
2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
341

LiveCloud: A Lucid Orchestrator for Cloud Datacenters

Xiang Wang, Zhi Liu
Department of Automation

Research Institute of Information Technology
Tsinghua University, China

{xiang-wang11, zhiliu08}@mails.tsinghua.edu.cn

Yaxuan Qi, Jun Li
Research Institute of Information Technology

Tsinghua University, China
Tsinghua National Lab for Information Science and

Technology, China
{yaxuan, junl}@tsinghua.edu.cn

Abstract—Cloud datacenters, providing Infrastructure as a
Service (IaaS), need to lively orchestrate numerous resource
elements with diverse requirements of service provision, which
most existing approaches are difficult to meet elastically. This
paper presents LiveCloud, a management framework for
resources in cloud datacenters. It addresses multiple
management issues by employing different views of datacenter
resources to satisfy various requirements for both tenants and
operators. Leveraging software defined networking (SDN)
techniques, LiveCloud further integrates network resources
into datacenter orchestration and service provision with
improved service-level agreements and faster service delivery.
LiveCloud is architected as a data-centric and event-driven
system with open management interfaces and service-oriented
APIs to simplify system integration and service provision. The
LiveCloud system has been deployed in both private and
public datacenters to provide elastic cloud infrastructure for
production applications.

Keywords – software defined networking; orchestration; service
provision

I. INTRODUCTION
It becomes a notable trend that many companies

migrating applications, businesses and IT jobs, into cloud
datacenters. The flourish of cloud computing has imposed
tremendous management overhead upon datacenter
operations. In recent years, virtualization of technology
components [1], such as rack/blade server and storage-area
network (SAN), has brought significant flexibility to cloud
service providers. However, those virtualization techniques
are difficult to meet the scalability and elasticity
management goals for large-scale cloud datacenters.

The management of cloud firstly involves the
maintenance of technology components status and topology
of their interconnection to guarantee availability, scalability
and ease-of-use of services. It also needs to support agile,
cost-effective and on-demand IaaS provision to meet
requirements of both resource and application from multiple
tenants. In detail, cloud management systems should address
the following issues:

 Visibility: The system should monitor the status of
managed technology components, ensuring their
availability, where heartbeat [3, 10] and other private
control protocols [11] are typical leveraged. Besides,
technology components in cloud datacenter provide

diverse types of services, which are usually
catalogued into computing, storage and network.
Furthermore, several technology components using
virtualization techniques are even enforced at
different levels [20, 21] to meet different
requirements for service provision. Therefore, the
management system should be aware of various
service types, so that technology components can be
provided and catalogued for efficient orchestration.

 Orchestration: It involves two aspects: one is
resource allocation, the other is resource
coordination. With resource allocation, the
management system needs to guarantee service-level
agreements (SLAs) of datacenter resources, such as
network bandwidth and latency for tenants. Besides,
datacenter operator leverages management system to
make cost-efficient decisions for workload
placement. As a consequence, the resource
allocation algorithms deployed in management
system should take requirements from both operators
and tenants into account. On the other side, allocated
resources may access the datacenter network (DCN)
at different layers. For example, virtual machines
(VMs) are attached to software switches [12] in
physical servers, and other non-virtualized resources,
e.g. network security appliances, may be connected
to the top-of-rack (ToR) switches directly. In multi-
tenancy environment, the management system needs
to perform coordination. For example, flow tables in
switches are manipulated according to the resource’s
accessing place for elastic cooperation.

 Provision: The requirements of resource type, scale
and topology vary among different tenants. The
management system is responsible for providing
various resources templates to efficiently deliver
service and facilitate management. For example,
many trial users apply single VM for light weight
tasks. High performance computing tasks may
require multiple VMs interconnected in a layer-2
network with high bandwidth and low latency. More
complicated, organizations may deploy part of their
IT infrastructure into the cloud along with restrict
network security policy. Thus, both tenants and
datacenter operators have the requirements of

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
342

resource utilization statistics for purposes of resource
optimization and charging.

