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Abstract—As one of the most popular recommender technolo-
gies, Collaborative Filtering (CF) has been widely deployed in
industry due to its simplicity and interpretability. However, it is
facing great challenge to generate accurate similarities between
users or items because of data sparsity. This will cause second-
order error in the process of using weighted sum as prediction. To
alleviate this problem, we propose several methods to learn more
accurate item similarities by minimizing the squared prediction
error. This optimization problem is solved using Stochastic
Gradient Descent. A comprehensive set of experiments on two
real-world datasets at error and classification metrics indicate
that the proposed methods can achieve comparable or even better
performance than other state-of-the-art recommendation methods
of Matrix Factorization, and greatly outperform traditional item
based CF method. Besides, the proposed methods inherit the
interpretability of item based CF, which makes the recommended
results more accessible compared to competing methods of Matrix
Factorization.

Keywords—Recommender Systems, Collaborative Filtering,
Similarity Measurement, Matrix Factorization, Stochastic Gradient
Descent.

I. INTRODUCTION

Recommender systems (RS) bring great convenience to
people’s life by helping them find the most relevant content
from seriously overloaded Web. Nowadays, RSs have been
successfully used in many fields, such as video (e.g., Net-
flix, YouTube), music (e.g., Pandora), book (e.g., Amazon),
news (e.g., Digg) etc. Over the years, massive algorithms
have been developed to address the recommendation problem
[1][2]. These algorithms make use of the user explicit (e.g.
rating) or implicit (e.g. click-through, purchase and review)
feedback to construct the user interest model and then make
recommendations.

As one of the most promising recommender methods [3],
collaborative filtering (CF) anticipates user’s interests by con-
sidering the opinions of those who have similar preferences.
Compared to other techniques (e.g., content based methods
[4][5]), typically, CF based methods act only on a user-item
rating matrix which is represented by the feedback informa-
tion. Besides, CF based methods have the capability to expose
unexpected items to users, which are not similar to those they
have chosen before. This makes them work well in domains
where the attribute content of items is difficult to parse, such
as musics and videos.

CF based methods can be further classified into two classes:
memory based CF methods [6] and model based CF methods
[7][8][9][10]. The former finds similar users (or items) for the
active user (or item) using similarity measurement methods,
and then aggregate the ratings of these neighbours as the
prediction. Memory based CF contains two popular methods,
user based CF [11] and item based CF [12], depending on
whether the neighbours are derived by identifying similar
users or items. Due to its simplicity and reasonably accurate
recommendations, memory based CF has been widely used in
industry. However, it suffers from several problems, including
data sparsity [13], cold start [14] and data correlation [15],
where each user express preference to only a small subset of
the available items, and users tend to rate similar items closely.
Therefore, the similarities between users or items cannot be
accurately measured by the existing similarity measurement
methods, such as Cosine and Pearson Correlation, which will
result in inaccurate predictions. To alleviate this problem,
many model based methods are proposed, such as Bayesian
belief nets CF models [7], clustering CF models [8], Markov
decision process based CF models [9] and latent semantic CF
models [10]. However, some of these models are not applicable
because of their complexity, such as the estimation of multiple
parameters and sensitivity to the statistical dataset properties.
In addition, matrix factorization, such as [16], aims to alleviate
this problem by reducing the dimensions of user-item rating
matrix, then the implicit relationships between items (even
those have not been co-rated by one user) can be captured.
The outstanding performance makes matrix factorization be
considered a state-of-the-art method in rating prediction, but it
introduces high computational complexity and also faces the
problem of uninterpretable recommendations.

To improve the performance of memory based CF without
discarding its advantages, new similarity measurement method
based on user or item rating statistics was proposed in [17] and
Grey Forecast model was used for rating prediction regardless
of the similarities [18].

In this paper, we propose several methods to learn more
accurate item similarities by minimizing the squared prediction
error. Then, the prediction is made by the weighted sum of the
active user’s ratings to similar items with learned similarities.
The extensive experiments are conducted on two real-word
datasets, and the results demonstrate that the proposed methods
can greatly outperform traditional item based CF and achieve
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comparative or even better performance than the state-of-
the-art method, matrix factorization. Besides, the proposed
methods inherit the interpretability from item based CF, which
make the recommendations more accessible to users.

