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Abstract—Network operators rely on security services to protect
their IT infrastructures. Different kinds of network security poli-
cies are defined globally and distributed among multiple security
middleboxes deployed in networks. However, due to the complexity
of security policy, it is inefficient to directly employ existing path-
wise enforcement approaches. This paper models the enforcement
of network security policy as the set-covering problem, and designs
a computational-geometry-based policy space analysis (PSA) tool
for set operations of security policy. Leveraging the PSA, this paper
first investigates the topological characteristics of different types of
policies. This heuristic information reveals intrinsic complexities of
security policy and guides the design of our enforcement approach.
Then the paper proposes a scope-wise policy enforcement algo-
rithm that selects a modest number of enforcement network nodes
to deploy multiple policy subsets in a greedy manner. This ap-
proach can be employed on network topologies of both datacenter
and service provider. The efficiencies of the PSA tool and the en-
forcement algorithm are also evaluated. Comparedwith the header
space analysis, the PSA achieves much better memory and time
efficiencies on set operations of security policy. Additionally, the
proposed enforcement algorithm is able to guarantee network se-
curity within a reasonable number of enforcement network nodes,
without introducing many extra rules.
Index Terms—Middlebox policy enforcement, policy space anal-

ysis, software-defined network.

I. INTRODUCTION

A. Background and Motivation

N ETWORK security middleboxes, such as firewall (FW),
intrusion-detection system (IDS) and anti-virus gateway

(AVG), are widely deployed in modern networks to deliver se-
curity services. However, due to the management complexity
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Fig. 1. Network security policy enforcement in software-defined network.

and the policy interaction among multiple devices, network op-
erators face critical challenges when deploying or upgrading
these middleboxes. On one hand, the number of middleboxes
is comparable to the number of switches and routers in prac-
tical deployments [1], and middleboxes of the same type may be
even from different vendors. These aspects induce high capital
and operating expenses. On the other hand, security policies de-
ployed on a single device or multiple devices overlap each other
in most cases. The manual and local configuration of these poli-
cies often introduces intra-conflicts [2] and inter-conflicts [3]
of rules, which makes policies unmanageable, increases system
vulnerability, and deteriorates device performance.
To tackle these challenges, network function virtualiza-

tion (NFV) [4], combined with software-defined networking
(SDN) [5], provides a promising solution. The L4–L7 secu-
rity middleboxes are implemented on commodity physical
servers [6], and can be activated at arbitrary network nodes.
They cooperate with L2–L3 programmable switches [7] to
deliver full-stack network services with flexibility and agility.
As most functions of SDN and NFV devices are largely or-

thogonal [8], these two types of devices are usually managed by
different groups of operators. Meanwhile, the definition and en-
forcement of security policies must take routing decisions into
consideration. Using Fig. 1 as an example, networking devices
and security middleboxes are separately managed by their con-
trollers. The security controller takes the routing policy deter-
mined by the network controller and the global security policy
made by operators as its input, and decides policy enforcement
points in the network. It must ensure the enforced security rules
accommodate routing policy. Then, the relevant middleboxes
are initiated to process security policies [9]. In this paper, the
routing policy is deployed on switches and works at L2–L3.
It specifies the traversing network paths for traffic at packet
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level via coarse-grained rules, such as rules defined on desti-
nation IP. The security policy is installed on middleboxes and
works at L3–L7. It specifies the security inspection for traffic
at flow level via fine-grained rules, such as rules defined on
classic 5-tuple, and does not involve traffic routing. Although
OpenFlow-based SDN switches can match L4 packet header,
most security processingmust inspect packet payload in runtime
to maintain application semantics, which limits the usage of
these switches in the enforcement of security policies [9]. In this
paper, a security policy includes multiple rules, and each rule
consists of flow pattern and security action. The flow pattern in-
dicates the values of packet-header fields, and the action may in-
clude permit/deny for access-control usage, different signature
sets for deep-inspection scenarios, or service chains of multiple
inspections. Packet-payload patterns of rules in deep-inspection
systems [10] are separated from packet-header patterns and are
viewed as the actions of security policies. Security policies are
executed by the middlebox policy enforcer, which builds ses-
sions at flow level and takes the responsibility for stateful in-
spections and load balancing among multiple deep-inspection
engines [11], [12].
In this application scenario, it is an urgent requirement for se-

curity controllers to automate the security policy enforcement
in large-scale networks, to agilely deliver on-demand security
service in dynamic environment, i.e., cloud datacenter. Like the
network controller exposing network service APIs to cloud or-
chestration tools, security services are also coordinated with
other cloud services via APIs in a programming manner. Both
the selection of policy enforcement points and the computation
of correct security rules are essential processing, which plays a
key role in the security controller.

B. Problem Statement
This paper addresses the problem of policy enforcement on

middleboxes for the first time. And the solution is to find a
set of enforcement network nodes for middleboxes to perform
on-datapath inspections with globally defined security policies.
Thus, the selected enforcement nodes should be first located on
paths that are involved with security policies. This avoids the
inefficient utilization of network bandwidth, which is produced
by arbitrary traffic steering. Additionally, the solution needs to
meet the following requirements:
Correctness: The algorithm should make sure that every rule

in the security policy is processed at a certain network node,
which guarantees the completeness of policy enforcement. Ad-
ditionally, the security rules usually overlap each other, and the
distributed inspection of multiple network nodes may cause rule
conflicts. For instance, rules at different network nodes have dif-
ferent actions for the same traffic, while certain rules are en-
forced multiple times in the network. As a consequence, the en-
forcement algorithm needs to ensure the semantics of the global
security policy.
Efficiency: The large number of different middleboxes in-

creases the management complexity. Besides, more deployed
devices require more wired connections, and recent studies on
middlebox failures have indicated connectivity errors dominate
failures across all middleboxes [13]. As a consequence, the al-
gorithm should limit the number of policy enforcement points

to a reasonable value. Moreover, it usually induces the infla-
tion of rule number when dividing the global security policy
into multiple subsets for distributed processing. More generated
rules take more resources to perform rule lookup at enforcement
points [14]. Therefore, the enforcement algorithm should mini-
mize the overhead of extra rules. Furthermore, the design should
take the running efficiency of algorithm into account to achieve
low resource usage and high processing speed.