However, most existing solutions are difficult to meet
those requirements simultaneously. They may suffer from
one or more drawbacks in the following aspects:

 Limited support for network resources in
orchestration: Most cloud management systems
place and schedule workloads according to CPU
load and memory usage, which lacks integration of
network resources, such as connectivity, bandwidth
and latency. Different cloud applications have
different requirements of resources. Compute-
intensive tasks require more CPU and memory
resources, while I/O-intensive workloads may focus
on network bandwidth and latency. Without careful
consideration of these aspects, the orchestration may
deploy workloads with network resources
oversubscribed or not fully utilized [4]. Besides, the
multi-tenancy cloud is a dynamic and mutable
environment, and the distribution of datacenter
capacity is frequently varying. Tenants come and go,
which needs agile provision of isolated virtual
networks. However, network resources in most
cloud datacenters are usually configured manually
and statically, which is difficult for swift resource
coordination.

 Requirement of flexible and multifarious service
provision: Many solutions in clouds are usually
short of user-friendly and multifarious service
provision. Allocated resources are presented and
managed independently in simple fashion, e.g. a
simple table listing all VM instances [22], which is
absent of the service-oriented topology display. It
not only limits the fast service provision for tenants’
large-scale or distributed systems, but also hampers
tenants to manipulate and manage resource
efficiently. Besides, it is the lack of service-oriented
management interfaces and rich resource utilization
statistics that restricts on-demand provision and pay-
as-you-go accounting.

This paper presents LiveCloud, a novel framework to
integrate and orchestrate technology components in cloud
datacenters. Leveraging the software defined networking
(SDN) techniques [9], LiveCloud is able to lively integrate
and orchestrate different types of technology components. It
programmatically configures switches which have open
interfaces [3], coordinating network resources to provide
multiple isolated virtual networks. Furthermore, LiveCloud
delivers tenants with multiple types of topology for diverse
service deployments. Main contributions of this paper are:

 System design and implementation: LiveCloud
addresses three management issues: visibility,
orchestration and provision, by employing three
corresponding views with different network
topologies. Each view is the context under which the
related issue is independently solved. LiveCloud
implements and integrates a SDN controller which
helps LiveCloud to tackle network and topology
related problems, including network-involved

resource orchestration and flexible service-oriented
topology provision for different cloud applications.
LiveCloud is architected on ports which bind to
networks to establish the relation among those three
views with event-driven processing model. It also
exposes wieldy APIs for end-users programmatically
controlling and managing services.

 System deployment: LiveCloud has been deployed
in different scenarios. One is for private cloud in a
university campus, providing typical services of
enterprise network. The other is for public cloud in a
Tier-IV datacenter, supporting quality-of-service
(QoS) guaranteed IaaS delivery. In our deployment
and evaluation, it is proven that LiveCloud works
well in both public and private clouds. By July 2012,
two production cloud applications are running in the
virtual infrastructure provided by LiveCloud system.

The rest of this paper is organized as follows. Section 2
introduces LiveCloud design principle and system
architecture. Section 3 presents the reference model and
implementation of LiveCloud controller. Section 4 shows
LiveCloud deployment in two datacenters. Section 5
introduces related work of LiveCloud. Section 6 draws our
conclusion and discusses the future work.

II. LIVECLOUD ARCHITECTURE
The basic idea underlying LiveCloud is decouple. Instead

of handling various aspects of resource management directly
on technology components, we argue that it is necessary to
separate those issues and limit their solution in certain views.
As a consequence, LiveCloud introduces physical view,
logical view and tenant view to solve visibility, orchestration
and provision problems, respectively. In each view,
LiveCloud refers to components which deliver services as
service elements which are interconnected by networks. Both
network topology and service elements are distinctively
defined for different management issues processing.

