
China Communications • August 2015 146

and packet payload. Accordingly, packet
classification and pattern matching algorithms
play a key role in network security processing.
Due to the flexibility and high performance,
most network security systems are developed
on many-core network processing platforms.
However, the existing packet inspection
algorithms are difficult to be implemented
effectively on these platforms for two reasons.

On one hand, due to the employment of
intricate heuristics, the data structures of
existing algorithms are often complicated
and heterogeneous. These data structures
may have different sub-structures of various
memory sizes, which often hamper the
optimization of memory allocation and
access. Besides, complicated data structure
may hurt the instruction locality in software
implementation. For example, the well-known
decision tree based packet classification
algorithm HiCuts [1] employs the heuristics
of greedy search at each internal node to
select the locally optimized number of
cuttings, which makes different tree nodes
have different number of child node pointers.
Therefore, direct compression of the HiCuts
data structure is difficult and the traversal
of HiCuts nodes might require unstable I/O
bandwidth.

Abstract: Modern network security devices
employ packet classification and pattern
matching algorithms to inspect packets.
Due to the complexity and heterogeneity
of different search data structures, it is
difficult for existing algorithms to leverage
modern hardware platforms to achieve high
performance. This paper presents a Structural
Compression (SC) method that optimizes the
data structures of both algorithms. It reviews
both algorithms under the model of search
space decomposition, and homogenizes their
search data structures. This approach not only
guarantees deterministic lookup speed but
also optimizes the data structure for efficient
implementation on many-core platforms.
The performance evaluation reveals that
the homogeneous data structure achieves
10Gbps line-rate 64byte packet classification
throughput and multi-Gbps deep inspection
speed.

Keywords: packet classification; pattern
matching; algorithms; data structures

I. INTRODUCTION

Modern ne twork secur i ty app l i ances
require the inspection of both packet header

Towards Efficient Security Policy Lookup on Many-
Core Network Processing Platforms

WANG Xiang1, 3, QI Yaxuan2, WANG Kai3, XUE Yibo3, 4, LI Jun3, 4

1Department of Automation, Tsinghua University, Beijing 100084, China
2Yunshan Networks Inc., Beijing 100083, China
3Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
4Tsinghua National Lab for Information Science and Technology, Beijing 100084, China

SECURITY SCHEMES AND SOLUTIONS

China Communications • August 2015147

This paper presents
a St ruc tu ra l Com-
pression (SC) method
that opt imizes the
data structures of both
algorithms. It reviews
both algorithms under
the model of search
space decomposition,
and homogenizes their
search data structures.

On the other hand, the worst-case look-
up time is not guaranteed because most
algorithms trade search time for memory
space. The decision tree based packet
classification algorithms, such as HiCuts and
HyperCuts [2], do not have explicit worst-case
tree depth because they perform variable stride
cutting at internal nodes and linear search at
leaf nodes. The DFA based pattern matching
algorithms, such as D2FA [3] and its improved
variation [4], are difficult to guarantee the
number of memory access per input character
because the number of inter-state and intra-
state transitions are not strictly bounded. These
limitations often cause unstable performance
among different policy sets.

This paper optimizes the classic packet
inspection algorithms for many-core network
processing platforms. An effective Structural
Compression (SC) method is proposed for
both packet classification and pattern matching
algorithms. The major contributions include:

1) Algorithm analysis: Based on the study
of decision tree based packet classification
algori thms, the paper investigates the
relationship between the implementation of
data structures and the model of search space
decomposition. Two types of information
are abstracted, i.e., addressing information
and partition information. The addressing
information defines the affiliation among
different nodes, and the partition information
defines the traversal paths for tree search.
Most existing algorithms do not explicitly
distinguish them in their implementations, and
there might be spatial redundancy within the
tree data structures.

2) Structural compression: After the
separation of addressing and parti t ion
information, the paper introduces the
s tructural compress ion approach that
effectively reduces the spatial redundancy.
In packet classification, the approach (SC-
Tree) restricts the employment of heuristics
in building search data structures and
enforces fixed-stride cutting strategy. Subject
to a two-stage compression of tree nodes,
the spatial redundancy is reduced at each

internal node and also is globally eliminated
using a shared storage. Moreover, this paper
extends the approach to DFA based pattern
matching algorithms by adding relay states
and a locality-aware encoding scheme. The
structural compression approach for DFA (SC-
FA) can guarantee the memory access times
when looking up different policy sets, and
uses homogeneous data structures for efficient
memory operations.

3) Hardware evaluation: Both SC-Tree
and SC-FA are optimized and implemented
on a 64-core Tilera TILEPro64 [5] platform
for hardware evaluation. Each tree node
is compressed into one 64bit word and is
aligned in consecutive memory. The searching
procedure runs in parallel with linear speedup
along with the increment of the processing
core number. The results of performance
evaluation demonstrate that the SC-Tree
reaches 10Gbps line-rate 64byte packet
classification speed, and the SC-FA achieves
multi-Gbps pattern matching speed.

The rest of this paper is organized as
follows. Section 2 analyzes the structural
redundancy of the exit ing algori thms.
Section 3 and Section 4 present the structural
compression algorithm for both packet
classification and pattern matching algorithms.
Section 5 describes the evaluation of the
structural compression approach on many-
core network processing platforms. Section 6
draws the conclusion.