C. Proposed Approach

Considering these requirements, the enforcement problem of
security policy on middleboxes is modeled as the set-covering
problem (SCP) in this paper, which is a classic problem in com-
binatorial mathematics [15]. The SCP is defined as follows:
Given a set of elements and a collection of subsets of
, find the smallest collection of whose union is . To

model the policy enforcement problem, each rule in the -field
security policy is regarded as a hyper-rectangle in the -di-
mension space. The space that the rule covers is called the
rule space and denoted as . The space that a security policy
covers is called the policy space and denoted as . The space
that the traffic covers at policy enforcement point is called the
flow space and denoted as . For problem modeling, is
mapped to , and of all network nodes is mapped to . The
algorithm should guarantee that the union of all selected net-
work nodes covers the global , while minimizing the number
of policy enforcement points and maintaining the semantics of
security policy. Let

, the problem can be for-
mally defined as follows:

(1)

(2)

(3)
(4)

Equations (2) and (3) guarantee the completeness of policy
enforcement and the non-conflict of security rules, respectively.

denotes the that the rule actually takes at policy
enforcement point . In this model, there are two key points to
be solved. The first one is the efficient expression and tool of
flow/policy space for set operations, and the second one is the
enforcement algorithm of low complexity for practical usage.
This paper first introduces the policy space analysis (PSA)

tool. As many security rules have arbitrary range or wildcard
values in multiple fields [16], each rule is expressed as a range-
based hyper-rectangle, and the security policy is composed of
multiple non-overlapped hyper-rectangles. This expression sig-
nificantly reduces the computational complexity of set oper-
ations among multiple hyper-rectangles. Leveraging the PSA
tool, this paper studies the topology/hierarchy of typical secu-
rity policies, and the topological distribution of rules is statisti-
cally analyzed. The analysis result reveals the scope characteris-
tics of security policies and illustrates the rationality of problem
modeling.
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Subsequently, this paper employs the greedy criterion to de-
sign the enforcement algorithm for practical usage. The proce-
dure iteratively selects enforcement points until the union
of all selected points covers the global . Two heuristics can
be adopted for point selection: the first one is flow-oriented and
the second one is policy-oriented. The former selects the en-
forcement point that has the maximum flow space in the current
iteration, while the latter chooses the one that intersects with
more policy rules. We argue that both heuristics are reasonable
and should be employed according to the applications in real de-
ployment. Different rule densities over network flow space will
lead to diverse resource and running efficiencies.

D. Key Contributions

Formulation of Middlebox Policy Enforcement: For the first
time to our knowledge, this paper addresses the problem of mid-
dlebox policy enforcement. It also models the problem as the
classic SCP, which lays a theoretical foundation for the final
solution.
Policy Space Analysis Tool: Borrowing the idea of spatial

indices in the database territory, the PSA tool is built on the
basis of range-represented hyper-rectangles that are indexed by
R-tree [17]. Two classes (i.e., HyperRect and PolicySpace) are
abstracted. Both classes support three boolean operations (i.e.,
is equal, is subset, and is intersected) and three set operations
(i.e., intersect, subtract, and union). Most of these operations
are implemented with the guidance of the concept of clipping
region management from the computer graphics field.
Topological Analysis of Typical Policies: Three real poli-

cies [18] are analyzed by the PSA tool. For the first time to our
knowledge, this paper illustrates the difference of these policies
on topological properties, especially the enforcement point and
the protected network topology, even if all this information is
concealed for confidentiality [16]. Moreover, this paper shows
the topological distribution of security rules. These figures
depict the complexity of security policies enforced by switches
and middleboxes and support the rationality of the proposed
problem modeling.
Scope-wise Policy Enforcement Algorithm: Different from

path-wise strategy where algorithms run over the object of net-
work path, this paper designs algorithm that is executed over
the object of network node. A certain node can involve mul-
tiple paths, accumulating a large scope of flow space, which
helps with resource sharing. Based on this fact, the paper imple-
ments a greedy algorithm to guarantee both the efficiency and
the correctness of policy enforcement. The experimental results
on both datacenter and service-provider topologies show that
the proposed algorithm can achieve the 93% reduction of en-
forced nodes, compared with path-wise algorithms.

II. RELATED WORK

Existing works about security policy enforcement can be gen-
erally classified into two categories: the one is switch policy en-
forcement, and the other is middlebox policy enforcement. This
section introduces these two types of work with respect to the
processing tool and algorithm.

A. Header Space Analysis
The header space analysis (HSA) tool is proposed to stati-

cally debug network configurations [19]. With the HSA expres-
sion, multiple packet-header fields are abstracted to an indis-
criminate bit-sequence. Each sequence can be regarded as an
-dimension orthogonal space, where is the bit number of

the related header fields. Each packet is equivalent to a point
in -dimension space, and each rule represents a hyper-rec-
tangle. Four set operations (i.e., union, intersection, comple-
mentation, and difference) are provided for space processing.
In addition, HSA also models networking devices with mul-
tiple transfer functions, whose inversed functions can also be
calculated for expressing reversed processing. The HSA takes
networking research a significant step beyond engineering via
mathematical modeling. However, there are three design points
that impede more efficient manipulations for security policies.
The first point is the space representation in indiscriminate bits,
which increases the computational complexity to a large extent.
For example, to analyze the classic 5-tuple security policy, the
number of HSA computing dimensions is 104, compared to 5 for
the original policy. And this number becomes even larger along
with the increments of field length in HSA expression. Addition-
ally, security policies usually contain arbitrary range values, and
the bit representation will encounter the inflation of range-prefix
translation. The second point is the lack of non-overlapping
guarantee for multiple bit-sequences in the same header space,
and the results of most set operations of header space are deliv-
ered in an overlapping manner. For example, a 4-bit wildcard
header space (xxxx) minus a 4-bit point (1010) is (xxx1) union
(xx0x) union (x1xx) union (0xxx). This overlapping of header
spaces leads to more computing tasks when doing set opera-
tions, and some sub-spaces may be duplicated, which consumes
more memory. Besides these upper two points, the HSA imple-
mentation does not contain an efficient indexing data structure.
It employs the linear array to store bit-sequences, which makes
the quick bypass of irrelevant operands of set operations almost
impossible.

