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Abstract—Cloud datacenters, providing Infrastructure as a 
Service (IaaS), need to lively orchestrate numerous resource 
elements with diverse requirements of service provision, which 
most existing approaches are difficult to meet elastically. This 
paper presents LiveCloud, a management framework for 
resources in cloud datacenters. It addresses multiple 
management issues by employing different views of datacenter 
resources to satisfy various requirements for both tenants and 
operators. Leveraging software defined networking (SDN) 
techniques, LiveCloud further integrates network resources 
into datacenter orchestration and service provision with 
improved service-level agreements and faster service delivery. 
LiveCloud is architected as a data-centric and event-driven 
system with open management interfaces and service-oriented 
APIs to simplify system integration and service provision. The 
LiveCloud system has been deployed in both private and 
public datacenters to provide elastic cloud infrastructure for 
production applications. 

Keywords – software defined networking; orchestration; service 
provision 

I.  INTRODUCTION 
It becomes a notable trend that many companies 

migrating applications, businesses and IT jobs, into cloud 
datacenters. The flourish of cloud computing has imposed 
tremendous management overhead upon datacenter 
operations. In recent years, virtualization of technology 
components [1], such as rack/blade server and storage-area 
network (SAN), has brought significant flexibility to cloud 
service providers. However, those virtualization techniques 
are difficult to meet the scalability and elasticity 
management goals for large-scale cloud datacenters. 

The management of cloud firstly involves the 
maintenance of technology components status and topology 
of their interconnection to guarantee availability, scalability 
and ease-of-use of services. It also needs to support agile, 
cost-effective and on-demand IaaS provision to meet 
requirements of both resource and application from multiple 
tenants. In detail, cloud management systems should address 
the following issues: 

 Visibility: The system should monitor the status of 
managed technology components, ensuring their 
availability, where heartbeat [3, 10] and other private 
control protocols [11] are typical leveraged. Besides, 
technology components in cloud datacenter provide 

diverse types of services, which are usually 
catalogued into computing, storage and network. 
Furthermore, several technology components using 
virtualization techniques are even enforced at 
different levels [20, 21] to meet different 
requirements for service provision. Therefore, the 
management system should be aware of various 
service types, so that technology components can be 
provided and catalogued for efficient orchestration. 

 Orchestration: It involves two aspects: one is 
resource allocation, the other is resource 
coordination. With resource allocation, the 
management system needs to guarantee service-level 
agreements (SLAs) of datacenter resources, such as 
network bandwidth and latency for tenants. Besides, 
datacenter operator leverages management system to 
make cost-efficient decisions for workload 
placement. As a consequence, the resource 
allocation algorithms deployed in management 
system should take requirements from both operators 
and tenants into account. On the other side, allocated 
resources may access the datacenter network (DCN) 
at different layers. For example, virtual machines 
(VMs) are attached to software switches [12] in 
physical servers, and other non-virtualized resources, 
e.g. network security appliances, may be connected 
to the top-of-rack (ToR) switches directly. In multi-
tenancy environment, the management system needs 
to perform coordination. For example, flow tables in 
switches are manipulated according to the resource’s 
accessing place for elastic cooperation.  

 Provision: The requirements of resource type, scale 
and topology vary among different tenants. The 
management system is responsible for providing 
various resources templates to efficiently deliver 
service and facilitate management. For example, 
many trial users apply single VM for light weight 
tasks. High performance computing tasks may 
require multiple VMs interconnected in a layer-2 
network with high bandwidth and low latency. More 
complicated, organizations may deploy part of their 
IT infrastructure into the cloud along with restrict 
network security policy. Thus, both tenants and 
datacenter operators have the requirements of 
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resource utilization statistics for purposes of resource 
optimization and charging. 