II. DATA STRUCTURE REDUNDANCY

2.1 Two types of information

Figure 1 shows a typical HiCuts decision
tree. Node-0 is the tree root, and its related
2-dimensional overall search space is equally
cut into 4 unit-spaces on Y dimension. After
aggregation, the 1st and the 2nd unit-space
are mapped to the 1st and the 2nd subspace,
respectively; the 3rd and the 4th unit-spaces
are aggregated into the 3rd subspace. Similar
decomposition is performed on node-1 ~
node-3. Node-4 ~ node-9 are leaf nodes as

China Communications • August 2015 148

the recursion is terminated. The tree outline,
i.e., tree nodes and their traversal paths, and
the tree texture, i.e., space decomposition
pattern residing in internal nodes, consist in
the decision tree. According to this example,
there are two key points in a typical tree data
structure:

Addressing: The addressing information is
used for identifying nodes during decision tree
building and traversal, which is determined
by the tree outline. Multiple schemes can be
employed to address tree nodes. For example,
the general scheme is using node pointer or
node global index. To reduce the memory
requirement, the parent node can use the base
plus offset scheme, which is based on its first
child node address and the number of its child
nodes.

Partition: The partition information
includes cut dimension, cut stride (the number
of cuttings) and aggregated subspace mapping.
It texturizes the tree with possible search paths.
The search procedure uses this information
and packet header field value to select the next
traversal node. Most algorithms decide the cut
dimension sequence using different evaluation
functions. Besides, i t usually employs
variable-stride cutting strategy during decision
tree building, and generates different amount
of unit-spaces and subspaces.

2.2 Structural redundancy

From the experimental results on real-life
policies, it could be observed that the existing
packet classification trees have a lot of
structural redundancy, i.e., a large number of
internal nodes have similarity in two aspects:
1) the number of subspaces; 2) the mapping
between unit-spaces and subspaces. The first
similarity is due to the fact that the fan-out of
most internal nodes is small, i.e., most internal
nodes have only a small number of child
nodes. The second similarity is caused by the
common practice of subnet address allocation
and application port specification, i.e., most
rules have the same source IP addresses, and
popular network services, e.g., web / mail

Fig.1 Geometric view and HiCuts tree for policy in Table 1

Table I A 2-field policy with 4 rules

Rule Priority X-field Y-field Action
R1 1 [0100,0111] [0000,0011] act1
R2 2 [0000,1111] [0101,0101] act1
R3 3 [1000,1111] [1000,1111] act1
R4 4 [0000,1111] [0000,1111] act2

/ DNS, bind well-known ports. In addition,
standard application ports are limited to a
small value range, and many rules have the
same destination port. In Figure 1, the internal
nodes have the following two similarities.
First, all of node-1, node-2 and node-3 have
2 subspaces. Second, node-1 and node-2 have
the same space mapping, i.e., the 1st, 3rd and 4th
unit-spaces are aggregated to the 1st subspace,
and the 2nd unit-space is mapped to the 2nd
subspace. Although these similarities can be
found in most internal nodes, they have not
been exploited by the existing algorithms.
Most implementation adopts the array of
pointer to store both addressing and partition
information. Different nodes are addressed
with different pointers, which hamper the
elimination of the partition similarity.

Based on the above analysis, it is required
to separate the addressing and partition
information. After decoupling, the partition
information can be independently expressed.
And it is free to employ different compression
techniques to extract the most significant
information. Overall, it is the decoupling that

China Communications • August 2015149

opens the way to structurally compress the
spatial redundancy in data structures.

III. STRUCTURAL COMPRESSION FOR
PACKET CLASSIFICATION

3.1 Decision tree based packet
classification

Many existing packet classification algorithms
are based on decision tree data structure. These
algorithms partition the overall search space
hierarchically into subspaces until each of
subspaces contains only a few rules. At each
internal tree node, the current search space is
partitioned into a certain number of subspaces
via equal-sized cutting(s) on selected packet
header field(s). The number of cuttings and the
cutting field(s) may be determined by policy-
related heuristics. The space decomposition
terminates at each leaf node.

As an example, Table 1 shows a 2-field
policy with 4 rules. Each rule has range
specifications on both X and Y fields. The
priority of rules is in decent order. R4, the
default rule, overlaps R1, R2 and R3. The
left part of Figure 1 is the geometrical view
these rules. All rules are in the entire search
space S0={x∈[0000,1111], y∈[0000,1111]
}. The objective of classifying a packet
P={x=0111,y=0010} is to find the rectangle
with the highest priority that contains P. The
right part of Figure 1 shows the HiCuts tree as
an example classifier. At the root node, the S0
is partitioned into 4 unit-spaces using equal-
sized cuttings on the Y-field:

U1={x∈[0000,1111],y∈[0000,0011]}
U2={x∈[0000,1111],y∈[0100,0111]}
U3={x∈[0000,1111],y∈[1000,1011] }
U4={x∈[0000,1111],y∈[1100,1111]}
According to HiCuts algorithm, U3 and

U4 are aggregated into a single subspace,
because they contain the same sub-rule set of
rules {R3, R4}. Thus, at the tree root, the S0 is
partitioned into 3 subspaces:

S1={x∈[0000,1111],y∈[0000,0011]}
S2={x∈[0000,1111],y∈[0100,0111]}
S3={x∈[0000,1111],y∈[1000,1111]}

After space partition, three child nodes
are created. A pointer array is allocated and
stored in the root node to map U1 ~ U4 to S1
~ S3. By performing similar space partition at
node-1, node-2 and node-3, the S0 is further
partitioned into six subspaces:

S4={x∈[0000,0011]∪[1000,1111],
 y∈[0000,0011]}
S5={x∈[0100,0111],y∈[0000,0011]}
S6={x∈[0000,1111],
 y∈[0100,0100]∪[0110,0111]}
S7={x∈[0000,1111],y∈[0101,0101]}
S8={x∈[0000,0111],y∈[1000,1111]}
S9={x∈[1000,1111],y∈[1000,1111]}

As each subspace of S4 ~ S9 is fully
covered by a specific set of rules, the rule
with the highest priority in the set is the final
classification result. Therefore, node-4 ~ node-
9 are leaf-nodes and no space partition is
needed.