The rest of the paper is organized as follows. Section II
introduces the notations, the existing similarity measurement
methods and motivation. In Section III, the proposed item
similarity learning methods are presented detailedly. Sections
IV and V provides the experiment design and result analysis
respectively. Followed by the final section, which provides
some concluding remarks.

II. RELATED WORK

In the typical item based CF recommendation scenario,
user’s implicit or explicit preferences to certain item can be
modelled as a rating. High rating suggests the user is satisfied
with this item. If we denote m as the number of users and n
as the number of items, the ratings of these users on items can
be integrated into a user-item rating matrix Rm×n, where the
rating of user u(u = 1, 2, . . . ,m) on item i(i = 1, 2, . . . , n)
can be denoted by ru,i. ru,i is set to 0 when user u has not yet
rated item i. Further, U(i) = {u|ru,i �= 0;u = 1, 2, . . . ,m} is
the set of users who have given ratings to item i. Similarly,
I(u) = {i|ru,i �= 0; i = 1, 2, . . . , n} contains all items rated
by user u. The critical step of item based CF is to calculate
similarity between two items i and j with notation of simi,j ,
thus, all item pairs’ similarities produce a item similarity
matrix Simn×n. Then, the k(k < n) most similar items for
each item i are chosen as its k nearest neighbourhood Nk(i).
The k nearest neighbourhoods for all items will form the item

neighbourhood matrix Simn×k. Finally, the prediction of the
given user u on unrated item i is the weighted sum of the
ratings of u on the items in Nk(i) [19]. That is

r̂u,i =

∑
j∈Nk(i)∩I(u)

simi,j · ru,j

∑
j∈Nk(i)∩I(u)

|simi,j |
(1)

where r̂u,i is the prediction. Therefore, the accuracy of item
based CF depends greatly on the quality of the similarity mea-
sure. Nowadays, many different methods have been proposed
to compute similarity between items.

A. Cosine based Similarity

The basic idea to accurately measure the similarity between
item i and item j is first to find out the users who have rated
both of these items, and then the ratings for item i or j given
by these users form an item rating vector. The vector cosine
between two item rating vectors is applied to determine the
similarity. Therefore, the cosine based similarity [13] (denoted
by cosi,j) between item i and item j is

cosi,j =

∑
u∈U(i)∩U(j)

ru,i · ru,j

√ ∑
u∈U(i)∩U(j)

r2u,i

√ ∑
u∈U(i)∩U(j)

r2u,j
(2)

B. Pearson Correlation based Similarity

Since some items tend to get higher ratings than others, it
is necessary to eliminate item means before computing sim-
ilarity. Therefore, following cosine based similarity, Pearson
correlation [12] measures the extent to which two item rating
vectors linearly relate with each other

peari,j =

∑
u∈U(i)∩U(j)

(ru,i − r̄i)(ru,j − r̄j)

√ ∑
u∈U(i)∩U(j)

(ru,i − r̄i)2
√ ∑

u∈U(i)∩U(j)

(ru,j − r̄j)2

(3)
where r̄i and r̄j are the average ratings of items i and j,
respectively. peari,j is the Pearson correlation based similarity
between item i and item j.

C. Jaccard Coefficient based Similarity

In contrast with the aforementioned methods, Jaccard Coef-
ficient [20] does not care about the exact ratings. It measures
the number of users who have given ratings to both items
compared to the number of users who have rated either of
them

Jaccardi,j =
U(i) ∩ U(j)

U(i) ∪ U(j)
(4)

where Jaccardi,j is the Jaccard coefficient based similarity of
items i and j.

D. Motivation

In real world scenarios, users typically express preference
(click-through, purchase or rating) to only a handful of items
out of thousands of items. Such sparse user-item rating matrix
makes traditional methods like item based CF fail to measure
the similarities between items that have not been co-rated by
at least one user. Intuitively, the similarity between item i and
item j will have simi,j = 0, if they have not been co-rated
by at least one user. However, firstly, these two items can be
similar to each other by the third item which is similar to
both of them due to similarity transitivity [21]. Secondly, the
similarity is not accurate when there are not enough co-rated
users. Besides, due to systematic tendencies for some users
like to give higher ratings than others, and for some items
analogously (i.e. Pearson correlation attempts to overcome this
advantage by subtracting user or item mean), the inherent
error will exist using aforementioned similarity measurement
methods. Consequently, the item similarity matrix generated
will be inaccurate. Therefore, using these similarities as weight
for prediction (see Eq.(1)) will bring second-order error.