However, most existing solutions are difficult to meet 
those requirements simultaneously. They may suffer from 
one or more drawbacks in the following aspects: 

 Limited support for network resources in 
orchestration: Most cloud management systems 
place and schedule workloads according to CPU 
load and memory usage, which lacks integration of 
network resources, such as connectivity, bandwidth 
and latency. Different cloud applications have 
different requirements of resources. Compute-
intensive tasks require more CPU and memory 
resources, while I/O-intensive workloads may focus 
on network bandwidth and latency. Without careful 
consideration of these aspects, the orchestration may 
deploy workloads with network resources 
oversubscribed or not fully utilized [4]. Besides, the 
multi-tenancy cloud is a dynamic and mutable 
environment, and the distribution of datacenter 
capacity is frequently varying. Tenants come and go, 
which needs agile provision of isolated virtual 
networks. However, network resources in most 
cloud datacenters are usually configured manually 
and statically, which is difficult for swift resource 
coordination. 

 Requirement of flexible and multifarious service 
provision: Many solutions in clouds are usually 
short of user-friendly and multifarious service 
provision. Allocated resources are presented and 
managed independently in simple fashion, e.g. a 
simple table listing all VM instances [22], which is 
absent of the service-oriented topology display. It 
not only limits the fast service provision for tenants’ 
large-scale or distributed systems, but also hampers 
tenants to manipulate and manage resource 
efficiently. Besides, it is the lack of service-oriented 
management interfaces and rich resource utilization 
statistics that restricts on-demand provision and pay-
as-you-go accounting. 

This paper presents LiveCloud, a novel framework to 
integrate and orchestrate technology components in cloud 
datacenters. Leveraging the software defined networking 
(SDN) techniques [9], LiveCloud is able to lively integrate 
and orchestrate different types of technology components. It 
programmatically configures switches which have open 
interfaces [3], coordinating network resources to provide 
multiple isolated virtual networks. Furthermore, LiveCloud 
delivers tenants with multiple types of topology for diverse 
service deployments. Main contributions of this paper are: 

 System design and implementation: LiveCloud 
addresses three management issues: visibility, 
orchestration and provision, by employing three 
corresponding views with different network 
topologies. Each view is the context under which the 
related issue is independently solved. LiveCloud 
implements and integrates a SDN controller which 
helps LiveCloud to tackle network and topology 
related problems, including network-involved 

resource orchestration and flexible service-oriented 
topology provision for different cloud applications. 
LiveCloud is architected on ports which bind to 
networks to establish the relation among those three 
views with event-driven processing model. It also 
exposes wieldy APIs for end-users programmatically 
controlling and managing services.  

 System deployment: LiveCloud has been deployed 
in different scenarios. One is for private cloud in a 
university campus, providing typical services of 
enterprise network. The other is for public cloud in a 
Tier-IV datacenter, supporting quality-of-service 
(QoS) guaranteed IaaS delivery. In our deployment 
and evaluation, it is proven that LiveCloud works 
well in both public and private clouds. By July 2012, 
two production cloud applications are running in the 
virtual infrastructure provided by LiveCloud system. 

The rest of this paper is organized as follows. Section 2 
introduces LiveCloud design principle and system 
architecture. Section 3 presents the reference model and 
implementation of LiveCloud controller. Section 4 shows 
LiveCloud deployment in two datacenters. Section 5 
introduces related work of LiveCloud. Section 6 draws our 
conclusion and discusses the future work.  

II. LIVECLOUD ARCHITECTURE 
The basic idea underlying LiveCloud is decouple. Instead 

of handling various aspects of resource management directly 
on technology components, we argue that it is necessary to 
separate those issues and limit their solution in certain views. 
As a consequence, LiveCloud introduces physical view, 
logical view and tenant view to solve visibility, orchestration 
and provision problems, respectively. In each view, 
LiveCloud refers to components which deliver services as 
service elements which are interconnected by networks. Both 
network topology and service elements are distinctively 
defined for different management issues processing. 