Compared to HiCuts, HyperCuts applies
equal-sized cuttings on multiple fields
simultaneously to reduce the average depth of
decision tree. EffiCuts [6] divides the original
classifier into a set of sub-classifiers to reduce
the memory usage. Although they use different
strategies to achieve the better tradeoff
between time and space, the basic structure of
packet classification trees are similar.

3.2 SC-Tree for packet classification

Three steps are taken to obtain the SC-Tree.
The first step is to separate the partition
information from the addressing information
at each internal tree node. Then the per-node
partition information is compressed using a
two-stage space aggregation technique. In
the third step, only unique per-node partition
information is extracted and then shared
among all internal nodes. After these three
steps, all pointers are eliminated, and a
compact SC-Tree data structure is obtained.

STEP-1 : Separation of two types of
information. All nodes are restricted to fixed
memory size, and all child nodes of an internal
node are stored in consecutive memory.
Assume each node has the size N_SIZE

China Communications • August 2015 150

and the number of cuttings N_CUTS. Using
children base plus offset addressing scheme,
the ith pointer Pi in the pointer array can be
rewritten as follows:

Pi=P0+offset[i]*NSIZE,0≤i<NCUTS

where P0 is the address of the first child node,
and offset[N_CUTS] stores the offset of all
child nodes. As shown in the top of Figure 2, a
pointer array with 8 pointers can be separated
into two parts. One is the base address and the
number of child nodes. The other is the offset
array. The former represents the addressing
information, and we can count on this
information alone to access all child nodes.
The latter is the partition information, as it
only uses local offsets for space mapping. And
it does not contain any addressing information.
Since the length of pointer array and the
maximum value in offset array are equivalent,
the former can be eliminated to optimize the
memory usage.

As the partition information has been
abstracted and is independent from the
addressing information, it is possible to
remove the structural redundancy of data
structures. Unfortunately, the fan-out of a tree
is small, and most offset arrays are very sparse
when the number of cuttings is large. Direct
redundancy removal based on these offset
arrays is not efficient. As a consequence, in
the second step, the local redundancy in each
offset array will be first removed.

STEP-2 : Compress ion o f par t i t ion
information. At this step, the offset arrays are
compressed using the bitmap technique [7].
Given an offset array OA[k], 0 ≤ k < K, a K-bit
bitmap and an M-element offset list OL[m],
0 ≤ m < M ≤ K can be generated by taking
following steps:
- Clear the first bit of the bitmap, let m = 0,

and set OL[m] = OA[0].
- For each 1 ≤ k < K, if OA[k] != OA[k + 1],

set the (k + 1)th bit of the bitmap, let m +=
1, and set OL[m] = OA[k]; else clear the (k
+ 1)th bit of the bitmap.
The bottom of Figure 2 shows an example

of bitmap compression, and it can be seen that
an 8-element offset array is compressed into a

Fig. 2 The separation and compression of two types of information

4-element offset list using an 8-bit bitmap.
S T E P - 3 : E l i m i n a t i o n o f p a r t i t i o n

redundancy. After the first two steps, there
is an important observat ion in packet
classification trees: The number of unique
bitmaps and the number of unique offset lists
are both small compared to the one of tree
nodes. In other words, many nodes have the
same bitmaps or offset lists. According to the
experimental results on real-life policies, the
numbers of unique bitmaps and offset lists
are both at least 1~2 orders less than the one
of tree nodes. As an example, by replacing all
pointer arrays in Figure 1 with bitmaps and
offset lists and using fixed-stride 4-cuttings,
the decision tree shown in Figure 3 could be
obtained. There are only 2 unique bitmaps
(0110 and 0010) and 3 unique offset lists (012,
010 and 01) among all 4 internal nodes. As the
offset list 01 in node-3 is a prefix of the offset
list 012 in node-0, the latter can be also used
as the offset list of node-2. Thus, the number
of unique offset lists is reduced to 2.

Both unique bitmaps and offset lists are
extracted from all internal nodes and shared
among them. After that, each internal node
only needs to store two indices (bmpID and
offID) to index the shared bitmap table and
offset list table. Besides, the base pointer
in each node can also be replaced with the
first child node global ID, e.g., N1, to save
memory usage. Figure 4 shows the final SC-

China Communications • August 2015151

Fig. 3 Packet classification tree with bitmaps and offset lists

Fig. 4 SC-Tree for policy in Table 1

Tree data structure.
To search the SC-Tree data structure, we

start from the root node and then traverse
down the tree through a series of internal
nodes until reach a leaf node. For example,
to classify packet P={x=0111,y=0010} by
searching the SC-Tree shown in Figure 4, it
takes the following steps: At the root node,
as we use fixed-stride 4-cuttings and the first
two bits of value on cutting dimension Y is
00, the packet falls into the 1st unit-space.
The procedure counts the number of 1s of the
first 1 bit of bmp0, and gets the result 0. It
reads the next node whose ID is N1 + off0[0],
i.e., node-1. Similarly, at node-1, as the first
two bits of value on cutting dimension X is
01, the packet falls in the 2nd unit-space. The
procedure counts the number of 1s of the
first 2 bits of bmp0, and gets the result 1. It
reads the next node whose ID is N4 + off1[1],
i.e., node-5. As node-5 is a leaf node, the

procedure can find the best matched rule R1
with action act1 associated.

