architecture of a typical payload-based  
application identification system 

A common architecture of existing payload-based ap-
plication identification systems is illustrated in Fig. 1. 
A received packet is first processed in an IP layer 
processing module, including IP header parsing, IP 
defragmentation, and other IP layer processing. After 
the packet header is parsed, several fields of the packet 
header (usually 5 tuples, including source address, des-
tination address, transport-layer protocol, source port, 
and destination port) are used as a flow identifier 
(flow-id) to lookup in the flow table. If the flow that 
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the packet belongs to has not been classified, the 
packet is sent to a transport layer processing module 
for TCP stream reassembly or UDP header checking. 
Then, the packet payload is submitted to the matching 

engine to search against application signatures. The 
signature matching engine is the system bottleneck, 
which is to be optimized in this paper.  

 
Fig. 1  Typical payload-based application identification system 

1.2  Signature matching engine 

Regular expressions are widely used as signatures of 
application identification systems, due to their expres-
sive power and flexibility for describing protocol pat-
terns. For example, all protocol signatures in the 
L7-filter are written in regular expression. In addition, 
in the protocol identification module of the Bro intru-
sion detection system, regular expressions are also 
used as its pattern language. Thus, the matching engine 
used in application identification is usually a multi-     
pattern regular expression matching engine.  

High-speed regular expression matching is usually 
based on finite automata, either deterministic finite 
automaton (DFA) or nondeterministic finite automaton 
(NFA). Theoretically, a regular expression of length n 
can be compiled into an NFA with O(n) states. When 
an m-state NFA is converted into a DFA, it may gener-
ate O(2m) states in the worst case. However, the proc-
essing complexity for each input character is O(1) in a 
DFA, but is O(n2) for an NFA. Thus, neither of the 
standard FA solutions are feasible for regular expres-
sion matching engines for high speed packet payload 
scanning. NFS handles k regular expressions with total 
length of kn (k is usually hundreds or even thousands 
and n is the average length of the regular expressions) 
by either compiling them individually in k automata or 
into a single automaton. In either case, O(n) states may 

be active concurrently, which reduces performance 
with a large number of per-flow states to be maintained. 
DFA usually can not compile a large signature set into 
a single composite DFA, since the composite DFA 
grows exponentially in most cases. Among existing 
solutions, the multi-DFA approach proposed by Yu et 
al.[18] that controls the number of DFA states by creat-
ing several DFAs based on a grouping approach is the 
most used practical approach to deal with hundreds of 
signatures. 

2  Two-Stage Matching Engine 
Framework 

2.1  App-ID characteristics 

App-ID and IDS are the two most widely used forms 
of deep inspection systems. Although the core of DI 
system is a regular expression matching engine, they 
have some essential differences. The first essential dif-
ference is the matching rate. When processing real 
traffic, the IDS system usually finds very few matches. 
For example, Sourdis et al.[20] found that over 90 per-
cent of traffic did not match any IDS signature. On the 
contrary, almost all the flows match certain signatures 
in an App-ID system. The tests on several real traces 
(the detailed information is described in Section 4) 
shown in Fig. 2 illustrate that about 90% of the flows 
match signatures in the L7-filter. 
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Fig. 2  Matching rate

The second difference is that App-ID signatures 
have the characteristic that most signatures are an-
chored, which means the signatures should be matched 
only at the start of a flow. Figure 3 shows that around 
80% of the signatures in the L7-filter are anchored. A 
detailed study of the most popular application-layer 
protocols showed that this signature set characteristic 
is reasonable. The four classes of Internet applica-
tion-layer protocols are struct-style binary protocols, 
IETF-style protocols, structured binary protocols, and 
structured text protocols. Most Internet protocols  

 
Fig. 3  L7-filter signatures from 2005-2009 

belong to these four classes, and the parsers of these 
kinds of protocols need to parse the packets from the 
beginning of a flow. Therefore, the majority of 
L7-filter signatures are anchored. 

2.2  Two-stage matching engine design 

An algorithmic solution was then developed to over-
come the large overhead faced by DI matching engines. 
The objective of this solution is to reduce the average 
number of signatures that packets need to match 
against.  