A. Physical  view 
This view describes topology (physical topology) and 

technology components (physical elements) actually 
deployed in cloud datacenters. LiveCloud maintains 
parameters of physical elements it discovers, such as 
performance, capacity of memory or storage and supporting 
functions. Service visibility is solved in this view, and 
technology components are view as containers which are 
able to provide services of multiple types. For example, a 
physical Ethernet switch can provide high-bandwidth and 
low-latency forwarding capacity. And a physical server may 
provide both computing resource for running VM instances 
and network resources, i.e. software switches, for 
communication between VMs. The physical view employs a 
unified and open format of events and commands for every 
specific service type of delivering elements to wrap 
management interfaces. Thus, LiveCloud can amalgamate 
supervision and manipulation of distributed technology 
components in centralized manner. LiveCloud employs 
heartbeat protocol and vendor-providing interfaces to 
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monitor the status of physical elements. Figure 1 depicts one 
typical physical view layout. 

The physical topology is split into three layers: edge, 
aggregation and core. A fat tree is built with commodity 
Ethernet switches for network core, providing non-blocking 
bandwidth among directly connected appliances. The 
network core can also be implemented by employing vendor-
specific appliances [1, 8]. Physical elements are located in 
edge layer, and access network core via either ToR switches 
or virtual server switches [12]. Network security and 
database elements may employ non-virtualized techniques 
[2], and computing service elements are in virtualized 
provision [17]. Physical elements can be identified using 
physical location, such as rack ID and slot ID. Two tenants’ 
computing resources have been allocated among three host 
servers as the left of Figure 1 shows. 

B. Logical view 
As physical views in different datacenters may vary from 

one another, impervious orchestration in that view is too 
complex and inflexible to adapt to the dynamic and scaling 
cloud environments. LiveCloud needs a consistent topology 
to develop orchestration algorithms. And logical view is 
introduced for deploying resource allocation algorithms and 
performing coordination to help allocated resources 
gracefully cooperate. It defines multi-layer topologies 
according to different network infrastructure, and describes 
service elements accessing in cloud datacenter. In logical 
view, LiveCloud abstracts and quantifies various types of 
service elements, and forms unified resource pools. For 
example, CPU frequency and core number are transformed 
into numerical value comprehensively, representing 
computing capacity. Besides, bandwidth and latency are 
extra two network resources considered during resource 
allocation, as some cloud applications have specific 
requirements. Resource quantification takes the orchestration 
a major step of abstraction beyond direct manipulation of 
technology components. LiveCloud designs multiple 
evaluation models involving lease period and other SLA 
items to accommodate placement of workloads. Figure 2 
shows the logical view in LiveCloud, which is corresponding 
to the physical view described former. 

The logical view has a consistent three-layer access 
topology (logical topology). The outermost layer is 
composed of quantified technology components (logical 
elements), except for network resources. Ready-to-allocate 
and already-allocated resources in cloud are maintained in 
this layer, which is accordant to fashionable flat networking 
in cloud datacenters. In this view, the physical attributes of 
computing, database and network security are concealed 
using quantified values which are regarded as input of 
resource allocation algorithms. The intermediate layer is 
designed as access layer, in which the network resources are 
located. LiveCloud defines two sub-layers in the access layer 
of logical view, and each sub-layer is composed of multiple 
access switches providing access ports for logical elements 
accessing. We argue that I/O-intensive system deployment 
using multiple VMs should be placed in the same logical 
elements, which can leverage high bandwidth and low 
latency for east-west traffic provided by software switches in 
physical server. This model is suitable for cost-efficient 
cloud environments, which avoids the convergence of 
bandwidth at physical server network interface card. The 
innermost layer is network fabric which supports end-to-end 
non-blocking switching and has high bisection bandwidth in 
datacenter. Similarly, LiveCloud also supports the definition 
of forwarding model for network fabric, which allows 
operator to dynamically deploy traffic when using cheap 
plastic solution, avoiding congestion occurred in fabric. 