A. Physical view
This view describes topology (physical topology) and

technology components (physical elements) actually
deployed in cloud datacenters. LiveCloud maintains
parameters of physical elements it discovers, such as
performance, capacity of memory or storage and supporting
functions. Service visibility is solved in this view, and
technology components are view as containers which are
able to provide services of multiple types. For example, a
physical Ethernet switch can provide high-bandwidth and
low-latency forwarding capacity. And a physical server may
provide both computing resource for running VM instances
and network resources, i.e. software switches, for
communication between VMs. The physical view employs a
unified and open format of events and commands for every
specific service type of delivering elements to wrap
management interfaces. Thus, LiveCloud can amalgamate
supervision and manipulation of distributed technology
components in centralized manner. LiveCloud employs
heartbeat protocol and vendor-providing interfaces to

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
343

monitor the status of physical elements. Figure 1 depicts one
typical physical view layout.

The physical topology is split into three layers: edge,
aggregation and core. A fat tree is built with commodity
Ethernet switches for network core, providing non-blocking
bandwidth among directly connected appliances. The
network core can also be implemented by employing vendor-
specific appliances [1, 8]. Physical elements are located in
edge layer, and access network core via either ToR switches
or virtual server switches [12]. Network security and
database elements may employ non-virtualized techniques
[2], and computing service elements are in virtualized
provision [17]. Physical elements can be identified using
physical location, such as rack ID and slot ID. Two tenants’
computing resources have been allocated among three host
servers as the left of Figure 1 shows.

B. Logical view
As physical views in different datacenters may vary from

one another, impervious orchestration in that view is too
complex and inflexible to adapt to the dynamic and scaling
cloud environments. LiveCloud needs a consistent topology
to develop orchestration algorithms. And logical view is
introduced for deploying resource allocation algorithms and
performing coordination to help allocated resources
gracefully cooperate. It defines multi-layer topologies
according to different network infrastructure, and describes
service elements accessing in cloud datacenter. In logical
view, LiveCloud abstracts and quantifies various types of
service elements, and forms unified resource pools. For
example, CPU frequency and core number are transformed
into numerical value comprehensively, representing
computing capacity. Besides, bandwidth and latency are
extra two network resources considered during resource
allocation, as some cloud applications have specific
requirements. Resource quantification takes the orchestration
a major step of abstraction beyond direct manipulation of
technology components. LiveCloud designs multiple
evaluation models involving lease period and other SLA
items to accommodate placement of workloads. Figure 2
shows the logical view in LiveCloud, which is corresponding
to the physical view described former.

The logical view has a consistent three-layer access
topology (logical topology). The outermost layer is
composed of quantified technology components (logical
elements), except for network resources. Ready-to-allocate
and already-allocated resources in cloud are maintained in
this layer, which is accordant to fashionable flat networking
in cloud datacenters. In this view, the physical attributes of
computing, database and network security are concealed
using quantified values which are regarded as input of
resource allocation algorithms. The intermediate layer is
designed as access layer, in which the network resources are
located. LiveCloud defines two sub-layers in the access layer
of logical view, and each sub-layer is composed of multiple
access switches providing access ports for logical elements
accessing. We argue that I/O-intensive system deployment
using multiple VMs should be placed in the same logical
elements, which can leverage high bandwidth and low
latency for east-west traffic provided by software switches in
physical server. This model is suitable for cost-efficient
cloud environments, which avoids the convergence of
bandwidth at physical server network interface card. The
innermost layer is network fabric which supports end-to-end
non-blocking switching and has high bisection bandwidth in
datacenter. Similarly, LiveCloud also supports the definition
of forwarding model for network fabric, which allows
operator to dynamically deploy traffic when using cheap
plastic solution, avoiding congestion occurred in fabric.

C. Tenant view
For elastic provision and self-service arrangement,

management system in multi-tenancy cloud datacenter
should support on-demand resource allocation and isolate
allocated resources among different tenants. Besides, it
should expose flexible configuration interfaces of network
topology (tenant topology) and service elements (tenant
elements) to enable service-oriented management. Different
tenants need diverse topology, according to their cloud
application. Cloud management system ought to provide
several templates of deployment for typical application use.
LiveCloud delivers resources to tenant over virtual network
with allocated elements attached. It introduces tenant view to

Core

Aggregation

Edge

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rack 6 Rack 7 Rack 8

Slot 1
Slot 2
Slot 3

vSwitch

vSwitch

vSwitch

ToR

Tenant1

Tenant2

Free

Allocated

Figure 1. Physical view layout in multi-tenancy cloud datacenter

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
344

present layout and configuration details for certain tenant.
Figure 3 shows the tenant view supported in LiveCloud.