B. Policy Enforcement on Switches
The existing work of policy enforcement on switches falls

into two groups: policy enforcement with changing routing,
such as DIFANE [20] and vCRIB [21], and policy enforce-
ment while respecting routing, such as, Palette [22] and
One-Big-Switch [23]. In [23], the authors compare their differ-
ences in detail. The problem that this paper addresses is similar
to the second group, and we argue that the decoupling of routing
and security can bring more flexibility to system design [9].
Both Palette and One-Big-Switch employ path-wise strategies,
where all network paths are first calculated from the routing de-
cision. Palette makes packets of a certain path traverse the entire
original policy when flowing through networks, and all paths
comply with this design principle independently. However,
not all rules in security policy are related to a certain path in
real deployment, which hinders Palette from achieving optimal
results. One-Big-Switch outperforms in this aspect, and makes
advances in switch resource utilization when the shortest path
length of network is small. However, it is difficult to directly
employ these methods for middlebox policy enforcement. They
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aim to distribute the global policy evenly on all switches, which
helps to take advantage of the ternary content addressable
memory (TCAM) resource of network core switches. Thus,
their motivations are mostly opposite to ours. Another reason is
middlebox security policies usually contain a large number of
wildcard rules. The path-wise enforcement strategy is prone to
replicate these rules on multiple logically isolated traffic paths,
which hampers the optimization of resource sharing.

C. Policy Optimization and Abnormality Detection
Existing researches about the security policy enforced by

middleboxes are mostly related to firewalls. These studies fall
into two main categories: policy optimization [24], [25] and
policy abnormality detection [2], [3]. Gouda and Liu propose
the firewall decision diagram (FDD) to optimize the firewall
policy, which is able to guarantee the consistency, compactness,
and completeness of policies. The FDD can also be employed
to compare different firewall policies in order to ensure their
explicitness. Al-Shaer et al. propose the policy tree to detect
abnormalities (e.g., shadowing, spuriousness, redundancy, and
correlation) in both standalone and distributed firewall policies.
Overall, these studies implement different data structures to
efficiently solve their specific problems. We argue that it is
necessary to introduce a certain kind of suitable mathematical
tool, which can lay a foundation for security policy analysis.

III. POLICY SPACE ANALYSIS

Policy space analysis is proposed to facilitate analyzing se-
curity policies. It is based on range-depicted hyper-rectangles
of multiple dimensions. The PSA tool employs successful sto-
ries in both database and computer graphics territories (i.e., the
spatial index and the clipping region management) to efficiently
implement boolean and set operations of spaces. Leveraging the
PSA tool, this paper explores the topological information of se-
curity policies. To the best of our knowledge, it is the first dis-
cussion of security policy in terms of topology.

A. Expression and Tool
1) HyperRect and PolicySpace: In general, each -field

rule is viewed as a -dimension hyper-rectangle, which is ab-
stracted to the HyperRect class. To build a generic analysis tool
for security policies, the specific meanings of packet-header
fields are omitted. Each dimension of HyperRect is an arbitrary
range, which is qualified by begin and end points. The lower
bounds of all dimension ranges are 0, and their upper bounds
are not restricted. The hyper-rectangle represents both the
location and the size of its related rule in the global space. The
rationality of range design is derived from the following facts.
A number of rules have arbitrary range values in certain fields,
especially the transport-layer ports. In addition, some practical
security policies may only protect a small range of hosts/servers
deployed in a consecutive address prefix. This means that range
values may also exist in network-address fields. To reduce the
computational complexity, neither the prefix representation nor
the independent bit-sequence is employed.
The PolicySpace class is a set of multiple HyperRects. This

abstraction is introduced to support operations among multiple
hyper-rectangles or complex rules that may have multiple range

values in every field [26]. For example, if a 2-field rule is defined
in general ternary string where one wildcard exists at the cen-
tral place of expression on both fields, the cross-product decom-
poses the rule into four hyper-rectangles (exactly four points)
from the geometric view. Thus, the PolicySpace class can be
leveraged for expression. Hyper-rectangles in a certain policy
space do not overlap each other. This property is maintained
to eliminate the influence of overlapping and rule priority. We
argue that these two issues can be tackled with the boolean
or set operations introduced in the following. To fast exclude
unrelated operand hyper-rectangles, the PSA tool requires an
efficient multi-dimensional spatial index data structure as the
backend of PolicySpace class. Both the K-D tree [27] and the
R-tree are competent for searching in multi-dimensional space.
The variant of the former [14] has been attractive in packet clas-
sification, for its faster searching speed. However, it is difficult
for K-D trees to perform balanced incremental updates, since
the data structure needs to be totally rebuilt when adding or re-
moving hyper-rectangles to keep the balance. Thus, the PSA
employs the R-tree, as it can rebalance itself to adapt to the vari-
ations in data density.
2) Boolean and Set Operations: Both the HyperRect and

the PolicySpace support three meta boolean operations (i.e.,
is equal, is subset, and is intersected) and three meta set op-
erations (i.e., intersect, subtract, and union). Other space ma-
nipulations can be implemented based on the combinations of
these operations. The foundation of these meta operations is the
clipping approach in the computer graphics field. This approach
derives from the computational geometry but is simpler, as all
hyper-rectangles are axis-aligned.
HyperRect: Most operations are intuitive. We only briefly

comment on the operations of subtract and union. The sub-
tract operation reveals the rule priority, which contributes to
the rule de-overlapping. It makes sense to perform the subtrac-
tion of high-priority rules from low-priority rules, where the
result is a policy space that low-priority rules real take effect.
And the empty result suggests that low-priority rules are com-
pletely shadowed by high-priority rules. The subtract operation
inspects all dimensions sequentially, and checks whether the
current dimension needs split. Different inspecting sequences
produce diverse operation results. As the design experience of
packet classification algorithms indicates, policies usually show
diverse characteristics on heuristic metrics. To take this fact into
consideration, the implementation of all HyperRect operations,
including the subtraction, supports user-defined sequence via
input parameters. Fig. 2 compares different results of the sub-
tract operation, where subtracts both and . The in-
specting sequence of the top-right scenario is , and it gen-
erates seven hyper-rectangles. The inspecting sequence of the
bottom-right scenario is , and it generates five hyper-rect-
angles. The union operation is usually employed for processing
multiple overlapped rules of the same priority. It is implemented
by leveraging a similar idea as the subtract operation. It first sub-
tracts one hyper-rectangle from the other and then appends the
subtracted hyper-rectangle to the result. Similarly, the exchange
of operands usually produces different results. Fig. 3 illustrates
two possible union results of two 2-dimensional hyper-rectan-
gles. The top-right scenario includes unions , and the
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Fig. 2. Subtract operation among three 2-dimensional rectangles.