IV. STRUCTURAL COMPRESSION FOR
PATTERN MATCHING

4.1 DFA based pattern matching

Different from packet classification, which
is range matching on a limited number
of packet header fields, pattern matching
conducts byte-level matching on an unlimited
number of packet payload. The number of
inspected bytes is the overall size of a flow.
Many existing pattern matching algorithms
are based on DFA. A DFA consists of a finite
set of input symbols, denoted as Σ, a finite
set of states, and a transition function δ. In
network applications, |Σ| = 256, which is the
size of extended ASCII symbols. Among these
states, there is a single initial state and a set
of accepting states. The transition function δ
takes a state and an input symbol as the input
and returns the next state as the output.

The left part of Figure 5 shows an example
DFA for matching 2 regular express1ions
RE1 /.*be+/ and RE2 /.*dad/ over the symbol
set Σ = {a, b, c, d, e, f, g, h}. For any input
symbol c∈Σ and state Si, the next state Sj can
be found by following the transition labeled
with the symbol c. All transitions to S0 are
not shown for clarity. To lookup the DFA,
we can use the DFA transition table shown in
the right part of Figure 5. Pi is the memory
address of Si. Given an input character stream
“babedad” and the initial state S0, it will take
the following steps to lookup the transition
table:

4.2 Structural redundancy in DFA

According to the existing studies, the DFA
transition table has a lot of redundancies [3]
[4]. Based on the observation of real-life
DFA transition tables, the redundancy can be
categorized in two classes [8]:

Intra-state redundancy: The number of

China Communications • August 2015 152

Fig. 5 DFA graph and transitions for /.*be+/ and /.*dad/

Fig. 6 Adding relay states in the DFA graph

Fig. 7 DFA graph and transitions after reducing relay states

unique transitions in a certain state is usually
small, because frequently used characters in
pattern matching rules are a small subset of
the ASCII symbol set. Therefore, most states
have only a few unique transitions at these
symbols.

Inter-state redundancy: A set of states are
usually of similar transitions, because many
state transitions point to several common
failure states [9]. Besides, some unambiguous
states may be replicated when automata is
combined [10].

Figure 5 shows that at least 5 out of 8
transitions are identical in each state, which
point to P0. In the group of states {S0, S2,
S5}, 7 out of 8 transitions in each state are
identical to one another. Such intra-state and
inter-state redundancies are more apparent in
real-life DFA transition tables.

4.3 SC-FA for pattern matching

In pattern matching, DFA can be regarded as
a hierarchical data structure: the initial state
is viewed as the root node; all states next to
the initial one are viewed as child nodes of
the root. The significant difference between
DFA and decision tree is that DFA transition
may point to upper nodes (previous states).
These backward transitions implicate the next
and the preceding space will share the same
partition pattern.

The proposed structural compression
method is extended to DFA based pattern
matching by taking the following steps. Firstly,
the DFA graph is converted into a 256-stride
tree by adding relay states. Then an offset
encoding technique is employed to reduce
the number of relay states by exploring the
statistical distribution of relay state transitions.
After that, the SC-FA data structure that
eliminates the redundancies in DFA transition
tables is obtained.

STEP-1: Introduction of relay states. Each
transition in the DFA graph belongs to either
a descent transition (solid arrow in Figure
5) or a relay transition (dashed arrow in
Figure 5). The existence of relay transitions

makes it impossible to use the base plus
offset addressing scheme to extract partition
information, because child states are stored in
non-consecutive memory space. To support
incremental addressing of child states, the
additional relay state is introduced. Each relay
state is a state replication corresponding to its
relay transition. After adding relay states, all
relay transitions can be replaced by descent
transitions, and the DFA graph turns into a
tree-like structure. Each state is similar to an

China Communications • August 2015153

internal node of the packet classification tree,
and transition pointers are analogous to the
pointer array. Figure 6 shows the DFA graph
after adding relay states. In this figure, it could
be observed that all relay transitions have
been removed by adding relay states, i.e., Si.j
indicates the jth duplicates of Si. Because each
relay state is identical to its corresponding
state, the search of the DFA graph maintains
the property of one character per state
traversal. For example, given the input byte
stream “babedad” and the initial state S0, it
will take the following steps to lookup the
DFA graph in Figure 6:

STEP-2: Reduction of relay states. To
achieve a better compression ratio, the number
of relay states is reduced before applying
the structural compression. Based on the
observation that most relay transitions point to
only a small number of states, i.e., most relay
states are replication of only a few states, an
index encoding strategy could be introduced to
significantly reduce the number of relay states.
This encoding method takes the following
steps:
- Reorder all DFA states according to the

access frequency in descent order. This
frequency can be obtained by counting
the total number of a certain transition in
original transition tables.

- Store the first M states in consecutive memory.
Thus, these states can be directly accessed
when given an index of the value, i.e., 0 ~
M - 1.

- Replace state transitions that point to the
first M states with the state index.
For example, Figure 5 reveals that S0, S1

and S2 are the top three most frequently visited
states, which means M = 3. If the state index is
employed to access them, their corresponding
relay states can be removed from Figure 6.
The resulting DFA graph and transition table
are shown in Figure 7. Note that, because S3
has only one child state, the transition pointer
P3, rather than P3.1, can be directly used to
relay state S3.1. Thus, the relay state S3.1 can
be removed in the transition table. Similarly,

S4.1 can be also eliminated, as it has the only
child state of S5.