For the tenant views, each tenant should be able to build
and modify its own layer-2 networks, over which it can also
design its own layer-3 networks. All layer-3 subnets can
interconnect with each other using a service gateway which
is also the gateway from tenant virtual network to Internet.
Tenant can assign network security and QoS policies
according to its view. All allocated resources are organized
in that topology, and concealed from the others. The rational
of tenant topology design is the requirements of most cloud
applications, including both private and public cloud, can be
satisfied by tailoring and reforming on this topology. Facing
with different service requirements from diverse cloud
application, tenant views vary from each other and can be
tailored or formed into different topology described in
Section I. LiveCloud also provides a text-based descriptive
language based on XML for agile tenant view description
and configuration. Table 1 shows the essential frame,
omitting the closing tags. LiveCloud converts tenant’s
resource request into workflow. It performs inbuilt validation,
submits requests and visually displays generated view.

III. LIVECLOUD IMPLEMENTATION
As service elements in all three views are interconnected

and coordinated via networks, LiveCloud uses generic
network ports to describe and manage attached service
elements. This approach is also employed to re-correlate
those decoupled views with less overhead. It maps and
transforms the service elements, policies and topology

described in tenant view to the configuration and
manipulation of technology components actually deployed in
cloud datacenter.

Furthermore, cloud datacenter is a scalable, dynamic and
distributed environment. In order to master complexity of
centralized management systems for massive scattered
service elements, LiveCloud is architected as data-centric
and uses event-driven architecture (EDA) to build service
provision workflow triggered by incident. It monitors data
changes and registers for notification which drives
LiveCloud to perform adjustment. As a consequence, the
data manipulation commands are asynchronous. Based on
EDA, LiveCloud is able to improve performance and
becomes responsive, enabling larger scale.

The system states tracked by LiveCloud controller are
centrally stored. Differentiating the requirements of data
update rates and availability, LiveCloud employs two
different mechanisms to implement the storage of system
states. For high durability and low update rate requirements,
such as tenant elements location, tenant topology and
policies, LiveCloud utilizes transactional persistent database.
For high update rate requirements, such as resource
utilization and historical statistics, LiveCloud employs
NoSQL [23, 24, 25] techniques to handle large-scale,
frequent and high-concurrency data update.

A. Generic Network Port
Network ports are essential objects in LiveCloud. A

unique global identifier is assigned to each port in all three
views. Port identifiers in different views have different
descriptive structure. Service element information is treated
as the parameters of the attached network port. And network
behaviors are also designed using port-based description.
LiveCloud stores mapping among port identifiers in all
views. Thus, events generated by physical elements can be
transformed into registered notification for tenant view
processing, and adjustments in tenant view are mapped to
executions in physical view.

 Physical network port: LiveCloud employs open
standard switch devices and software switches to
serve as ToR switches and virtual server switches,
respectively. They monitor attached physical

Free

Allocated

Fr
ee

Free

Free

Allocated

Allocated

Allo
ca

te
d

Database
Resource

Pool

Security
Resource

Pool

Computing
Resource

Pool

Fabric

Access

Resource
Pools

Figure 2. Logical view for orchestration in LiveCloud

Layer3

Layer2

Layer2
Service

Gateway

Policy

Internet

Figure 3. Tenant view for provision in LiveCloud

TABLE 1. TENANT VIEW DESCRIPTION LANGUAGE

<configuration>
 <vnet> <!-- a tenant view is named as a vnet -->
 <vgate> <!-- gateway is always enable in different topologies -->
 <public-interface> <!-- inf info, including MAC, IP bandwidth -->
 <interfaces> <!-- private interface, multiple -->
 <interface> <!-- inf info, similar to public-interface, vl2net binded -->