However, due to its intuitive nature, item based CF method
is amenable to explaining. This is because users are easier to
accept items which are similar to those previously preferred by
them. In addition, item based CF method is relatively simple to
implement, which makes it favourable in many cases despite
mediocre accuracy. This leads us to improve item based CF
method by proposing item similarity learning methods which
can overcome the aforementioned advantages.
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Algorithm 1 Learning method with similarity as initial weight

1: procedure SIMCF(Simn×k)
2: iter← 0
3: γ ← learning rate
4: λ← �F regularization weight
5: Rm×n ← Training Set

6: Init Ωn×k with Simn×k

7:

8: while iter < maxIter or error on training set de-
creases do

9: for all ru,i ∈ Rm×n do
10: r̂u,i ←

∑
j∈Nk(i)∩I(u)

ωi,j · ru,j

11: eu,i ← ru,i − r̂u,i
12: for all j ∈ Nk(i) ∩ I(u) do
13: ωi,j ← ωi,j − γ(−eu,i · ru,i + λωi,j)
14: end for
15:

16: end for
17:

18: iter← iter + 1
19: end while
20:

21: return Ω
n×k

22: end procedure

III. ITEM SIMILARITY LEARNING METHODS

In the item based CF, the prediction r̂u,i for a user u
on an unrated item i is calculated as an aggregation of
the items that have been rated by u (see Eq.(1). If ωi,j is
assigned to be the normalization of similarity with ωi,j =
simi,j/

∑
j∈Nk(i)∩I(u)

|simi,j |, this equation is equivalent to

following one:

r̂u,i =
∑

j∈Nk(i)∩I(u)

ωi,j · ru,j (5)

To obtain more accurate prediction, ωi,j will be opti-
mized by the proposed item similarity learning methods. After
learning the similarity for each item pair, an improved item
similarity matrix will be generated (denoted by Ω). Since
Nk(i)∩ I(u) is k nearest neighbours of item i that have been
rated by user u, Ω is a n × k matrix which can be further

denoted by Ω
n×k.

The squared prediction error is used as loss function to
compute the loss, which is given by

L(·) =
∑

ru,i∈Rm×n

‖ru,i − r̂u,i‖
2
F (6)

where ru,i and r̂u,i are the ground truth value and the predic-
tion respectively. The prediction r̂u,i for a given user u on item
i is estimated as Eq.(5). Therefore, the item similarity matrix

Ω
n×k is learned by minimizing the following regularized

optimization problem

minimize
Ωn×k

1

2

∑
ru,i∈Rm×n

‖ru,i − r̂u,i‖
2
F
+

λ

2

∥∥∥Ωn×k
∥∥∥2
F

(7)

where the regularization term is used to prevent overfitting
and λ is the regularization weight for learned item similarity
matrix. The Stochastic Gradient Descent (SGD) algorithm
[22] is applied to solve the optimization problem of Eq.(7).
We developed three item similarity learning methods that use
different initial values for Ωn×k.

A. SimCF-Similarity as Initial Weight

Following the common practices for top-N recommenda-
tion [23][24], the loss function in Eq.(6) is computed over only
all rated entries of user-item rating matrix Rm×n. Note that be-
fore the learning procedure, one of the similarity measurement
methods introduced in section (II) is used to roughly generate
the item similarity matrix Simn×n. Then, in order to reduce
the computational requirements for optimization, k nearest
neighbours are chosen for each item to form the k nearest item

neighbour similarity matrix Simn×k. Algorithm 1 provides
the detailed gradient update rules. Ωn×k is initialized with the

k nearest item neighbour similarity matrix Simn×k as the
initial prediction (see line 6). The iteration is repeated until
the number of iterations has reached the predefined threshold
or the error decrease on the training set reaches the predefined
resolution.

