
Replication Free Rule Grouping for Packet Classification
Xiang Wang1, 2, Chang Chen1, 2 and Jun Li2, 3

1Department of Automation, Tsinghua University, China
2Research Institute of Information Technology, Tsinghua University, China

3Tsinghua National Lab for Information Science and Technology, China

{xiang-wang11, chenc09} @ mails.tsinghua.edu.cn, junl@tsinghua.edu.cn

ABSTRACT
Most recent works demonstrate that grouping methodology could
bring significant reduction of memory usage to decision-tree
packet classification algorithms, with insignificant impact on
throughput. However, these grouping techniques can hardly elim-
inate rule-replication completely. This work proposes a novel rule
grouping algorithm without any replication. At each space de-
composition step, all rules projecting on the split dimension form
the maximum number of non-overlapped ranges, which guaran-
tees the modest memory usage and grouping speed. Evaluation
shows that the proposed algorithm achieves comparable memory
size with less pre-processing time.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions – Network management, Network monitoring

General Terms
Algorithms, Design, Performance

Keywords
Packet Classification, Algorithms, Rule Replication

1. INTRODUCTION
Packet classification has been well studied over the past couple of
decades. Most decision-tree algorithms trade memory usage for
throughput, and employs replication to avoid backtracking search.
However, replication will cause critical problems in some specific
application scenarios:

 Excessive overhead in memory size of classifiers that con-
tain a number of wildcard rules: cutting the wildcard rules
usually induce considerable replication.

 Long pre-processing time: all replicated rules need to be
classified in their subspaces respectively, leading to more
internal node processing.

 Almost impossible to incrementally update the search data
structure: the system complexity rises due to indices to all
replicated rules in many sub-trees.

These shortages limit the practical usage of decision-tree algo-
rithms in resource restricted commercial products and dynamical-
ly changing network topologies, e.g. virtual switches in software-
defined networks (SDN) [1]. Two of the most advanced algo-
rithms have shown the superiority of rule set partition in the im-
provement of memory performance. EffiCuts [2] defines the sepa-
rability to categorize rules into small and large range on each
dimension. This approach faces difficulties in replication elimina-
tion in multi-tiered overlapped classifiers. Figure 1 shows a 2-
dimension classifier with 10 rules. It is obvious that rules with
multiple different ranges are difficult to be separated into two
categories without any overlap. Besides, the separation of small
and large range rules may reduce classification efficiency if the
large-range rules are not overlapped. ParaSplit [3] combines clus-
tering and intelligent optimization algorithms to reduce memory
size, but takes numerous iterations to converge.

This work investigates the overlap of classifiers, and proposes an
efficient rule grouping algorithm that guarantees replication free,
with both memory size and pre-processing time improved.

2. ALGORITHM
Since the cutting of overlapped rules will potentially cause repli-
cation, the basic idea of the replication free algorithm is to group
rules where the decision-tree building procedure does not cut any
rules1 at all space decomposition steps.

The simple and conservative method is to prohibit rule splitting
during the iterations of the entire decision-tree building procedure.
However, this method will take much time to converge. Because
many decision-tree algorithms employ heuristics of current rule
set to determine the cut dimension and cut point(s) at each step,
the exclusion of rule splitting will impact the calculation of heu-

1 except for the default rule that covers the entire search space

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08.

Figure 1. Example 2D-classifier and grouping result

Y

X

R10

R9 R5R4
R6

R7

R1R8

R2
R3

4 tiers

3 tiers

1st group

2nd group

539

ristic information and force the building procedure to restart from
the tree root.

To achieve fast pre-processing, a greedy and aggressive approach
is adopted to avoid replication proactively. The entire rule set is
initially selected to execute the following iteration, and the rules
excluded in the current iteration form the new group rule set to be
processed next. The iteration takes the following steps:

STEP-1: Building the overlap hierarchy
The overlap hierarchy of classifiers is built for each dimension.
All rules in the same tier of the specific dimension are non-
overlapped with each other, and the hierarchy is built from the
small-range rules at the top to the large-range rules at the bottom.

STEP-2: Selecting the dimension of maximum distinction
After building the overlap hierarchy, the topmost tier has the un-
divided ranges on each dimension. In order to get fast classifica-
tion speed, the dimension of maximum number of undivided
ranges with more rules is selected. During the first iteration on the
example classifier, X dimension where 6 ranges with 7 rules (R1
~ R7) are formed is firstly select.