 <vl2nets> <!-- a tenant can apply for multiple vl2nets -->
 <vl2net> <!-- avl2net can be attached with multiple vm instances -->
 <vms>
 <vm> <!-- CPU, memory, disk and interface information -->

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
345

elements, and receive decisions from their controller
on whether physical elements can access datacenter
network. Port identifier in this view encompasses
switch global unique identifier and switch-associated
port number. LiveCloud records all links for element
accessing currently up in network to formulate
physical network topology. One link describes
connection between two ports. All attributes of
physical elements are viewed as network port
parameters, and stored in LiveCloud system. Thus,
any physical element can be located using attached
network port.

 Logical network port: LiveCloud regulates physical
topology to a consistent and multi-layer logical
topology, where it can imperviously orchestrates
datacenter’s resource candidates and tenants’
resource requests. Workload placement calculated
by orchestration algorithm is expressed in access
port. And port identifier in this view encompasses
information of hierarchy, layer-associated switch
number and switch-associated port number.
Accordingly, LiveCloud assigns a unique address for
each logical element plugged in, which is structured
accommodating to forwarding mechanism in
network fabric. The unique address shadows
attached port identifier and tenants’ information,
which can efficiently support QoS mechanism.
LiveCloud implements a PortLand [6] -like
forwarding protocol in network fabric and also
designs a novel pseudo MAC addressing involving
information mentioned above.

 Tenant network port: LiveCloud delivers resource
and service to tenants via virtual network discussed
in Section 2. Port identifier in this view encompasses
tenant global unique identifier, layer-2 network
number and network-associated port number.
LiveCloud employs tenant topology to steer traffic in
datacenter network, and network behavior is
expressed as flow direction and connectivity
between two network ports. Furthermore, for
security and measurement purposes, tenant view
involves those specific service elements, which
redirects original one-hop traffic to a transparent
middle box, like intrusion management system and
load balancer. The behavior is defined as a specific
traffic path in LiveCloud, and implemented in an
indivisible end-to-end multi-hop sequence.

B. Event-driven Model
Cloud datacenter has a large scale physical network, and

LiveCloud controller is architected in event-driven model to
satisfy the requirements of scalability and programmability.
A unified message format is designed for events and
commands processing, and workflows are executed as
message processing in LiveCloud. Figure 4 shows
LiveCloud controller architecture.

LiveCloud controller has three layered modules: driver,
kernel and application, which adapts to handling of three
views. The two bottom layers are engineered for application

development. Raw and infrastructure management related
messages are tackled and concealed from service-oriented
application design. LiveCloud application is directly built on
manipulation of tenant view. Furthermore, in order to
provide the method of fine-grained functions implementation,
LiveCloud supports registration of concerned messages
sensing which affects events handling.

 Driver: Preparing for physical view generation,
driver module abstracts a set of core functions and
configuration actions for catalogued service supplier,
such as OpenFlow compatible switches [26],
hypervisor and network security appliances. It
encapsulates them with LiveCloud unified message
format, and wraps technology component
management system. Driver module maintains
communication between controller and technology
components. Thus, it offers kernel module a reduced
but sufficient set of interfaces to manipulate
datacenter infrastructure.

 Kernel: In order to provide a flexible and
convenient programming platform, kernel should not
only support low level programming approach, but
also expose service-oriented APIs that agile
application design needs. This module includes
physical and logical view generation essentially. It
further supports registration for application, and
stores network port mapping among physical, logical
and tenant views. Kernel module listens for
application joining, and supports multiple
applications to register the update notifications of
allocated resources states. After processing the
messages of infrastructure management, kernel
forwards messages transformed by mappings to