C. Tenant view 
For elastic provision and self-service arrangement, 

management system in multi-tenancy cloud datacenter 
should support on-demand resource allocation and isolate 
allocated resources among different tenants. Besides, it 
should expose flexible configuration interfaces of network 
topology (tenant topology) and service elements (tenant 
elements) to enable service-oriented management. Different 
tenants need diverse topology, according to their cloud 
application. Cloud management system ought to provide 
several templates of deployment for typical application use. 
LiveCloud delivers resources to tenant over virtual network 
with allocated elements attached. It introduces tenant view to 
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Figure 1. Physical view layout in multi-tenancy cloud datacenter 
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present layout and configuration details for certain tenant. 
Figure 3 shows the tenant view supported in LiveCloud.  

For the tenant views, each tenant should be able to build 
and modify its own layer-2 networks, over which it can also 
design its own layer-3 networks. All layer-3 subnets can 
interconnect with each other using a service gateway which 
is also the gateway from tenant virtual network to Internet. 
Tenant can assign network security and QoS policies 
according to its view. All allocated resources are organized 
in that topology, and concealed from the others. The rational 
of tenant topology design is the requirements of most cloud 
applications, including both private and public cloud, can be 
satisfied by tailoring and reforming on this topology. Facing 
with different service requirements from diverse cloud 
application, tenant views vary from each other and can be 
tailored or formed into different topology described in 
Section I. LiveCloud also provides a text-based descriptive 
language based on XML for agile tenant view description 
and configuration. Table 1 shows the essential frame, 
omitting the closing tags. LiveCloud converts tenant’s 
resource request into workflow. It performs inbuilt validation, 
submits requests and visually displays generated view. 

III. LIVECLOUD IMPLEMENTATION 
As service elements in all three views are interconnected 

and coordinated via networks, LiveCloud uses generic 
network ports to describe and manage attached service 
elements. This approach is also employed to re-correlate 
those decoupled views with less overhead. It maps and 
transforms the service elements, policies and topology 

described in tenant view to the configuration and 
manipulation of technology components actually deployed in 
cloud datacenter. 

Furthermore, cloud datacenter is a scalable, dynamic and 
distributed environment. In order to master complexity of 
centralized management systems for massive scattered 
service elements, LiveCloud is architected as data-centric 
and uses event-driven architecture (EDA) to build service 
provision workflow triggered by incident. It monitors data 
changes and registers for notification which drives 
LiveCloud to perform adjustment. As a consequence, the 
data manipulation commands are asynchronous. Based on 
EDA, LiveCloud is able to improve performance and 
becomes responsive, enabling larger scale. 

The system states tracked by LiveCloud controller are 
centrally stored. Differentiating the requirements of data 
update rates and availability, LiveCloud employs two 
different mechanisms to implement the storage of system 
states. For high durability and low update rate requirements, 
such as tenant elements location, tenant topology and 
policies, LiveCloud utilizes transactional persistent database. 
For high update rate requirements, such as resource 
utilization and historical statistics, LiveCloud employs 
NoSQL [23, 24, 25] techniques to handle large-scale, 
frequent and high-concurrency data update. 

A. Generic Network Port 
Network ports are essential objects in LiveCloud. A 

unique global identifier is assigned to each port in all three 
views. Port identifiers in different views have different 
descriptive structure. Service element information is treated 
as the parameters of the attached network port. And network 
behaviors are also designed using port-based description. 
LiveCloud stores mapping among port identifiers in all 
views. Thus, events generated by physical elements can be 
transformed into registered notification for tenant view 
processing, and adjustments in tenant view are mapped to 
executions in physical view. 