Since most packets match certain signatures, the 
pre-filter technology widely used in IDS[20,21] is not 
suitable for App-ID. To optimize the matching proce-
dure, as much traffic as possible should be matched 
using as few resources as possible. Our choice is to 
split the matching procedure into two stages. In the 
first stage, anchored signatures that can be matched 
using fewer resources than non-anchored signatures 
are processed, while non-anchored signatures are 
processed in the second stage. Figure 2 shows that 
60%-80% of real-life traffic can be matched at the first 
stage. 

Figure 4 gives an outline of the proposed solution. 
The reassembled payload of the packets in a flow is 
first pre-classified based on m bytes of its prefix and 
assigned a group-id. The purpose of the pre-classifier 
is to reduce the signatures that a specific payload needs 
to match against, so that the group of signatures can be 
compiled into one DFA. Then, the reassembled pay-
load is matched against the DFA specified by its 
group-id. For the majority of flows, a match is found in 
this stage, and no further matching is needed. If the 
payload does not match, it will be sent to the next stage 
to match against non-anchored signatures. 

 
Fig. 4  Two-stage matching engine 
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3  Detailed Design and Optimization 
3.1  Prefix-based classification 

Anchored signatures should match from the start of the 
payload, which means that if the starting characters of 
a flow are not accepted by the signatures, then there is 
no need to match these signatures. Therefore, the pre-
fixes of the signatures can be used to pre-classify the 
flows and narrow the number of signatures that need to 
be matched.  

The main idea is to separate the signature set into 
exclusive groups based on the first m bytes that signa-
tures match. When the reassembled payload of a flow 
enters the matching engine, it is pre-classified based on 
its first m bytes and only needs to match against a 
small group of signatures which accept the prefix. 
Since the anchored signatures are divided into exclu-
sive subsets, each flow only needs to be matched 
against one subset. Moreover, each subset of anchored 
signatures can be compiled into a DFA since the num-
ber of signatures in a subset is much smaller than that 
of the entire signature set.   

To construct these exclusive subsets, the prefixes of 
anchored signatures should first be extracted. A regular 
expression consists of four types of components, exact 
characters, character classes, wildcards (e.g., dot), and 
repetitions. We define the prefix length of an anchored 
regular expression as the largest number of 
non-wildcard characters from the beginning. For ex-
ample, the prefix length of regex “^[ab]c.*d” is 2. For 
a regex that have a prefix length of k, up to k characters 
from the beginning of the regex can be used to classify 
the payloads.  

The width of the pre-classifier is defined as the bytes 
used to group the signatures into subsets. The width of 
the pre-classifier usually should be the minimum prefix 
length of all anchored signatures. If it is longer than the 
minimum prefix length, the signatures having a shorter 
prefix length will be duplicated in many subsets.  
Figure 5 shows the distribution of signatures with dif-
ferent prefix lengths in an L7-filter. The minimum pre-
fix length is one, so we set the width of the pre-classi-
fier to one byte. If the width of the pre-classifier is set 
to a number larger than one byte, the signatures are 
divided into more fine-grained groups, but there is 
more redundancy between these groups, since every 
signature with prefix-length one is duplicated. 

 
Fig. 5  Prefix length vs. number of rules 

3.2  Group merging 

The prefix-based pre-classifier divides m signatures 
into several exclusive small groups. The computation 
complexity for processing the signatures is then re-
duced from O(k) (k is the number of DFAs in a 
multi-DFA solution) to O(1). However, the overall 
number of signatures increases after the signatures are 
divided into subsets based on their prefixes. When the 
pre-classifier width is one byte, the total number of 
signatures increases by 160. Character classes in the 
prefixes cause duplication of the signatures, which 
means that some signatures are duplicated several 
times in different groups. For example, the regex 
“^[ab]c.*d” should be placed in both the group of pre-
fix “a” and the group of prefix “b”. 