Driver
Switch Server / VM SAN Firewall / IMS

Kernel

Physical Management N
et

w
or

k
Po

rt
 M

ap
pi

ng

O
rc

he
st

ra
tio

n
A

lg
or

ith
m

s

Technology
Components

Physical
Topology

Logical Management

Resource
Pools

Logical
Topology

Application Management

Events
Registration

Application
Registration

Fa
ul

t T
ol

er
an

ce
 a

nd
 R

ec
ov

er
y

Re
so

ur
ce

A
llo

ca
tio

n
Tr

af
fic

St
ee

ri
ng

Application

APP 1

Tenant
Topology

Tenant
Elements

Tenant
Policy

Tenant
Statistic

Tenant
Charge

APP n

Vendor 2Vendor 2Vendors
Vendor 2Vendor 2Vendors

Vendor 2Vendor 2Vendors
Vendor 2Vendor 2Vendors

Figure 4. LiveCloud controller architecture

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
346

application who has subscribed before. In addition,
kernel module is also responsible for stability with
distributed backup databases.
The real intelligence of LiveCloud resides in the
orchestration algorithms. The resource allocation
algorithms ought to decide the placement of tenants’
workload, and the traffic steering algorithms is
responsible for updating the forwarding tables of
network switches, according to tenants’ topology.
LiveCloud quantifies both technology components in
datacenter and tenants’ resource requests by certain
measure. Benefiting from quantification, it is easy
for LiveCloud to design multi-objective allocation
optimization model. It comprehensively considers
resource type, computing power, memory size,
storage capacity, network bandwidth, lease period
and other factors to generate optimal workload
placement which achieves low power consuming,
less resource fragment, guaranteed performance and
other objectives. The placement decision generated
by allocation algorithms are presented as candidates
with ranks of different orientations. Tenants or
Operators will decide the final placement. Then the
kernel module dynamically steers traffic, according
to those workloads placement.

 Application: On basis of abstraction and mapping of
the two bottom modules, LiveCloud applications can
simply employ service-oriented APIs to implement
their designs. LiveCloud also provides frequently
used libraries, coordinating with those APIs.
Additionally, it has a GUI (graphical user interface)
for tenants to drag service elements and draw
topology to meet their needs. They can dynamically
attach a service element to certain network port in
tenant view where infrastructure specification and
charge are associated.

IV. LIVECLOUD DEPLOYMENT
LiveCloud has been deployed in two different scenarios:

private cloud and public cloud. An experimental analysis
was also conducted to evaluate the performance and
scalability of LiveCloud.

A. Private Cloud
LiveCloud has been deployed in the FIT building at

Tsinghua University. It supports private cloud for labs,
cooperating with their enterprise network environment. The
private cloud consists of 5 racks, each with 10 slots. Each
rack contains 9 host servers, with about 100 ~ 120 VMs
provision. 60 VMs have been reserved for security elements
supported by [15, 16]. LiveCloud allocates private cloud
resources for multiple labs. Each team is served as a tenant in
LiveCloud, and a virtual L3 network is assigned. Websites
and other network services have been migrated into the cloud.
Besides, all labs’ networks provide both wired and wireless
connections to access private cloud. LiveCloud enables each
team’s local area network extending to virtual network in
cloud, and VMs in cloud are peer nodes of members’
desktops. Further, LiveCloud supports short-term lease for

algorithm evaluation, network protocol testing and other
research requirements.

B. Public Cloud
LiveCloud has also been deployed for public cloud in a

Tier-IV datacenter. It manages 50 physical servers and
provides over 1,000 VMs. All these resources are
interconnected by commercial-off-the-shelf (COTS) core
switches [8]. Fibre Channel (FC)-SAN is employed for
storage service provision. LiveCloud provides public cloud
tenants with an entire virtual datacenter (VDC) environment.
Each VDC is a tenant-defined virtual L3 network, virtually
isolated from other tenants’ in the same datacenter. The on-
demand virtual compute and storage resources are attached
to the network, and all virtual L2 networks, as well as the
Internet, are interconnected by a virtual gateway, on which
tenants can specify their own management and security
policies. Figure 5 shows the essential part of user interface
for cloud datacenter operators. The left sidebar shows the
abstract tree-form tenant view. It simply lists the tenant
elements according to the tenant topology. The right part
shows the status of service elements. The operator can click
on them to browse the detail. The figure shows that there are
two production cloud applications deployed on the IaaS
provided by LiveCloud. Each of them is classic Web
application. As a consequence, single virtual layer-2 network
can meet their requirements.