STEP-3 : El iminat ion o f s t ruc tura l
redundancy. After transforming the original
DFA and reducing the relay state overhead, the
structural compression is employed to build
the final DFA graph. As the indices of the first
M states are used for direct accessing, the
corresponding values in the offset array are the
real global state IDs, rather than the offsets to
the children array base. Except for these states,
other decent states are viewed as siblings, and
the corresponding values in the offset array
vary from M ~ M + 255. In most cases, the
number of decent states is small, so the offsets
are also in a small range as well. After that, we
also obtain the similar observation compared
with the real-life packet classification trees:
The number of unique bitmaps and the number
of unique offset lists are both small compared
to the one of DFA states. Thus, the unique
bitmaps and offsets are extracted from all DFA
states and shared. Besides, the pointer in each
state can be replaced with its global state ID,
and all states are shaped with the same size.
Figure 8 shows the final SC-FA data structure.

To search the SC-FA data structure, we
start from the initial state and traverse in DFA
graph through multiple transitions until input
symbols are all processed. For example, it
takes the following steps to match the input
character stream “babedad”, by searching
the SC-FA shown in Figure 8. At the initial
state, as the first input character is ‘b’, the
procedure falls in the 2nd unit-space. It counts
the number of 1s of the first 2 bits of bmp0,
and gets the result 1. Because we regard S0,
S1 and S2 as three most visited states and
the value of off0[1], i.e., 1, is smaller than
M, it directly reads the next state whose ID
is 1, i.e., S1. Similar processing is performed
until the current input character is ‘e’, and
the current state is traversed to S1. At S1, as
the input character is ‘e’, the procedure falls
in the 5th unit-space. It counts the number
of 1s of the first 5 bits of bmp1, and gets the
result 4. Because the value of off1[4], i.e., 3,
is not smaller than M, it read the next state

China Communications • August 2015 154

whose ID is N3 + off1[4] - M, i.e., S3. At S3,
the procedure can find the matched RE0. The
procedure goes through these two types of
state addressing until all inputs are processed.

V. MANY-CORE OPTIMIZATION AND
PERFORMANCE EVALUATION

5.1 Many-core platform

Among network security devices, high-end
products may leverage ASIC or FPGA chips
to perform critical packet processing. It can
achieve extreme high processing speed, but
lacks of flexibility to extend its functionality.
As a result, most commodity network security
devices are built on many-core network
processing platforms, which are developed
with various acceleration engines that are
optimized for packet manipulation specifically,
such as DFA thread engine for packet payload
inspection, ingress/egress packet processor for
high-speed packet parser and packet order unit
for flow-level order preserving. Besides, these
processors also have the specific instruction
sets for security and compression processing,
such as cryptographic and SIMD instructions.

Tilera TILEmpower appliance [11] is a
many-core network processing platform. It can
perform high-speed packet processing with
low clock rate and low power consumption.
It includes a Tilera TILEPro64 processor,

providing Linux programming environment
and optimized dataplane processing library.
Figure 9 shows the high-level architecture
of Tilera TILEPro64. The processor has 64
full-meshed processing tiles. The L2 cache
in all processing cores can be configured to
be accessed from other processing cores in
various forms. Thus, all L2 caches can form a
distributed L3 cache, which is able to reduce
the access latency of main memory. All 64
cores are interconnected by six inter-tile on-
chip networks, and three of them are software
programmable for low-latency communication
among processing cores. It also has four on-
chip memory controllers that can address up
to 16GB shared memory. All controllers can
be configured for independent access or be
striped for system controlled load balance in
memory intensive scenarios. Two 10Gbps
XAUIs are attached as network IO interfaces.

5.2 SC-Tree / SC-FA optimization

In high-speed processing systems, the data
ought to be stored / loaded at alignment
address and be processed in processor word
length. According to the complexity of
different policies, SC-Tree / SC-FA are able
to limit the bits allocated for different usage
within one word. It can be observed that
each internal node has four different fields:
the cutting dimension, the bitmap index, the

Fig. 8 SC-FA of pattern matching in Fig. 5 Fig. 9 Tilera TILEPro64 architecture [12]

China Communications • August 2015155

offset index and its first child index, which are
determined by the dimension number of rules,
the number of bitmap, the number of offset
and the number of tree nodes, respectively.
Based on the statistics analysis of public
available 5-dimensional policies, these four
types of information can be stored in one 64bit
word with each field of 3bits, 12 bits, 9 bits

and 40 bits, respectively.
Parallel optimization: The structural

compression approach is deployed in data
parallelism mode. All available cores execute
the same processing logic of policy lookup,
and received packets are distributed among
these cores at flow granularity. Ideally,
the system throughput could achieve the
linear speedup along with the increment of
processing core number.

Cache optimization: The structural
compression approach can guarantee the
deterministic search speed among all policies,
but it needs two extra memory accesses to
fetch the bitmap and offset. To achieve high
system throughput, the cache scheme of
bitmaps and offsets are configured differently
from the one of tree nodes. In TILEPro64
processor, each physical memory address
could be configured with or without coherence
guarantee. In coherence manner, the data
structures could be cached in the L2 cache
of all tiles. Besides, to avoid the jitter of
processing speed, the coherence scheme could
be configured as hash-for-home, where the
coherence maintenance of one memory page is
evenly distributed among all processing tiles.
In incoherence manner, the data structures
are locally cached, which could not leverage
the cache of other tiles. For SC-Tree / SC-
FA optimization, the bitmaps and offsets are
configured in coherence manner with hash-for-
home scheme. And they are also set with high
priority to prevent cache eviction. The tree
nodes are configured in incoherence manner,
as its randomly accessed behavior is difficult
to benefit from caching.