Fig. 3. Union operation between two 2-dimensional rectangles.

bottom-right scenario includes the opposite ones. As the union
operation is sequence-irrelevant, the sequence that generates the
minimum number of result hyper-rectangles is chosen.
PolicySpace: The PolicySpace instance employs an R-tree

to fast index the hyper-rectangles that are intersected with the
operand ones. Based on the indexing result, most operations of
the PolicySpace are implemented as the iteration of the same
ones of the HyperRect. Among these meta operations, neither
is subset nor is equal can be implemented directly based on
the same operations of the HyperRect. Different PolicySpace
instances that cover the same area may contain diverse sets of
multiple hyper-rectangles of different locations and sizes. The
results shown in both Figs. 2 and 3 display the cases. Since
the is equal operation is equivalent to two is subset operations,
only the latter operation needs to be implemented. And there are
two approaches. The first method is to directly employ the sub-
tract operation of the PolicySpace class, and the empty subtrac-
tion result means the minuend policy space is equal or contained
in the subtrahend one. The second method is to compare the
volumes of the minuend policy space and the policy space that
intersects with the subtrahend one. If both volumes are equal,
this means that the minuend policy space is equal or contained
in the subtrahend one. Since hyper-rectangles in a certain policy
space are guaranteed not to be overlapped, it is easy to prove the
correctness of this approach. This approach is much faster than
the first one and thus is employed in real implementations.

B. Topological Analysis of Policy
Before designing the enforcement algorithm of a network se-

curity policy, it is suggested to first inspect different types of se-
curity policies from the perspective of topology. Different from
the analysis of policy patterns in existing researches, the hierar-
chies of different security policy types are explored in this sec-
tion, which can be employed to infer not only the topologies

Fig. 4. Length-first IP segement layering algorithm.

Fig. 5. ACL1 topology and rule distribution.

of protected networks but also the enforcement network nodes.
Additionally, the rule distribution in policy space is depicted,
taking a further step to reveal the topological characteristics of
security policies.
1) Policy Topology: The policy topology is drawn to explic-

itly figure out what network addresses the policy refers to and
what traffic directions the policy inspects. All addresses that the
security policy refers to are arranged in tree form. The procedure
is the same as the layering step of the replication free grouping
(RFG) algorithm [28]. Contrary to the RFG, the building pro-
cedure of policy topologies places large-range IP segments first
and then small-range ones. None of the IP segments in the same
layer overlap each other. Fig. 4 shows the length-first IP seg-
ment layering algorithm, which is optimized for IPv4 addresses.
The unique difference between the layering step of the RFG and
the building procedure of policy topologies is the value of the
reverse input parameter, which is false for RFG and true in this
case. The metric value is composed of the length and the begin
point of segments. The length value taking most significant bits
reflects its high priority during the layering. Each iteration of the
while loop generates one layer. The left parts of Figs. 5–7 de-
pict the topology of ACL1, FW1, and IPC1, respectively. These
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Fig. 6. FW1 topology and rule distribution.

Fig. 7. IPC1 topology and rule distribution.

policies can be openly accessed at [18], which are packet clas-
sifiers in practical deployments. A node represents one IP seg-
ment referred by the policy. An edge will be added when IP
segments in adjacent layers overlap. Nodes of only source IP
are blue, nodes of only destination IP are green, and nodes that
exist in both sides are red. The node size reflects the size of IP
segments. To clearly show the referred addresses, only the nodes
of top-eight degrees are labeled with their IP segments.
ACL1: In Fig. 5, the policy topology has a great number of

small nodes. According to [16], the prefix lengths of these IP ad-
dresses are mostly 32. It can also be observed that these nodes
are grouped into three clusters. The centers of the top-two dense
clusters are 192.151.10.0/23 and 15.0.0.0/8. This suggests that
this security policy is defined to focus on traffic inspection be-
tween these two IP segments, which will be proved in the fol-
lowing. Additionally, the directions of rules are nearly the same.
The uniqueness of rule source IPs and the multiplicity of rule
destination IPs imply that this security policy is probably en-
forced at the access point (router [16]) of 192.151.10.0/23.
FW1: In Fig. 6, the policy topology has fewer small nodes

than in the ACL1 policy topology. According to [16], FW1 has
a large portion of partially specified rules, and the prefix lengths
of the specified fields are mostly 32. These nodes are around
the topology center (i.e., the node of 204.152.184.0/21), but not
the topology root (i.e., the node of 0.0.0.0/0). In addition, most
labeled nodes are children of the center node, and the direc-
tions of rules are quite different from each other. This hierarchy
implies that this security policy is defined to inspect traffic of

hosts/subnets in 204.152.184.0/21. The uniqueness of the ad-
dress cluster suggests that this security policy is possibly de-
ployed at the gateway (firewall [16]) of 204.152.184.0/21.
IPC1: In Fig. 7, the topology root node has a great number of

non-overlapped IP segments and is located at the center of the
policy topology. These IP segments have different sizes, and
most of them have no descendants. According to [16], rules of
two exact IP addresses, rules of two prefix IP addresses, as well
as rules of one exact and one prefix IP addresses account for a
large proportion. Three labeled nodes are from 222.111.0.0/16
IP segment, and other labeled nodes are of discrete IP segments.
The node color indicates that the directions of rules are mostly
destined for 222.111.0.0/16. The diversity of IP segments and
the distinct direction to a large specific IP segment suggests that
this security policy is probably deployed near the core network,
which may be an advanced gateway (firewall [16]) of multiple
network interface cards.
2) Policy Topological Statistics: The policy topology de-