C. Controller Deployment
The LiveCloud controller can be implemented using

DDR2 Controller3 DDR2 Controller2

xgb1

xgb0

gbe

gpio1

pcie1

pcie0

misc

gpio0

DDR2 Controller0 DDR2 Controller1

Cache
Engine

Processor
Engine

Switch
Engine

CDN
TDN
IDN

MDN
STN
UDN

Figure 6. Tilera TILEPro64 architecture [19]

Figure 5. Views of Production Applications in Public Cloud

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
347

commodity X86 servers. To achieve high performance, we
also implement LiveCloud controller on Tilera [18], a high
performance platform with low clock rate and low power
consumption. Figure 6 shows Tilera TILEPro64 architecture.
It provides Linux programming environment with optimized
dataplane processing. It has 64 full-meshed processor cores
and three programmable inter-tile networks for efficient
communication. It has four on-chip memory controllers
which can address up to 16GB shared memory with cache-
coherent support.

The performance and scalability of LiveCloud controller
are evaluated by measuring event processing speed on
different core number and network scale. SmartBits600 is
employed to generate packets as event triggers, and measures
throughput of different events processing in event per second
(eps) unit. Figure 7 shows the performance on different core
number. Using 20 cores, the controller can reply 1,371K
ARP requests, set 957K flows in the same switch and set
736K flows across two switches per second, respectively.
Figure 8 shows the performance on different switch number.
With network scaling, the performance reduction is about
8 % ~ 13%.

V. RELATED WORK
Cloud datacenters consist of millions of technology

components that provide computing, storage and networking
resources. Value added services, including security, load
balance and service acceleration are provided by specific
appliances. As datacenter scales, it becomes difficult to put
all these service elements together for efficient service
provision. Network cannot effectively adapt to multi-tenancy,
and multiple service elements are difficult to be lively
involved. For network evolving in datacenter, both industry
and academy present solutions to isolation and scalability [5,
7]. Thus, network, security and other similar elements should
not be viewed as approach or add-ons any longer. They need
to be treated as resources as computing and storage are, and
should be well-orchestrated together.

To take global optimal orchestration, a network
integration platform which has open industry standard APIs
is needed to interconnect diverse service elements. Based on
the platform, control logic can be built to dynamically
change network behaviors, which is referred as SDN.
OpenFlow is an open standard which provides a channel to
manage forwarding tables in switches. And it is the key

technique in SDN. Onix [9] is one of the most advanced
OpenFlow controllers, and it also offers a general SDN
programming platform. It can be used in almost every large-
scale production network. However, it exposes APIs
manipulating network states rather than service provision,
which hardly meet agility, ease-of-use and service-oriented
operation requirements in clouds.

VI. CONCLUSION AND FUTURE WORK
This paper presents LiveCloud, a flexible orchestration

platform for IaaS provision in cloud datacenters. Based on
the decoupling of management issues, LiveCloud handles
those problems in three different views with perspectives of
physical, logical and tenants. Leveraging SDN techniques,
LiveCloud brings network resources into orchestration,
guarantying the SLA of network bandwidth and latency. To
further step, LiveCloud delivers services with isolated virtual
networks, which helps tenants to deploy their applications
efficiently. This paper also presents LiveCloud controller’s
reference model. It takes generic network port as essential
object, and is architected in event-driven model. Moreover, it
provides service-oriented APIs for application developing,
which significantly reduce the management complexity. We
implement the prototyping system and deploy it in different
objective datacenters.

In addition, several areas are identified as our future work.
Firstly, LiveCloud controller is deployed on single device
currently, and it will be a choke point as datacenter’s scale
grows. We believe event-driven model is suitable for
controller evolving to distributed system. Secondly, multicast
and broadcast has been designed by leveraging VLAN and
multicast IP group to implement broadcast domain in tenant
view, but currently still under development. Besides,
resource allocation algorithm we have implemented is in
static methods [13]. It will be improved with feedback
consideration of element status, coordinating with migrating
techniques. Moreover, further abstraction and quantification
for security elements need to be designed to integrate
hardware-based solution, not only software-based ones [14].