Memory optimization: The TILEPro64
processor supports huge page. And the size of
one huge page is 16MB, against 4KB for the
one of default memory page. This optimization
could significantly reduce the TLB misses.
All data structures of SC-Tree / SC-FA
employ huge pages for storage. Besides, the
packet buffer is also configured to use huge
pages. The packet buffer is allocated on the
memory controller which is the nearest one
to the network IO interfaces, i.e., the 1st and

Table II Partition patterns in decision trees

rules total uni bmp uni off agg off
ACL_1K 2548 640 64 29
ACL_5K 9547 1671 266 136
ACL_10K 27543 2705 369 200
FW_1K 304185 703 109 49
FW_5K 1585.3K 2612 293 128
FW_10K 4818.4K 3713 499 253
IPC_1K 75931 776 71 31
IPC_5K 808348 2258 237 111
IPC_10K 2122.1K 3968 331 153

Fig. 10 Memory usage of HiCuts, HyperSplit and SC-Tree

Fig. 11 Memory access of HyperSplit and SC-Tree

China Communications • August 2015 156

2nd controllers, to reduce the transmit latency.
As the search procedure of SC-Tree / SC-FA
consumes large volume of memory bandwidth,
all controllers are configured in strip manner.
Thus, the memory accesses of data structures
are evenly scattered to achieve better balance
of the memory IO pressure.

Instruction optimization: The structural
compression approach heavily relies on the
function of counting '1' in one bitmap. In
generic software implementation, the function
counts the number in loop manner, which
needs multiple CPU cycles. The TILEPro64
processor provides multiple instructions for
bit manipulation. The pcnt instruction is
used for hardware acceleration, which could
accomplish the counting of one word in single
CPU cycle.

5.3 Performance evaluation

5.3.1 Evaluation data sets

The SC-Tree rule sets contain three types of
rules: Access Control List (ACL), Firewall
(FW) and IP Chain (IPC), generated by
ClassBench [13]. Each type of rule sets
includes the scales of 1K, 5K and 10K rules.

The SC-FA signature sets include two
regular expression sets (snort24 and snort40)
and two string sets (short8 and short120) from
Snort [14], one regular expression set (bro217)
from Bro [15] and two regular expression sets
(linux13 and linux30) from L7-filter [16].

5.3.2 SC-Tree evaluation

5.3.2.1. Partition redundancy in decision trees
The number of search space partition patterns
stored in data structures is measured to
illustrate the partition redundancy in packet
classification trees. The HiCuts algorithm
is employed to build original decision tree.
According to the requirement of structural
compression technique, 256-stride cutting
is conducted at each internal node. And the
number of rules at leaf node is set to 1, which
forbids the linear-search at leaf node. Table 2

shows the number of partition patterns stored
in HiCuts-Tree and SC-Tree. As each internal
node of HiCuts-Tree stores the partition
information, the number of partition patterns
equals to the one of internal tree nodes in
HiCuts-Tree, which is shown in total field
of Table 2. According to the complexity of
search space on different rule sets, the number
of partition patterns in HiCuts-Tree varies
in a large range. After extracting bitmaps
and offsets from internal nodes, the number
of unique bitmaps (uni bmp in Table 2) is
reduced up to 0.1% of the one of partition
patterns in HiCuts-Tree. And the number of
unique offsets (uni off in Table 2) is reduced
even more. Besides, if aggregating offsets that
share the same prefix, the number of unique
offsets (agg off in Table 2) is further reduced
by about 50%.

5.3.2.2. Memory usage and access
The SC-Tree is compared with HiCuts and

Fig. 12 Throughput on different core number

Fig. 13 Throughput on different packet size

China Communications • August 2015157

HyperSplit [17] in terms of both memory size
and memory access. HyperSplit is a typical
algorithm of rule-based space decomposition
with low memory requirement. Figure 10
shows the memory size on different policies.
In this figure, the memory usage of SC-Tree
can be reduced by up to 99% compared to the
one of HiCuts-Tree. The memory size of SC-
Tree is comparable with the one of HyperSplit
on all rule sets. Figure 11 shows the memory
access of both HyperSplit and SC-Tree. In
equal-sized space decomposition algorithms,

Table III Partition patterns in DFAs

rules total uni bmp uni/agg off uni/agg off 256
snort24 8335 1595 828/795 2352/2316
snort40 19019 4494 566/289 2173/1505
linux13 4871 225 103/79 657/578
linux30 43547 2782 944/773 3648/3185
short8 5662 44 39/38 1278/1278
short120 56280 112 246/246 5473/5473
bro217 6533 73 116/1111 2235/2229

Fig. 14 Memory usage of DFA, D2FA and SC-FA

Fig. 15 Throughput of DFA and SC-FA

i.e., HiCuts and SC-Tree in our test, the
memory access time is well guaranteed if
the fixed-stride cutting strategy is adopted.
Although SC-Tree needs multi-table lookups,
the bitmaps and offset lists are relatively small
to be stored in CPU L2 or L3 cache, which
avoids directly fetching data from DRAM
with much higher latency. On the contrary, the
memory access time of HyperSplit increases
when the policy scale or the complexity of
search space grow.