 Physical network port: LiveCloud employs open 
standard switch devices and software switches to 
serve as ToR switches and virtual server switches, 
respectively. They monitor attached physical 
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Figure 2. Logical view for orchestration in LiveCloud 
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Figure 3. Tenant view for provision in LiveCloud 

TABLE 1. TENANT VIEW DESCRIPTION LANGUAGE 
 
<configuration> 
  <vnet> <!-- a tenant view is named as a vnet --> 
    <vgate> <!-- gateway is always enable in different topologies --> 
      <public-interface> <!-- inf info, including MAC, IP bandwidth --> 
      <interfaces> <!-- private interface, multiple --> 
        <interface> <!-- inf info, similar to public-interface, vl2net binded --> 
 
    <vl2nets> <!-- a tenant can apply for multiple vl2nets --> 
      <vl2net> <!-- avl2net can be attached with multiple vm instances --> 
        <vms> 
          <vm> <!-- CPU, memory, disk and interface information --> 
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elements, and receive decisions from their controller 
on whether physical elements can access datacenter 
network. Port identifier in this view encompasses 
switch global unique identifier and switch-associated 
port number. LiveCloud records all links for element 
accessing currently up in network to formulate 
physical network topology. One link describes 
connection between two ports. All attributes of 
physical elements are viewed as network port 
parameters, and stored in LiveCloud system. Thus, 
any physical element can be located using attached 
network port. 

 Logical network port: LiveCloud regulates physical 
topology to a consistent and multi-layer logical 
topology, where it can imperviously orchestrates 
datacenter’s resource candidates and tenants’ 
resource requests. Workload placement calculated 
by orchestration algorithm is expressed in access 
port. And port identifier in this view encompasses 
information of hierarchy, layer-associated switch 
number and switch-associated port number. 
Accordingly, LiveCloud assigns a unique address for 
each logical element plugged in, which is structured 
accommodating to forwarding mechanism in 
network fabric. The unique address shadows 
attached port identifier and tenants’ information, 
which can efficiently support QoS mechanism. 
LiveCloud implements a PortLand [6] -like 
forwarding protocol in network fabric and also 
designs a novel pseudo MAC addressing involving 
information mentioned above. 

 Tenant network port: LiveCloud delivers resource 
and service to tenants via virtual network discussed 
in Section 2. Port identifier in this view encompasses 
tenant global unique identifier, layer-2 network 
number and network-associated port number. 
LiveCloud employs tenant topology to steer traffic in 
datacenter network, and network behavior is 
expressed as flow direction and connectivity 
between two network ports. Furthermore, for 
security and measurement purposes, tenant view 
involves those specific service elements, which 
redirects original one-hop traffic to a transparent 
middle box, like intrusion management system and 
load balancer. The behavior is defined as a specific 
traffic path in LiveCloud, and implemented in an 
indivisible end-to-end multi-hop sequence. 

B. Event-driven Model 
Cloud datacenter has a large scale physical network, and 

LiveCloud controller is architected in event-driven model to 
satisfy the requirements of scalability and programmability. 
A unified message format is designed for events and 
commands processing, and workflows are executed as 
message processing in LiveCloud. Figure 4 shows 
LiveCloud controller architecture. 

LiveCloud controller has three layered modules: driver, 
kernel and application, which adapts to handling of three 
views. The two bottom layers are engineered for application 

development. Raw and infrastructure management related 
messages are tackled and concealed from service-oriented 
application design. LiveCloud application is directly built on 
manipulation of tenant view. Furthermore, in order to 
provide the method of fine-grained functions implementation, 
LiveCloud supports registration of concerned messages 
sensing which affects events handling. 

 Driver: Preparing for physical view generation, 
driver module abstracts a set of core functions and 
configuration actions for catalogued service supplier, 
such as OpenFlow compatible switches [26], 
hypervisor and network security appliances. It 
encapsulates them with LiveCloud unified message 
format, and wraps technology component 
management system. Driver module maintains 
communication between controller and technology 
components. Thus, it offers kernel module a reduced 
but sufficient set of interfaces to manipulate 
datacenter infrastructure. 