Group merging is then used to reduce the signature 
duplication. We first provide a formal definition of the 
problem: There are k groups of signatures. Signatures 
in these groups are selected from a set of m regular 
expressions based on the prefixes of the regular ex-
pressions. Several groups can be merged into one, 
which means these groups share one DFA. The 
group-merging problem discussed in this section is to 
find an optimal combination of k groups that results in 
the smallest memory usage of all the DFAs compiled 
from the merged groups. S(A) is used to denote the 
size of the DFA compiled from signature group A. 
Then, the gain of merging two groups, say group A and 
group B, is S(A) + S(B) – S(AB). In general, this prob-
lem is an NP-hard problem. Although the number of 
groups is not large, the calculation of the gain of the 
merging two groups, i.e., generating the DFAs of group 
A, group B, and the merged group AB, may cost too 
much time. Therefore, two heuristic algorithms were 
developed to provide fairly good results. 
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Merging of two groups may have two opposite ef-
fects. On the one hand, the redundancy of same signa-
tures in two groups is removed, but on the other hand, 
signatures that do not exist in both groups may cause 
the number of states in the DFA of the merged group to 
grow exponentially. Following the discussion in Ref. 
[18], if there are x wildcards per regex, adding one 
more regex into the DFA increases its size by (x+1) 
times. For example, adding one regex into the group 
that consists of regexs with one wildcard on average 
doubles the size of the DFA, thus the gain of merging 
is negative. Therefore, a positive merging gain can be 
found only if the number of different signatures in the 
two groups is not very large. The interaction between 
two groups is defined as the number of signatures in 
the smaller group that do not exist in the larger one, 
which will be used as a heuristic.  
Step 1  Subset merging 

Two groups assigned in the pre-classifier can share 
one DFA if all the signatures in both groups are com-
piled into a single DFA. Through analysis of the 
groups of signatures divided based on the prefixes of 
signatures, we find that many groups are similar. Even 
more, some groups are subsets of other groups, which 
means the interaction is zero. Since subset merging 
only reduces the total size of all DFAs (actually the 
DFA of the subset is removed), the procedure of subset 
merging is quite simple. The pseudo-code of the sub-
set-merging algorithm is provided below. Initially, the 
list of groups G contains the group of signatures di-
vided based on prefix, and the set of group-ids (de-
noted by gids) contains only one gid. The pseudo-code 
of the subset-merging algorithm is presented in Fig. 6. 

 
Algorithm 1  Subset merging 

procedure subset_merging (list G= (Gi (set gids, set sigs)))
    for Gi G do 
        for Gj G && j > i do 
            if interaction(Gi , Gj) == 0 then 
                group_merge(Gi , Gj ); 
                move(G.end(), j); 
end 

 

procedure group_merge (group G1 , group G2) 
    G1 .gids.add(G2.gid); 
    G1 .sigs.add(G2.sigs); 
End 

Fig. 6  Subset-merging algorithm 

Step 2  Selective merging 
After subset merging, it is more challenging to    

perform further merging. To determine the gain of 
merging two groups, the composite DFA of two groups 
and the merged group need to be compiled, which is a 
time-consuming job. We rely on two heuristics to re-
duce the search space of the optimal solution. Firstly, 
according to the analysis above, only the merging of 
two groups with small interaction may get a positive 
gain of merging. Therefore, we calculate the interac-
tion of two groups in the selective merging stage, and 
keep on searching only if the interaction is smaller than 
a given threshold. Secondly, as we know, even the in-
teraction of two groups is only one or two, the com-
posite DFA of the merged group may grow exponen-
tially if the average number of wildcards in the regexes 
of the groups is over one (since there are no counting 
constraints in L7-filters signatures, we only discuss the 
wildcards here). Based on this observation, we inspect 
the average number of wildcards of the merged groups 
before really compiling the composite DFA. If the av-
erage number of wildcards is over one, this combina-
tion of groups is skipped.  

In addition to the heuristic-based searching, we also 
avoid the recalculating by recording the sizes of every 
DFA complied, in order to further reduce the overhead 
of calculating the gain of merging. 

The pseudo-code of the selective-merging algorithm 
is presented in Fig. 7. 

 
Algorithm 2  Selective merging 
procedure selective_merging (list G= (Gi (set gids, set sigs)))
 map size; 
 for Gi G do 
  for Gj G && j > i do 
     if interaction(Gi , Gj) < Threshold then 
       if avg_wildcards(group_merge(Gi , Gj)) < 1 then 
         // lazy compiling 
         if size(i) == 0 then 
           size(i) = DFA(Gi ).size; 
         endif 
         if size(j) == 0 then 
           size(j) = DFA(Gj ).size; 
         endif 

 

         if size(i) + size(j) > DFA(Gij).size then 
           group_merge(Gi , Gj ); 
           move(G.end(), j); 
         endif 
       endif   //avg_wildcards 
     endif  // interaction 
end 