livers a sketchy global view for network operators to grasp at
a glance. To further inspect the composition of security poli-
cies, it is necessary to analyze the topological distribution of
rules in a statistical manner. The right parts of Figs. 5–7 show
the information from ACL1, FW1, and IPC1, respectively. To
clearly illustrate the result, the distribution of partially specified
rules is shown separately. The rules of wildcards in both source
IP and destination IP fields are omitted, as the number of them
is extremely small. The axis represents source IP, and the
axis represents destination IP. The axis is the rule number.
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The value ranges of both and axes are same, and the units
correspond to the child nodes of the topology root. In the distri-
bution figure of the partially specified rules, the rule number is
duplicated on all IP segments of the wildcard IP axis, to clarify
the policy space that real rules cover. And the maximum rule
number is selected when a certain space is covered by both row
and column.
ACL1: There are 753 rules in this policy. The number of

both wildcard rules and partially specified rules is 5, which
only contributes 0.66% and is not shown in the figure. Except
for these rules, all left rules fall into the source IP area re-
lated to 128.0.0.0/1 and 192.151.10.0/23 specifically, according
to its policy topology. As speculated before, 579 rules are be-
tween 192.151.10.0/23 and 15.0.0.0/8 IP segments, which con-
tribute 76.9%. The second contribution includes rules within the
128.0.0.0/1 IP segment. From its policy topology, these are rules
between 192.151.10.0/23 and its adjacent IP segments.
FW1: There are 270 rules in this policy. The number of both

wildcard rules is 17, which contributes 6.29%. And the number
of partially specified rules is 213, which contributes 78.9%. Ex-
cept these two types, the left rules are specified rules, whose
contribution is 14.8%. Most rules fall into the cross-space of the
204.152.184.0/21 IP segment. As the large portion of partially
specified rules indicates, this policy inspects both incoming and
outgoing traffic of the gateway. And a few rules (i.e., 15 rules
that contribute 6%) examine traffic within the internal network.
IPC1: There are 1550 rules in this policy. Because there are

numerous discrete small IP segments around the topology root,
these segments are first aggregated in accordance with the most
significant byte of the IP address, which generates 17 larger IP
segments. The number of both wildcard rules is only 5, which
contributes 0.32%, and the number of specified rules is 1341,
which contributes 86.5%. The remaining are partially speci-
fied rules, with a contribution of 13.2%. About 48.8% of rules
(i.e., 756 rules) fall into the cross-space of the 222.0.0.0/8 IP
segment.
From the above analysis of these three open real policies, it

can be observed that security policies deployed on middleboxes
are generally more complex than those deployed on switches or
routers in the following aspects: 1) the size of the involved policy
space and 2) the overlap degree of security rules. We argue that
these differences mainly result from the different application
scenarios in which these two types of policies are deployed. And
it is the purpose and consideration made by policymanagers that
leads to these differences:
Since switches and routers are mainly employed for the

large-volume forwarding and routing of traffic, these devices
are widely deployed at both network core and network edge.
From the view of entire network, the design of network policy
should be fine-grained to precisely designate imposed objects,
in which case their policy spaces are relatively small, to avoid
impacting device primary functions. Additionally, the precision
produces less rule overlapping, which is also advantageous for
precise control in non-security application scenarios, such as
quality of service (QoS).
On the contrary, security middleboxes, such as firewalls, are

employed to protect servers or hosts from attack. These devices
are usually installed at the choke point of subnets. Form the

view of standalone network node, only a small number of flow
patterns are legitimate and allowed by policies. Thus, operators
must formulate policies of many wildcard rules, to effectively
meet complicated security requirements. Furthermore, the flow
pattern in security rules also reflects the relationship of people
in organization to a certain extent, which is of large overlap-
ping degree substantially. It makes security policies more com-
plex than network policies in essence. Moreover, many secu-
rity middleboxes integrate multiple security functions to per-
form chain-based security processing, which brings even more
complexities to the definition of security policy.

IV. NETWORK SECURITY POLICY ENFORCEMENT

For the scope characteristic depicted by the above analysis,
the path-wise policy enforcement algorithms will substantially
inhibit the sharing of policy lookup at certain nodes, in which
case a large number of wildcard rules may be replicated. Thus,
this paper models the problem as the SCP. After implementing
the efficient tool for set operations of policy space, this section
introduces the enforcement algorithm based on the PSA.

A. Set-Covering Algorithms
The SCP is a classic combinatorial optimization problem. The

decision version of SCP is an NP-complete problem, while the
optimization version is an NP-hard one. Many algorithms have
been proposed, but not all of them are efficient for practical
usage. The existing effective algorithms can be categorized into
two groups [15]: the exact approaches and the heuristic ones.
The former group solves the problem via linear programming,
where the constraint is defined on the element of the global
set . In the policy enforcement scenario, the elements are all
exact points in the global policy space . Obviously, the el-
ement number of this type is too large to be efficiently calcu-
lated in practical usage. Even though the elements can be ex-
pressed as non-overlapped hyper-rectangles in policy spaces,
the orders of magnitudes are still above 6 for small-scale se-
curity policies [14]. The latter group solves the problem in a
greedy manner, which is selected as the design basis of the pro-
posed middlebox policy enforcement (MBPE) algorithm. And
there are two main differences between the greedy SCP algo-
rithm and the MBPE algorithm: the first one is that the MBPE
should tackle the conflict/overlapping of rules during the pro-
cessing to guarantee the correctness of original policy seman-
tics, and the second one is that the MBPE must work on aggre-
gated elements (i.e., hyper-rectangles) to ensure the feasibility
and efficiency of algorithms.