 Kernel: In order to provide a flexible and 
convenient programming platform, kernel should not 
only support low level programming approach, but 
also expose service-oriented APIs that agile 
application design needs. This module includes 
physical and logical view generation essentially. It 
further supports registration for application, and 
stores network port mapping among physical, logical 
and tenant views. Kernel module listens for 
application joining, and supports multiple 
applications to register the update notifications of 
allocated resources states. After processing the 
messages of infrastructure management, kernel 
forwards messages transformed by mappings to 
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application who has subscribed before. In addition, 
kernel module is also responsible for stability with 
distributed backup databases. 
The real intelligence of LiveCloud resides in the 
orchestration algorithms. The resource allocation 
algorithms ought to decide the placement of tenants’ 
workload, and the traffic steering algorithms is 
responsible for updating the forwarding tables of 
network switches, according to tenants’ topology. 
LiveCloud quantifies both technology components in 
datacenter and tenants’ resource requests by certain 
measure. Benefiting from quantification, it is easy 
for LiveCloud to design multi-objective allocation 
optimization model. It comprehensively considers 
resource type, computing power, memory size, 
storage capacity, network bandwidth, lease period 
and other factors to generate optimal workload 
placement which achieves low power consuming, 
less resource fragment, guaranteed performance and 
other objectives. The placement decision generated 
by allocation algorithms are presented as candidates 
with ranks of different orientations. Tenants or 
Operators will decide the final placement. Then the 
kernel module dynamically steers traffic, according 
to those workloads placement.  

 Application: On basis of abstraction and mapping of 
the two bottom modules, LiveCloud applications can 
simply employ service-oriented APIs to implement 
their designs. LiveCloud also provides frequently 
used libraries, coordinating with those APIs. 
Additionally, it has a GUI (graphical user interface) 
for tenants to drag service elements and draw 
topology to meet their needs. They can dynamically 
attach a service element to certain network port in 
tenant view where infrastructure specification and 
charge are associated.  

IV. LIVECLOUD DEPLOYMENT 
LiveCloud has been deployed in two different scenarios: 

private cloud and public cloud. An experimental analysis 
was also conducted to evaluate the performance and 
scalability of LiveCloud.  

A. Private Cloud 
LiveCloud has been deployed in the FIT building at 

Tsinghua University. It supports private cloud for labs, 
cooperating with their enterprise network environment. The 
private cloud consists of 5 racks, each with 10 slots. Each 
rack contains 9 host servers, with about 100 ~ 120 VMs 
provision. 60 VMs have been reserved for security elements 
supported by [15, 16]. LiveCloud allocates private cloud 
resources for multiple labs. Each team is served as a tenant in 
LiveCloud, and a virtual L3 network is assigned. Websites 
and other network services have been migrated into the cloud. 
Besides, all labs’ networks provide both wired and wireless 
connections to access private cloud. LiveCloud enables each 
team’s local area network extending to virtual network in 
cloud, and VMs in cloud are peer nodes of members’ 
desktops. Further, LiveCloud supports short-term lease for 

algorithm evaluation, network protocol testing and other 
research requirements. 

B. Public Cloud 
LiveCloud has also been deployed for public cloud in a 

Tier-IV datacenter. It manages 50 physical servers and 
provides over 1,000 VMs. All these resources are 
interconnected by commercial-off-the-shelf (COTS) core 
switches [8]. Fibre Channel (FC)-SAN is employed for 
storage service provision. LiveCloud provides public cloud 
tenants with an entire virtual datacenter (VDC) environment. 
Each VDC is a tenant-defined virtual L3 network, virtually 
isolated from other tenants’ in the same datacenter. The on-
demand virtual compute and storage resources are attached 
to the network, and all virtual L2 networks, as well as the 
Internet, are interconnected by a virtual gateway, on which 
tenants can specify their own management and security 
policies. Figure 5 shows the essential part of user interface 
for cloud datacenter operators. The left sidebar shows the 
abstract tree-form tenant view. It simply lists the tenant 
elements according to the tenant topology. The right part 
shows the status of service elements. The operator can click 
on them to browse the detail. The figure shows that there are 
two production cloud applications deployed on the IaaS 
provided by LiveCloud. Each of them is classic Web 
application. As a consequence, single virtual layer-2 network 
can meet their requirements. 