Fig. 7  Selective-merging algorithm 
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3.3  Fingerprint-based matching 

As discussed in Section 2, only a little fraction of traf-
fic needs to be processed in the non-anchored stage, 
and the number of non-anchored signatures is also 
small. But we still need a scalable solution to deal with 
these regular expressions. In this paper, we employ a 
pre-filtering technique similar to the one used in 
Snort[20], called fingerprint-based matching, to process 
the non-anchored signatures. The fingerprint-based 
matching performs multi-string matching on subparts 
of the signatures, i.e. fingerprints. When a fingerprint 
is matched, a single regular expression matching, ei-
ther DFA-based or NFA-based, is invoked.    

For a set of non-anchored signatures, we first extract 
the fingerprints of every signature. The fingerprint of a 
regex is several fixed sub-strings of the regex. For   
regex like “first|second.*third”, the fingerprint may be 
“first, second” or “first, third”. The procedure of the 
fingerprint extraction is as follows: Regexes are first 
split at “ | ” into different parts, and then all fixed 
sub-strings in each part are extracted. Finally, the fin-
gerprints of the regexes are selected from these 
sub-strings to meet two criteria: (1) the fingerprint for 
each signature is unique; (2) if there are multiple sub-    
strings for each part of a regex, then the longest one is 
selected to improve the efficiency.  

After all the fingerprints are extracted, we construct 
an Aho-Corasick automaton[22] to perform finger-
print-lookup. When the reassembled payload matches a 
certain fingerprint, it is checked against the corre-
sponding regular expression to confirm the match. 

4  Performance Evaluation 

In this section, we evaluate the effectiveness of our 
two-stage matching engine by comparing both the 
memory usage and speed of our solution against a 
multi-DFA-based matching engine. As discussed in 
Section 1, multi-DFA-based solution is the best speed 
and memory usage tradeoff in existing solutions. 
Compared to the popular multi-DFA-based matching 
engine, our matching engine consumes 62% to 86% 
less memory. Experiments that use traffic traces from 
DEFCON and Tsinghua University networks demon-
strate that our solution increases the throughput of the  

App-ID system up to 3 times. 

4.1  Experimental setup 

We perform all the experiments using two sets of real 
world traffic traces. The first set (DEF1, DEF2) is from 
the Defcon 9 Capture the Flag contest[23], which con-
tains a large amount of anomalous traffic. The second 
set (THU1-THU3) is from a local LAN with about 
1000 computers at Tsinghua University. Most packets 
in THU traces are normal traffic, which is very differ-
ent from DEF traces. Among all the packets in these 
traces, only TCP and UDP packets are processed.  

We use the Regular Expression Processor[24] to 
compile DFAs from groups of regular expressions. The 
code is modified to support generating multi-DFAs in 
which the size of each DFA is limited by a threshold.  

We implement a trace-driven application identifica-
tion system based on Libnids[25] and L7-filter to test 
the performance of our solution in a real App-ID sys-
tem. The system reads packets from traffic traces and 
reassembles packets using Libnids and then sends 
packets to the matching engine. The signatures used 
are from the latest L7-filter released on July 2009. 

All the experiments were obtained on a Server with 
a Xeon E5504 CPU (4 cores at 2.0 GHz) and 4 GB 
DDR3 memory.  

4.2  Memory usage comparison 

The first part of Table 1 shows the results of compiling 
all L7-filter signatures into multiple DFAs. We set the 
limit of the number of states in each composite DFA 
from 10 000 first. The multi-DFA algorithm generates 
11 DFAs and the total number of states is 32 715. We 
do not set the limit to a smaller number, because the 
algorithm creates more DFAs in that situation, which 
results in worse matching performance. When we in-
crease the limit to larger numbers, the algorithm cre-
ates few groups but the total number of states increases. 
The number of signature groups can only decrease to 5 
for this L7-filter signature set. When we set the limit to 
500 000 states, the number of DFAs created is still 5 
and the time of compilation needed is about 10 h. For 
convenience, these multi-DFA settings are denoted as 
multi-DFA_5, Multi-DFA_6, Multi-DFA_8, and 
Multi-DFA_11.  
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Table 1  Memory usage comparison 