B. Policy Enforcement Algorithm
The greedy approach to the security policy enforcement runs

iteratively. Each iteration of the procedure selects one network
node whose flow space can cover most of the remaining policy
space. The procedure does not stop until the space of the global
security policy is fully covered. Fig. 8 shows the main frame
of the algorithm. The procedure takes the rule-space list of the
global security policy (sr list), all network nodes (nodes), and
their corresponding flow-space list (sf list) as its inputs. The
top-six lines initialize the remaining flow space (sf rem) and the
remaining policy space (sp rem) via the unions of all elements
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Fig. 8. Middlebox policy enforcement algorithm.

in their original lists, respectively. Then the remaining policy
space is intersected with the remaining flow space to exclude
the irrelevant policy space. At the following steps, the proce-
dure decides the enforcement network node iteratively, ac-
cording to different heuristics introduced in the following. The
subtraction between the original flow space of the selected node
(n sf) and the remaining flow space is the spaces that should be
bypassed (n bypass). It is a necessity to calculate these bypassed
spaces, as the semantics of security policy must be guaranteed.
n bypass means these flow spaces have been already processed
at previous selected nodes, i.e., the relevant traffic will be in-
spected at these nodes and there is no need to examine the traffic
any more. The original rules that should be processed at the
currently selected node (n enforce) are the ones that intersect
with the remaining flow space of the currently selected node
(n sf rem). Thus, the final rules that a certain network node pro-
cesses are composed of the n bypasswith high priorities and the
n enforce with low priorities. Additionally, these rules can be
further optimized by FDD [24]. After calculating the real en-
forced rules, both the remaining flow space and the remaining
policy space are subtracted with the n sf rem. The selected net-
work node is removed from the nodes, and the procedure con-
tinues to the next iteration. Taking the HyperRect operations as
the criterion, the most complex processing of the proposed algo-
rithm is at line13–line15 in Fig. 8. In the worst case, assuming
the number of network nodes is , the number of HyperRect in-
stances in n sf rem is , which means that the full mesh
of point-to-point traffic traverses through the network. There-
fore, the time complexity of line13–line15 is , where is
the rule number of security policies. Since the outermost while
loop of the MBPE algorithm procedure may examine all net-
work nodes at worst, the theoretical time complexity is .
At the step of node selection, there are two types of metrics

that can be employed for making decisions: the number of inter-
sected rules and the number of hyper-rectangles in flow spaces.
Accordingly, there are two heuristics to select network nodes:

one is to select the node whose intersects with the maximum
number of policy rules, the other is to select the node whose

has the maximum number of hyper-rectangles. Since dif-
ferent security policies may have very diverse topological char-
acteristics, both heuristics have their rationalities. The former
heuristic helps the procedure to efficiently locate the network
nodes that probably cover a large proportion of the remaining
policy space, especially on fine-grained policies. But the poli-
cies that have many wildcards may lead the flow spaces of most
network nodes to intersect with these wildcard rules, which sig-
nificantly reduce the algorithm efficiency. The latter heuristic
can relieve the degradation of algorithm efficiency for wildcard
policies. It helps the procedure to fast converge to the terminal
condition, where the flow space plays a pivotal role. As a conse-
quence, we argue that the choice of heuristics depends on policy
characteristics in real deployment.

C. Enforcement Update
The enforced policies may require updating in the following

cases: with a change of the flow space and with a change of the
policy space. The former case may happen when virtual hosts
migrate or link statuses change; the latter case is probably due
to policy reconfigurations conducted by network operators.
With a change in the flow space, the updated network nodes

and their flow spaces can be calculated by NetPlumber [29] in
real time. The update procedure takes this information as its
input and recalculates both the bypassed flow space and the in-
tersected rules of the updated network nodes in the selected se-
quence of the first time. And the newly involved enforcement
nodes are temporarily appended to the sequence for the current
update. The main reason of maintaining the original selected
sequence is the following observation: On one hand, the fore-
most selected nodes are mostly core network nodes, as they usu-
ally intersect with the majority of the global security policy. On
the other hand, most changes in the flow space happen at net-
work accesses without modifying the network backbone. There-
fore, the original selected sequence needs to be held to avoid the
degradation of enforcement efficiency.
With a change in the policy space, the network operator may

add/update/delete policy rules. To efficiently locate the network
nodes that are deployed with the updating or deleting rules, a
mapping data structure between the rule and the set of its en-
forced nodes is maintained. When updating or deleting an ex-
isting rule, the update procedure can directly conduct the same
enforcement executions on involved nodes in the selected se-
quence of the first time. If a new rule needs to be added in the
global policy, the procedure checks the overlap between this rule
and the flow spaces of enforced network nodes in the original
selected sequence. And the rule is enforced at its first intersected
network node. If no node is found, the enforcement executions
continue to be performed on un-selected nodes.

V. EVALUATION
In this section, the performance of the PSA tool and the pro-

posed policy enforcement algorithm is evaluated. First, the ex-
perimental environment is described. Then both memory and
time efficiencies of the PSA tool are evaluated. Finally, the ef-
fectiveness of the proposed algorithm with different heuristics
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of node selection is compared on both service-provider network
and datacenter topologies.

A. Experimental Environment
Both the PSA tool and the policy enforcement algorithm are

implemented in Python. The experiments are conducted on a
single Intel i7-4770 3.4 GHz CPU workstation with 32 GB
DDRIII memory and Fedora19 64-bit operating system. The
service-provider network topologies are from [30], and the
datacenter topologies are generated as 3-tier tree topologies.
The HSA tool employed for evaluation is implemented in the
C language. In addition to the three real policies employed in
the above analysis, other policies for evaluation are generated
by ClassBench [16] using its default arguments. The policies
are attached to network topologies by employing a similar
manner in [23]: First, the Algorithm 1 with the reverse value
of false is executed to get non-overlapped IP segments of small
range. Then, compared with the number of network access
nodes, these IP segments may be aggregated if the number of
them exceeds the one of access nodes. Otherwise, large-range
IP segments are disassembled into multiple small-range ones.
Last, these segments are attached to network access nodes,
which mean the traffic originated from these nodes is labeled
with IP in the corresponding segment as its source address.
Moreover, full mesh traffic among all access nodes is assumed
to traverse through networks.