C. Controller Deployment 
The LiveCloud controller can be implemented using 
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Figure 5. Views of Production Applications in Public Cloud 
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commodity X86 servers. To achieve high performance, we 
also implement LiveCloud controller on Tilera [18], a high 
performance platform with low clock rate and low power 
consumption. Figure 6 shows Tilera TILEPro64 architecture. 
It provides Linux programming environment with optimized 
dataplane processing. It has 64 full-meshed processor cores 
and three programmable inter-tile networks for efficient 
communication. It has four on-chip memory controllers 
which can address up to 16GB shared memory with cache-
coherent support.  

The performance and scalability of LiveCloud controller 
are evaluated by measuring event processing speed on 
different core number and network scale. SmartBits600 is 
employed to generate packets as event triggers, and measures 
throughput of different events processing in event per second 
(eps) unit. Figure 7 shows the performance on different core 
number. Using 20 cores, the controller can reply 1,371K 
ARP requests, set 957K flows in the same switch and set 
736K flows across two switches per second, respectively. 
Figure 8 shows the performance on different switch number. 
With network scaling, the performance reduction is about 
8 % ~ 13%. 

V. RELATED WORK 
Cloud datacenters consist of millions of technology 

components that provide computing, storage and networking 
resources. Value added services, including security, load 
balance and service acceleration are provided by specific 
appliances. As datacenter scales, it becomes difficult to put 
all these service elements together for efficient service 
provision. Network cannot effectively adapt to multi-tenancy, 
and multiple service elements are difficult to be lively 
involved. For network evolving in datacenter, both industry 
and academy present solutions to isolation and scalability [5, 
7]. Thus, network, security and other similar elements should 
not be viewed as approach or add-ons any longer. They need 
to be treated as resources as computing and storage are, and 
should be well-orchestrated together. 

To take global optimal orchestration, a network 
integration platform which has open industry standard APIs 
is needed to interconnect diverse service elements. Based on 
the platform, control logic can be built to dynamically 
change network behaviors, which is referred as SDN. 
OpenFlow is an open standard which provides a channel to 
manage forwarding tables in switches. And it is the key 

technique in SDN. Onix [9] is one of the most advanced 
OpenFlow controllers, and it also offers a general SDN 
programming platform. It can be used in almost every large-
scale production network. However, it exposes APIs 
manipulating network states rather than service provision, 
which hardly meet agility, ease-of-use and service-oriented 
operation requirements in clouds. 

VI. CONCLUSION AND FUTURE WORK 
This paper presents LiveCloud, a flexible orchestration 

platform for IaaS provision in cloud datacenters. Based on 
the decoupling of management issues, LiveCloud handles 
those problems in three different views with perspectives of 
physical, logical and tenants. Leveraging SDN techniques, 
LiveCloud brings network resources into orchestration, 
guarantying the SLA of network bandwidth and latency. To 
further step, LiveCloud delivers services with isolated virtual 
networks, which helps tenants to deploy their applications 
efficiently. This paper also presents LiveCloud controller’s 
reference model. It takes generic network port as essential 
object, and is architected in event-driven model. Moreover, it 
provides service-oriented APIs for application developing, 
which significantly reduce the management complexity. We 
implement the prototyping system and deploy it in different 
objective datacenters. 

In addition, several areas are identified as our future work. 
Firstly, LiveCloud controller is deployed on single device 
currently, and it will be a choke point as datacenter’s scale 
grows. We believe event-driven model is suitable for 
controller evolving to distributed system. Secondly, multicast 
and broadcast has been designed by leveraging VLAN and 
multicast IP group to implement broadcast domain in tenant 
view, but currently still under development. Besides, 
resource allocation algorithm we have implemented is in 
static methods [13]. It will be improved with feedback 
consideration of element status, coordinating with migrating 
techniques. Moreover, further abstraction and quantification 
for security elements need to be designed to integrate 
hardware-based solution, not only software-based ones [14]. 
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