Algorithm 
Composite 

DFA state limit 
Number of 

DFAs 
Total number 

of states 
10 000 11 32 715 
20 000  8 54 979 
30 000  6 60 699 

Multi-DFA 

80 000  5 90 802 
Initial 62 34 016 

After subset 
merging 40 25 975 Two-stage 

After selective 
merging 21 11 448 

 

For our solution, the signature set is divided into 62 
groups initially, based on the prefix. The total number 
of states for these 62 groups is 34 016, which is only a 
little larger than Multi-DFA_11. We apply our group-    
merging algorithm to the prefix-based groups. After 
performing the subset merging, the number of groups 
is reduced to 40 and the total number of states is re-
duced to 25 975 correspondingly. The selective merg-
ing algorithm is performed to further reduce the mem-
ory usage. This heuristic algorithm merges the 40 
groups into 21 and successfully reduces the total num-
ber of states to 11 448, almost 67% reduction of mem-
ory usage. 

Figure 8 shows the total memory usage of our two-    
stage matching scheme and the multi-DFA scheme. For 
the multi-DFA scheme, the total memory usage in-
cludes the memory usage of all the composite DFAs. 
The memory usage of the two-stage scheme consists of 
the memory consumption of all the DFAs in the first 
stage, the fingerprint DFA in the second stage, and the 
DFAs for every non-anchored signature. For the 
L7-filter signature set, the fingerprint DFA consumes 
365 KB, while the DFAs for each non-anchored signa-  

 
Fig. 8  Total memory usage 

ture use 702 KB. From Fig. 8 we can see that the 
memory usage of the proposed two-stage scheme is 
only 38.3% of Multi-DFA_11, and 13.8% of 
Multi-DFA_5. 

4.3  Throughput comparison 

Since the difference in the characteristic of traffic may 
affect the performance of the algorithms, we test the 
performance of these two algorithms in our trace-      
driven application identification system using real 
world traffic traces. Figure 9 shows the average num-
ber of memory accesses per input character to the 
matching engine. The average number of memory ac-
cesses of the two-stage matching is from 2.2 to 2.5 for 
different traffic traces. In comparison, the multi-DFA 
scheme needs 5-11 memory accesses (2-5 times) per 
input characters.   

 
Fig. 9  Memory access comparison 

We measure the throughput of these two algorithms 
by recording the time needed to process the trace files. 
When calculating the throughput, the time for reading 
a trace file from the disk is deducted from the process-
ing time. Figure 10 shows the throughput normalized to 
that of the Multi-DFA_11. Comparing to Multi-DFA_5,   

 
Fig. 10  Throughput comparison 
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the two-stage matching algorithm yields a performance 
improvement of 60% to 89%. Also, our algorithm is 
2.3 to 3.0 times faster than the Multi-DFA_11. The 
differences in the performance improvement are 
mainly affected by the percentage of traffic matched in 
the first stage. 

5  Conclusions 

Application identification in network devices is chal-
lenging due to its performance requirements including 
high throughput, low memory usage, and identification 
accuracy. Existing work on payload-based application 
identification mainly focuses on optimizing common 
regular expression matching. They do not utilize the 
characteristics of application identification that are 
different from other deep inspection applications. In 
this paper, we propose a matching engine solution to 
accelerate application identification by employing 
two-stage matching and pre-classification techniques. 
Our solution reduces the memory usage and increases 
the throughput at the same time. Comparing to the 
state-of-the-art common regular expression engine, the 
matching engine achieves up to 38% reduction of 
memory usage and 3 times throughput increase. In ad-
dition, the proposed solution is orthogonal to most ex-
isting optimization techniques of regular expression 
matching, which means we can use these techniques to 
further increase performance. 

References 

[1] Al-Fares M, Radhakrishnan S, Raghavan B, et al. Hedera: 
Dynamic flow scheduling for data center networks. In: 
Proceedings of the 7th USENIX Conference on Networked 
Systems Design and Implementation (NSDI). USA: 
USENIX, 2010. 

[2] McKeown N, Anderson T, Balakrishnan H, et al. Open-
Flow: Enabling innovation in campus networks. SIG-
COMM Computer Communication Review, 2008, 38(2). 

[3] Sen S, Spatscheck O, Wang D. Accurate, scalable 
in-network identification of p2p traffic using application 
signatures. In: Proceedings of the 13th International Con-
ference on World Wide Web. USA: ACM, 2004: 512-520. 