STEP-3: Excluding the overlapped rules
The rules below the topmost tier of the selected dimension are
greedily removed from the current rule set. The exclusion does
not induce the restart of iteration, since the cut decision conducted
in the second step only involves the rules in the topmost tier.

STEP-4: Classifying rules of the same undivided range on other
dimensions
The rules that project to the same undivided range on the dimen-
sion selected above need to be classified on the other dimensions.
The procedure carries out the upper three steps, until all rules are
classified or all dimensions are examined. After cutting on X di-
mension of the example classifier, R2 and R3 which have the
same range on X dimension can be classified on Y dimension
completely. When the current iteration stops, the remaining rules
compose one group.

3. EVALUATION
Evaluations of memory size and pre-processing time are conduct-
ed on an Intel i3-2310M platform with classifiers generated by
classbench1. The rule set type covers Access Control List (ACL),
Firewall (FW) and IP Chain (IPC). The scale of these classifiers
ranges from 1K to 10K. The grouping algorithm is implemented
in Python to fast verify our idea (implying the improvement of
pre-processing time when using C implementation). HyperSplit [4]
is employed to build the decision-tree.

Table 1 compares the memory sizes of HyperSplit without group-
ing, EffiCuts with only “separable trees” grouping, ParaSplit with
100K iterations and the proposed Replication Free Grouping
(RF_GRP). Compared with HyperSplit, all grouping methods
have less memory size, with certain exceptions on simple ACL
classifiers for both EffiCuts and ParaSplit. Although ParaSplit

1 http://www.arl.wustl.edu/classbench/

achieves less memory size than EffiCuts, it exhibits the long con-
vergence time and the possibility of falling into the local optimum
on most classifiers where RF_GRP outperforms. Table 2 shows
the pre-processing time of RF_GRP, consisting of the grouping
time (RF_GRP_Group) and the data structure building time
(RF_GRP_Build). It is observed that the overall pre-processing
time is improved for most complex classifiers.

4. CONCLUSION AND FUTURE WORK
Facing with the new challenges of constrained resource and the
demands for fast update in emerging SDN applications, this work
proposed a packet classification rule grouping algorithm opti-
mized for both memory size and pre-processing time. It guaran-
tees replication free in decision-tree, and supports reconstruction
of local data structure for fast update. To alleviate the deteriora-
tion of throughput caused by the increment of memory access, a
multi-way tree variation of HyperSplit with CPU instruction ac-
celeration has been designed and under development.

5. REFERENCES
[1] J. Pettit, J. Gross, B. Pfaff, M. Casado and S. Crosby. “Virtu-

al Switching in an Era of Advanced Edges”, in Proc. of DC
CAVES, 2010.

[2] B. Vamanan, G. Voskuilen and T. Vijaykumar. “EffiCuts: Op-
timizing Packet Classification for Memory and Throughput”,
in Proc. of SIGCOMM, 2010.

[3] J. Fong, X. Wang, Y. Qi, J. Li and W. Jiang. “ParaSplit: A
Scalable Architecture on FPGA for Terabit Packet Classifi-
cation,” in Proc. of HOTI, 2012.

[4] Y. Qi, L. Xu, B. Yang, Y. Xue and J. Li. “Packet Clas-
sification Algorithms: From Theory to Practice”, in Proc. of
INFOCOM, 2009.

Table 1. Memory size (KB) comparison
Rule Set HyperSplit EffiCuts ParaSplit RF_GRP
ACL_1K 85 99 81 85
ACL_5K 437 470 428 382
ACL_10K 947 1053 995 928
FW_1K 3569 134 50 56
FW_5K 249134 937 412 404
FW_10K 1008118 2669 857 864
IPC_1K 1492 99 82 78
IPC_5K 25637 492 392 341
IPC_10K 66837 986 823 707

Table 2. Pre-processing (ms) for HyperSplit and RF
Rule Set HyperSplit RF_GRP_Group RF_GRP_Build
ACL_1K 72 1158 29
ACL_5K 586 2758 150
ACL_10K 2370 12633 773
FW_1K 1324 1239 21
FW_5K 93544 5920 287
FW_10K 271159 26286 1323
IPC_1K 503 1268 24
IPC_5K 13302 3008 153
IPC_10K 35874 7210 496

540