B. Policy Space Analysis
An application is designed to evaluate the memory and time

efficiency of the PSA, and the comparison between PSA and
HSA is also conducted using this application. The application
is to calculate the space that each rule in real policies takes.
Due to the rule overlapping in security policies, the low-pri-
ority rules are likely to be partially shadowed by high-priority
ones. The spaces that the low-priority rule real takes effect are
the subtraction result between the original space of the low-pri-
ority rule and the spaces of all rules with higher priorities. It
can be observed that this application, as well as the enforce-
ment algorithm, heavily relies on the subtract operation of the
PolicySpace class. Thus, the evaluation result can also reflect
the memory and time efficiency of the enforcement algorithm.
Furthermore, another application is designed to evaluate the de-
sign decision of non-overlapping guarantee in PolicySpace. The
application is to judge whether two complex PolicySpace in-
stances are equal. The instances employed for evaluation are the
calculation result on the default rule with two different checking
sequences of dimension in the upper application.
Fig. 9 compares the memory efficiency of HSA and PSA. It

shows the growth curve of the element number along with the
increments of the calculated rule number. The element of the
header space is the bit-sequence, and the element of the policy
space is the hyper-rectangle. The 100-scale policies of different
types are employed for evaluation. It can be observed that the
HSA fails to continue processing when encountering the rules
of many wildcards. It exhausts all 32 GB physical memory of
the workstation, as its subtractionmay generate 104 overlapped
bit-sequences for the worst-case scenario. In contrast, the PSA
works well on all policies. And for the worst-case scenario of

Fig. 9. Memory efficiency (HSA & PSA).

Fig. 10. Memory efficiency of different sequences (real & synthetic).

Fig. 11. Time efficiency of different index.

its subtract operation, it will only generate ( in
this application) hyper-rectangles. Due to the need for mathe-
matical semantics, the literal operations of the HSA, as well as
the optimization of “lazy subtraction”, cannot be employed in
this application and the policy enforcement scenario.
The memory efficiencies of different checking sequences of

the policy dimension are compared in Fig. 10. The metric for
sequence decision is the number of non-overlapped segments
shadowed on every dimension. The normal sequence is from
the dimension of the fewest segments to the dimension of the
most segments (protocol or port field is examined first), and the
reversed sequence is employed for comparison (IP fields are ex-
amined first). The horizontal axis is normalized according to the
rule numbers of different security policies. The curves show the
increments of the element number over the increments of the
policy percentage. Some parts of the curves which are parallel
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Fig. 12. Memory and time efficiency of different sequences (synthetic policies generated by all ClassBench seed files).

to the horizontal axis show the existence of shadowed/redundant
rules. The left part of the figure is the result on real policies, and
the right part of the figure is the result on synthetic policies. For
real policies, it is observed that the maximum gap of memory
efficiency is close to one order of magnitude. Additionally, for
both the FW and the IPC policies, the efficiency of the normal
sequence is better than the one of the reversed sequence, but
an opposite result is achieved on the ACL policy. For synthetic
policies, the efficiency gap between two checking sequences is
not distinct. We argue that it is mainly due to the implementa-
tion of ClassBench did not take the topological characteristics of
policies or the correlation of rule fields into consideration. The
randomization of all fields seems to be indiscriminative and ir-
relative, which leads to less distinction of comparison results.
Fig. 12 shows both the memory efficiency and the time effi-
ciency on synthetic policies generated from all types of Class-
Bench seed files. It can be observed that the inherent characteris-
tics of policies impact on the memory usage and the processing
time to a large extent, even if these policies are of the same scale.
In general, FW and IPC policies consume more memory and
longer processing time than ACL policies, implying the former
types of policies have more overlapping of rules. Furthermore,
the difference between results of two checking sequences is also
small in most cases. The big gap appearing on several FW poli-
cies is mainly caused by last few rules that have wildcards on
multiple fields, leading to the explosion of memory usage and
processing time.
Fig. 11 depicts the processing time of different policies. For

real policies, the processing can be completed within two min-
utes. For synthetic policies, the large-scale complex policy re-
quires more calculation time, as the ClassBench generator intro-
duces the stochastic disturbance to forcibly increase the policy
complexity. But in real deployments, the policy system [31] is
usually designed to reduce the rule overlapping and complexity.
Thus, the processing time may get shorter on real policies that
are of the same scale. Even if the policy has high complexity in
certain scenario, some compute-intensive works can be carried
out offline in advance, to preserve the online performance. As a
comparison, the processing time without R-tree index is also de-
picted. On small-scale or low-complexity policies, the index op-
timization is not quite obvious, compared to the linear storage.

Fig. 13. Non-overlapping optimization.

Along with the increment of rule number, the time performance
of PSA with R-tree support can achieve an improvement of
1–2 orders of magnitude. The PSA implementation with linear
storage cannot even accomplish the processing within 2 hours
on both FW1 5K and IPC1 5K.
Fig. 13 illustrates the optimization of non-overlapping in

PolicySpace implementation. Since the hyper-rectangles in the
same PolicySpace instance are not overlapped with each other,
the volume comparison between intersected policy space and
original policy space is 1–2 orders of magnitude faster than the
generic clipping approach on all evaluated policies.

C. Policy Enforcement Algorithm
In order to evaluate the efficiency of the policy enforcement

algorithm, themetrics of both enforced nodes and enforced rules
are employed for measurement. Two types of policies are gen-
erated by ClassBench with different complexities: one of more
exact rules and the other of more wildcard rules. The rule num-
bers of these generated policies are all about 25 K, except for
AS1775, which has about 5 K rules. Additionally, the two dif-
ferent heuristics that are employed during the step of node se-
lection are compared for both policy types.
Topology Properties: Tables I and II describe the properties

of the service-provider networks and the datacenter networks,
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TABLE I
PROPERTIES OF SERVICE-PROVIDER NETWORK