REFERENCES
[1] Juniper Networks Inc., “Cloud-Ready Data Center Reference

Architecture”, White Paper, 2011.
[2] Juniper’s Virtual Gateway. http://www.juniper.net/us/en/products-

services/software/security/vgw-series/

2.0E+054.0E+056.0E+058.0E+051.0E+061.2E+061.4E+061.6E+06

4 8 12 16 20

Throughput (event per second)

ARP Reply

Set Flow in the
same switch

Set Flow across
different switches

6.0E+057.0E+058.0E+059.0E+051.0E+061.1E+061.2E+061.3E+061.4E+061.5E+06

2K 8K 32K 128K 256K 512K 1M

Throughput (event per second)

ARP Reply

Set Flow in the
same switch

Set Flow across
different switches

 Figure 7. Throughput on Different Core Number Figure 8. Throughput on Different Switch Number

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
348

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker and J. Turner. OpenFlow: Enabling Innovation
in Campus Networks. In SIGCOMM CCR, 2008.

[4] H. Ballani, P. Costa, T. Karagiannis and A. Row-stron. Towards
Predictable Datacenter Networks. In Proc. of SIGCOMM, 2011.

[5] J. Mudigonda, P. Yalagandula, J. C. Mogul, B. Stiekes, Y. Pouffary.
NetLord: A Scalable Multi-Tenant Network Architecture for
Virtualized Data-centers. In Proc. of SIGCOMM, 2011.

[6] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand: A
Scalable Fault-Tolerant Layer 2 Data Center Network Fabric. In Proc.
of SIGCOMM, 2009.

[7] A. Greenberg, J. Hamilton, and N. Jain. VL2: A Scalable and Flexible
Data Center Network. In Proc. of SIGCOMM, 2009.

[8] Cisco Nexus 7000 Series Switches. http://www.cisco.com/en/US/
products/ps9402/index.html

[9] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A Distribut-ed Control Platform for Large-scale Production Net-
works. In Proc. of OSDI’10, 2010.

[10] libvirt: The virtualization API. http://www.libvirt.org
[11] BMC Cloud Lifecycle Management. http://www.bmc.com/products/

product-listing/cloud-lifecycle-planning-management-software.html
[12] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M, Casado and S. Shenker.

Extending Networking into the Virtualization Layer. In Proc. of
HotNets-VIII, 2009.

[13] Y. Gao, L. Li, J. Jiang, B. Yang, Y. Xue and J. Li. SEAL: Hybrid
Resource Distribution for Multi-tenant Data Centers. In Proc. of
CAMAN, 2012.

[14] Y. Qi, F. He, K. Wang, X. Chen, J. Fong, F. Xie,Y. Shao, Y. Gao, Y.
Xue, J. Li. LiveSec: OpenFlow-based Security Management for
Production Net-works. In Proc. of the IEEE INFOCOM (Demo),
2011.

[15] Snort. http://www.snort.org
[16] Clam AntiVirus. http://www.clamav.net
[17] Xen Cloud Platform. http://www.xen.org/products/cloudxen.html
[18] Tilera Corporation, “TILEmpower Appliance Us-er’s Guide”, User

Guide, 2011.
[19] Tilera Corporation, “Tile Processor Architecture Overview for the

TILEPro Series”, User Guide, 2011.
[20] lxc Linux Containers. http://lxc.sourceforge.net/
[21] KVM. http://www.linux-kvm.org/page/Main_Page
[22] OpenStackDashboard.http://wiki.openstack.org/OpenStackDashboard
[23] The Apache Cassandra Project. http://cassandra.apache.org/
[24] MongoDB. http://www.mongodb.org/
[25] Redis. http://www.redis.io/
[26] OpenFlow Switch Specification. http://www.openflow.org/documents

/openflow-spec-v1.0.0.pdf