5.3.2.3. System throughput
Figure 12 and Figure 13 show the throughput
of HyperSplit, HiCuts and SC-Tree using
ACL10K policy, which are evaluated on the
Tilera TILEPro64 platform. Input packets are
generated by SmartBits. Both figures show
the worst-case throughput of these algorithms
on different core numbers and packet sizes,
respectively. In Figure 12, both 256-stride
HiCuts and SC-Tree can achieve 10Gbps line-
rate throughput for 64-byte packets using all
available tiles. However, the throughput of
HyperSplit is bounded by memory bandwidth,
as it requires twice memory access time of
SC-Tree in worst case. Figure 13 demonstrates
that both HyperSplit and 256-stride HiCuts
could achieve 10Gbps line-rate throughput
for packets whose length is above 1024 bytes,
using two processing tiles. Moreover, SC-
Tree reaches 10Gbps line-rate throughput
when classifying 1518-byte packets with the
same number of processing tiles, as it requires
multiple bitmap calculations during each
packet classification.

5.3.3 SC-FA evaluation

5.3.3.1. Partition redundancy in DFA
Similar to the measurement of partition
redundancy in decision trees, the number of
partition patterns in SC-FA is compared with
the one of states in classic DFA to illustrate
the partition redundancy in DFA based pattern
matching algorithms. In Table 3, the total
filed indicates the number of DFA states of
different signature sets. After introducing

China Communications • August 2015 158

relay states and extracting partition patterns
from all states, it is observed that the numbers
of unique bitmaps and offsets are both much
smaller than the one of DFA states. If the IDs
of first 256 DFA states are encoded in offset
arrays, the numbers of unique offsets (uni/
agg off 256 in Table 3) are mostly larger than
the ones of unique bitmaps (uni bmp in Table
3). Besides, unique offsets can hardly be
aggregated, especially for the two string sets.
The main reason of the above difference is
that in packet classification, most subspaces
have the same sub-rule sets but different unit-
space aggregation patterns. While in pattern
matching, most DFA transitions have the same
transition patterns but different next states for
the same symbol.

5.3.3.2. Memory usage
In Figure 14, SC-FA, D2FA and DFA are
compared in terms of memory usage. Two ID
encoding schemes of SC-FA are employed for
comparison. After structural compression, SC-
FA can achieve 80% compression ratio and
outperforms D2FA in most cases. Specifically,
the SC-FAs without ID encoding take less
memory usage than DFAs, except for the two
string sets from Snort. Besides, the SC-FAs
with the ID encoding of first 256 DFA states
can further reduce the memory requirement,
except for the signature sets from L7-filter.
And the D2FA fails to process the short120
signature set due to the large number of state
transition. The first exception indicates that
introducing relay states on string sets imposes
great state space overhead. The main reason
is that the multi-string DFA usually has high-
dense distinct transitions, which is quite
different from the DFA constructed form
regular expressions. The second exception is
mainly due to the DFA states of L7-filter sets
are clustered into multiple groups, and the
reduction of relay states cannot benefit from
state ID encoding.

5.3.3.3. System throughput
Figure 15 depicts the comparison of system
throughput between DFA and SC-FA on the
Tilera TILEPro64 many-core platform. All
processing tiles are employed to process
1518-byte packets. The evaluation result on

random packet payload reveals that the SC-
FA can achieve comparable processing speed
against the classic DFA. For linux13 set, SC-
FA has high system throughput, i.e., 3.4Gbps
processing speed, because the compressed
data structure is so small that could be stored
within L2 cache. Besides, the throughputs are
nearly identical on the signature sets of short8
and bro217. For other evaluation sets, the
throughputs are only degenerated about 10%
on average. If employing the state ID encoding
of SC-FA, the throughputs are still around
1Gbps. The speed gap mainly results from
the increase of unique offset lists introducing
more extra cache coherence operations among
multiple tiles.

VI. CONCLUSIONS

The rapid growth of network applications
requires network security devices to perform
high-performance lookup of complex security
policies. This paper focuses on the efficient
implementation of both packet classification
and pattern matching algorithms on many-
core network processing platforms. Based on
the decoupling of addressing and partition
information, the structural compression
approach homogenizes these two types of
search data structures. It achieves above
90% compression ratio, and also guarantees
the processing speed. Evaluation shows
the approach reaches multi-Gbps packet
inspection speed on Tilera TILEPro64 many-
core platform. To encourage the innovation in
this area, the source code of SC-Tree has been
publicly available at [18].

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers
for their detailed reviews and constructive
comments, which have helped improve the
quality of this paper.

References

[1] GUPTA P, MCKEOWN N. Classifying Packets with

Hierarchical Intelligent Cuttings [J]. IEEE Micro,

2000, 20(1): 34-41.

China Communications • August 2015159

[2] SINGH S, BABOESCU F, VARGHESE G, WANG

J. Packet Classification using Multidimensional

Cutt ing [C]// Proceedings of the 2003

Conference on Applications, Technologies,

Architectures, and Protocols for Computer

Communications (SIGCOMM '03). New York,

USA: ACM Press, 2003: 213-224.

[3] KUMAR S, DHARMAPURIKAR S, YU F, CROWLEY

P, TURNER J. Algorithms to Accelerate Multiple

Regular Expressions Matching for Deep Packet

Inspection [C]// Proceedings of the 2006

Conference on Applications, Technologies,

Architectures, and Protocols for Computer

Communications (SIGCOMM '06). New York,

USA: ACM Press, 2006: 339-350.

[4] BECCHI M, CROWLEY P. An Improved Algorithm

to Accelerate Regular Expression Evaluation

[C]// Proceedings of the 3rd ACM/IEEE

Symposium on Architecture for Networking

and Communications Systems (ANCS '07). New

York, USA: ACM Press, 2007: 145-154.