[4] Haffner P, Sen S, Spatscheck O, et al. ACAS: Automated 
construction of application signatures. In: Proceedings of 
the 2005 ACM SIGCOMM Workshop on Mining Network 
Data. USA: ACM, 2005. 

[5] Moore A W, Zuev D. Internet traffic classification using 
Bayesian analysis techniques. In: Proceedings of the ACM 
SIGMETRICS International Conference on Measurement 
and Modeling of Computer Systems. Canada: ACM, 2005. 

[6] Callado A, Kelner J, Sadok D, et al. Better network traffic 
identification through the independent combination of 
techniques. Journal of Network and Computer Applica-
tions, 2010, 33(4): 433-446. 

[7] Bernaille L, Teixeira R, Akodkenou I, et al. Traffic classi-
fication on the fly. SIGCOMM Computer Communication 
Review, 2006, 36(2). 

[8] Li Zhu, Yuan Ruixi, Guan Xiaohong. Accurate classifica-
tion of the Internet traffic based on the SVM method. In: 
Proceedings of IEEE International Conference on Com-
munications (ICC). Scotland: IEEE, 2007: 1373-1378. 

[9] Szabo G, Szabo I, Orincsay D. Accurate traffic classifica-
tion. In: Proceedings of IEEE International Symposium on 
World of Wireless, Mobile and Multimedia Networks 
(WoWMoM). Finland: IEEE, 2007: 1-8. 

[10] Zhang Guangxing, Xie Gaogang, Yang Jianhua, et al. Ac-
curate online traffic classification with multi-phases identi-
fication methodology. In: Proceedings of the 5th IEEE 
Consumer Communications and Networking Conference 
(CCNC). USA: IEEE, 2008: 141-146. 

[11] Palo Alto Networks Enterprise Firewall. http://www.pa-
loaltonetworks.com/products/pa4000.html. 2011.1.15. 

[12] Juniper SRX Services Gateways. http://www.juniper.    
net/au/en/products-services/security/srx-series/.2010.10.15. 

[13] L7-filter. http://l7-filter.sourceforge.net. 2010.10.15. 
[14] Cisco Adaptive Security Appliance. http://www.cisco.com. 
[15] Bro. http://www.bro-ids.org. 2010.10.15. 
[16] Kumar S, Dharmapurikar S, Yu F, et al. Algorithms to 

accelerate multiple regular expressions matching for deep 
packet inspection. ACM SIGCOMM Computer Communi-
cation Review, 2006, 36(4). 

[17] Becchi M, Crowley P. An improved algorithm to acceler-
ate regular expression evaluation. In: Proceedings of the 
3rd ACM/IEEE Symposium on Architecture for Network-
ing and Communications Systems (ANCS). USA: ACM, 
2007: 145-154. 

[18] Yu F, Chen Z, Diao Y, et al. Fast and memory-efficient 
regular expression matching for deep packet inspection. In: 
Proceedings of the 2nd ACM/IEEE Symposium on Archi-
tecture for Networking and Communications Systems 
(ANCS). USA: ACM, 2006: 93-102. 

[19] Smith R, Estan C, Jha S, et al. Deflating the big bang: Fast 
and scalable deep packet inspection with extended finite 



HE Fei (  ) et al. Accelerating Application Identification with Two-Stage … 

 

431

automata. ACM SIGCOMM Computer Communication, 
2008, 38(4). 

[20] Snort. http://www.snort.org. 2010.10.15. 
[21] Sourdis I, Dimopoulos V, Pnevmatikatos D, et al. Packet 

pre-filtering for network intrusion detection. In: Proceed-
ings of the 2nd ACM/IEEE Symposium on Architecture 
for Networking and Communications Systems (ANCS). 
USA: ACM, 2006: 183-192. 

[22] Aho A V, Corasick M J. Efficient string matching: An aid 
to bibliographic search. Communications of the ACM, 1975, 
18(6): 333-340. 

[23] Group S. Defcon 9 Capture the Flag Data. http://ictf.cs.    
ucsb.edu/data/defcon_ctf_09. 2010.11.1. 

[24] Michela Becchi. Regular expression processor. http://     
regex.wustl.edu/. 2010.11.15. 

[25] Libnids. http://libnids.sourceforge.net. 2010.11.15. 
 