TABLE II
PROPERTIES OF DATACENTER NETWORK

respectively. Different topologies have diverse scales and char-
acteristics. For service-provider networks, Table I lists the num-
bers of both core nodes and access nodes, the maximum and the
average number of all-pair shortest path lengths, and the average
degree of network nodes. Table II shows the numbers of access
switch port, aggregation switch port, and fabric switch port. And
the total number of all access ports is the product of these three
numbers.
Enforced Nodes: Fig. 14 shows the number of enforced

nodes. The left part is for the enforcement of exact policies, and
the right part is for the enforcement of wildcard policies. Each
part compares the result of the proposed algorithm that employs
two different strategies of node selection against the result of
the per-source approach that exists in [20] and [21]. It can be
observed that the proposed algorithm generates fewer enforced
nodes than the per-source approach. For the enforcement of
wildcard policies, the node number can be reduced up to 77%.
For the exact policies, the reduction can achieve 93% at most.
In addition, the enforcement of exact policies generally needs
fewer nodes than the enforcement of wildcard policies, which
is about 25%–44%. This is because the wildcard policies usu-
ally cover multiple address spaces, and the wildcard rules are
replicated at multiple enforcement nodes. Furthermore, for the
enforcement of exact policies, the policy-oriented strategy can
achieve better results, while the flow-oriented strategy is more
suitable for the enforcement of wildcard policies. As the policy
space of many wildcard rules is intersected with the flow space
of multiple network nodes, the policy-oriented strategy hinders
the step of node selection of the algorithm from making the
most progress toward the termination condition. At each step,
the node that intersects with more policy rules may not cover
a large flow space, which will induce more iterations. In this
case, the flow-oriented strategy can outperform.
Enforced Rules: Fig. 15 shows the overhead of enforced

rules, which is expressed as the ratio between the numbers of
all enforced rules and the original policy rules. The results are
also depicted in the former style that Fig. 14 employs. It can
be observed that the proposed algorithm generates fewer extra
rules than the per-source approach. These extra rules consist of
two types: the replica of the wildcard rules and the bypassing

Fig. 14. Node number of the enforcements of exact and wildcard policies.

Fig. 15. Rule overhead of the enforcements of exact and wildcard policies.

Fig. 16. Processing time of the enforcements of exact and wildcard policies.

rules that are introduced to tackle the rule overlapping. For the
enforcement of exact policies, the maximum overhead is about
1.47. For the enforcement of wildcard policies, the overhead is
much higher, but still within an order of magnitude. In contrast,
the per-source approach generates 1.5–2.5 times more rules
when enforcing exact policies, and the overhead becomes larger
when enforcing wildcard policies, which is about 20–50 times.
Processing Time: The processing time of the enforcement

algorithm is shown in Fig. 16. Under the above experimental
conditions, the proposed algorithm has comparative processing
times for both strategies of the node selection in a certain policy
enforcement scenario. For the enforcement of exact policies
on datacenter topologies, the flow-oriented strategy requires
about twice the processing time of the policy-oriented strategy
to finish. In general, for small networks, the algorithm can
finish around . For medium networks, the enforcement is
accomplished between . And for large networks, the
processing time is around . Note that the processing time
evaluated in this paper is actually the initialization time when



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

security controllers performing a cold start. Complying with the
incremental update procedure described in Section IV, security
controllers can accomplish the adjustment within seconds that
is much shorter than the initialization time. Nonetheless, the
speed of PSA processing can certainly be improved in future
work.

VI. DISCUSSION

In this section, we discuss the relationship between the HSA
and the PSA, and also the implication of the PSA for packet
classification. Since the PSA analyzes policies from the point
of view of the multi-dimensional space, we only focus on those
algorithms based on space cutting/decomposition.
HSA is introduced for modeling networking devices, while

PSA is more suitable for policy manipulation. Derived from
network L2/L3 devices, such as switches and routers, HSA ab-
stracts the behaviors of these devices as the transformations of
multi-dimensional spaces. To support emerging protocols and
arbitrary packet-header formats, the space is expressed as an in-
discriminate bit-sequence. As the policies of these devices are
usually defined in prefix, this expression can cooperate well with
these policies. For network L4–L7 devices (i.e., network mid-
dleboxes), their policies are generally more complex than net-
working policies and usually contain plenty of heuristic infor-
mation for facilitating manipulation. Thus, the bit-sequence ex-
pression may impede the exploitation of this information and
lead to inefficient policy processing. Since these two types of
devices are largely orthogonal [8], the PSA can acquire routing
decisions from the HSA to provision multiple network services,
where each tool offers its own advantages.
Packet classification has been studied for a couple of decades,

and a great many solutions have been proposed. Among these
existing algorithms, the ones based on space decompositions
perform well in practice. But their behaviors show unsteadi-
ness when these algorithms are applied on different policies.
For example, the HyperCuts [32] algorithm achieves faster
searching speed than HiCuts [33] because of its multiple cuts
at each tree node, but both algorithms cannot be successfully
executed on large-scale complex policies. Another example is
the grouping methodology [34]. The grouping of policy rules
can significantly reduce the pre-processing time and memory
usage. In [28], it is observed that these improvements only
appear on FW1 and IPC1 policy types. These two examples are
related. As the PSA result shows, most rules in ACL1 are not
overlapped. Thus, the large fan-out of both HiCuts and Hyper-
Cuts contributes to the separation of rules, and there is no need
to group policy rules. But for FW1 and IPC1, the separation
efficiency is reduced. We argue that the reason is the existence
of two types of partially specified rules. In addition, their
numbers are quite comparable. Either source IP or destination
IP provides the high separability. Therefore, no matter which
dimension the procedure selects, partially specified rules of
the other type are largely duplicated. According to this feature,
the separation of these two types of partially specified rules is
enough, which has been testified by most recent research [35].

VII. CONCLUSION AND FUTURE WORK

This paper addressed the middlebox policy enforcement
for the first time to our knowledge. To efficiently deploy the

global network security policy on multiple middleboxes in
networks, this paper first implemented the PSA tool built on
the expression of range-based hyper-rectangles. Leveraging
the PSA, this paper inspected security policies in terms of
topology, and exploited their scope characteristic. Then the
paper modeled the middlebox policy enforcement as the SCP,
and designed a greedy algorithm on the basis of the PSA.
Compared to existing methodologies, the proposed algorithm
achieved the 93% reduction of enforced nodes and the 91%
reduction of enforced rules.
The Python version of the PSA tool helped to fast verify our

superficial idea, andwewill improve its processing speed by im-
plementing it with the C language. The most recent technology
of vector operations [36] can accomplish the comparison of
two multi-dimensional hyper-rectangles via single instruction,
which will boost the processing speed further. Additionally, it is
worth reimplementing the detection algorithms of policy abnor-
malities, to test and evaluate the PSA tool. The other aspect of
future work will include the advancement to packet classifica-
tion research. Many packet classification algorithms have been
proposed from different perspectives, but no single approach
can adapt to all policy types. To help with their practical applica-
tion, the pre-analysis of policy characteristics and the automatic
algorithm selection can bring benefits to this research topic.
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