[5] Tilera Corp. TILEPro Processor Family. http://www.

tilera.com/products/processors/TILEPro_Family

[6] VAMANAN B, VOSKUILEN G, VIJAYKUMAR

T. EffiCuts: Optimizing Packet Classification for

Memory and Throughput [C]// Proceedings

of the 2010 Conference on Applications,

Technologies, Architectures, and Protocols for

Computer Communications (SIGCOMM '10).

New York, USA: ACM Press, 2010: 207-218.

[7] LIU D, HUA B, HU X, TANG X. High-performance

Packet Classification Algorithm for Many-

core and Multithreaded Network Processor

[C]// Proceedings of the 2006 International

Conference on Compilers, Architecture and

Synthesis for Embedded Systems (CASES '06).

New York, USA: ACM Press, 2006: 334-344.

[8] QI Y, WANG K, FONG J, XUE Y, LI J, JIANG W,

PRASANNA V. FEACAN: Front-End Acceleration

for Content-Aware Network Processing

[C]// Proceedings of the 33rd Annual IEEE

Internat ional Conference on Computer

Communications (INFOCOM '11). Washington

DC, USA: IEEE Press, 2011: 2114-2122.

[9] MEINERS C, PATEL J, NORIGE E, TORNG E, LIU A.

Fast Regular Expression Matching using Small

TCAMs for Network Intrusion Detection and

Prevention Systems [C]// Proceedings of the

19th USENIX conference on Security (USENIX

Security '10). Berkeley, CA , USA: USENIX

Association, 2010: 8-8.

[10] SMITH R, ESTAN C, JHA S, KONG S. Deflating the

Big Bang: Fast and Scalable Deep Packet

Inspection with Extended Finite Automata

[C]// Proceedings of the 2008 Conference

on Applications, Technologies, Architectures,

and Protocols for Computer Communications

(SIGCOMM '08). New York, USA: ACM Press,

2008: 207-218.

[11] Tilera Corp. UG305 TILEmpower Appliance

User's Guide, 2011.

[12] Ti lera Corp . UG101 T i le Processor User

Architecture Manual, 2011.

[13] ClassBench. http://www.arl.wustl.edu/classbench/

[14] Snort. http://www.snort.org/

[15] Bro. http://www.bro-ids.org/

[16] Application Layer Packet Classifier for Linux.

http://l7-filter.sourceforge.net/

[17] QI Y, XU L, YANG B, XUE Y, LI J. Packet Classifi-

cation Algorithms: From Theory to Practice

[C]// Proceedings of the 31rd Annual IEEE

Internat ional Conference on Computer

Communications (INFOCOM '09). Washington

DC, USA: IEEE Press, 2009: 648-656.

[18] SC-Tree. http://security.riit.tsinghua.edu.cn/

share/sc_tree.tar.gz

Biographies

WANG Xiang, (the corresponding author, email:
xiang-wang11@mails.tsinghua.edu.cn), received the
B.S. degree from the School of Telecommunication
Engineering, Xidian University, Xi'an, Shaanxi, China,
in 2007, and the M.S. degree from the School of
Software Engineering, University of Science and
Technology of China, Hefei, Anhui, China, in 2010.
He is working toward the Ph.D. degree at the
Department of Automation, Tsinghua University,
China. He is currently a research assistant in the
Network Security Laboratory. His research interests
include algorithmic, optimization, and performance
issues in computer networking and architectures.

QI Yaxuan, received the B.S. degree, M.S. degree and

Ph.D. degree from the Department of Automation,

Tsinghua University, China, in 2002, 2005, 2011,

respectively.

China Communications • August 2015 160

WANG Kai, received the B.S. degree from the

Department of Electronic Science and Engineering,

Nanjing University, Nanjing, Jiangsu, China, in 2009.

He is working toward the M.S. and Ph.D. degrees at

the Department of Automation, Tsinghua University,

China. He is currently a research assistant in the

Network Security Laboratory. His research interests

include network security and algorithmic, software-

defined networking.

XUE Yibo, received the B.S. and M.S. degrees

in computer science from Harbin Institute of

Technology, Heilongjiang, China, in 1989 and 1992,

respectively, and the Ph.D. degree in computer

science from the Institute of Computing Technology

of Chinese Academy of Sciences, Beijing, China, in

1995. He is a member of the IEEE and ACM, a senior

member of the China Computer Federation. His

research interests include computer network and

information security, computer architecture, and

parallel computing. He has published more than

150 papers, and is inventor of more than 40 patents.

He is currently a vice director at the Centre for

Microprocessor and SOC Technology and a professor

at the Research Institute of Information Technology,

Tsinghua University.

LI Jun, received the Ph.D. degree in Computer

Science from New Jersey Institute of Technology

(NJIT), and MS and BS degrees in Control and

Information, respectively, from Department of

Automation, Tsinghua University. He is currently

Dean of the Research Institute of Information

Technology, Tsinghua University, Beijing, China. He

is also Executive Deputy Director of the Tsinghua

National Laboratory for Information Science and

Technology, Beijing, China. Before rejoined Tsinghua

in 2003, he held executive positions at ServGate

Technologies, which he co-founded in 1999. Prior to

that, he was senior software engineer at EXAR and

TeraLogic. In between of his MS and Ph.D. studies,

he was an assistant professor then lecturer in the

Department of Automation, Tsinghua University. His

research interests include networking and network

security, pattern recognition and image processing.