B. RanCF-Random Value as Initial Weight

Following the procedure of SimCF, RanCF also calculates
the item similarity matrix firstly. With the same purpose to
reduce the computation overhead for optimization, only k near-

est neighbours for each item are chosen to generate Simn×k.

Ω
n×k initialized with Simn×k, but the values are replaced

by random values in (0,1) as the initial prediction (see line 6).
This is in contrast with SimCF, which use the similarities as
weights for initial prediction. Algorithm 2 provides the detailed
procedure of RanCF.

C. ConCF-Constant Value as Initial Weight

The SGD algorithm may get local optimums due to inap-
propriate initial values. Therefore, we developed ConCF with

constant value 0.1 as the initial prediction. That is, once Ω
n×k

is initialized with Simn×k, the values are replaced by constant
value 0.1 (see line 6). Other process is the same to SimCF and
RanCF. Algorithm 3 illustrates the whole procedure and the
gradient update rules.

IV. EXPERIMENTAL EVALUATION

A. Data Sets

The performance of the proposed item similarity learning
methods is evaluated on two different real datasets, namely
MovieLens100k and MovieLens1M. Both of them are the sub-
sets of data collected by Grouplens research from the Movie-
Lens Web site (http://movielens.umn.edu). MovieLens100k
consists of 100,000 ratings (in the scale of 1-5 stars) of
943 users on 1682 movies. MovieLens1M is much larger
than MovieLens100k, which consists of one million ratings
given by 6040 users on 3952 movies. Table I summaries the
characteristics of all the datasets.
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Algorithm 2 Learning method with random value as initial
weight

1: procedure RANCF(Simn×k)
2: iter← 0
3: γ ← learning rate
4: λ← �F regularization weight
5: Rm×n ← Training Set

6: Init Ω
n×k with Simn×k and then replaced with

random values in (0,1)
7:

8: while iter < maxIter or error on training set de-
creases do

9: for all ru,i ∈ Rm×n do
10: r̂u,i ←

∑
j∈Nk(i)∩I(u)

ωi,j · ru,j

11: eu,i ← ru,i − r̂u,i
12: for all j ∈ Nk(i) ∩ I(u) do
13: ωi,j ← ωi,j − γ(−eu,i · ru,i + λωi,j)
14: end for
15:

16: end for
17:

18: iter← iter + 1
19: end while
20:

21: return Ω
n×k

22: end procedure

Algorithm 3 Learning method with constant value as initial
weight

1: procedure CONCF(Simn×k)
2: iter← 0
3: γ ← learning rate
4: λ← �F regularization weight
5: Rm×n ← Training Set

6: Init Ω
n×k with Simn×k and then replaced with

constant value 0.1
7:

8: while iter < maxIter or error on training set de-
creases do

9: for all ru,i ∈ Rm×n do
10: r̂u,i ←

∑
j∈Nk(i)∩I(u)

ωi,j · ru,j

11: eu,i ← ru,i − r̂u,i
12: for all j ∈ Nk(i) ∩ I(u) do
13: ωi,j ← ωi,j − γ(−eu,i · ru,i + λωi,j)
14: end for
15:

16: end for
17:

18: iter← iter + 1
19: end while
20:

21: return Ω
n×k

22: end procedure

TABLE I: Characteristics of datasets

Dataset �Users �Items �Ratings Ruser Ritem Density

MovieLens100k 943 1682 100,000 106.04 59.45 6.30%

MovieLens1M 6040 3952 1,000,000 165.56 253.04 4.19%

The "�Users", "�Items" and "�Ratings" are the number of users, items
and ratings respectively included in each of the datasets. The "Ruser"
and "Ritem" are the average number of ratings for each user and each
item respectively. The "Density" measures the density of each dataset
with Density = �Ratings/(�Users × �Items).

B. Evaluation Methodology

To evaluate the performance of the proposed methods, the
data set is randomly split into training set and test set. In this
paper, training set contains nearly 80% ratings of the data set,
while the rest of the data is used as the test set. The proposed
methods learn better item similarity to improve the accuracy
of item based CF by minimizing the rating prediction error.
Therefore, two frequently used error metrics, Mean Absolute
Error (MAE) [18] and Root Mean Square Error (RMSE) [18],
are applied to evaluate the error between ground truth value
and predicted value. MAE and RMSE are defined as follows

MAE =

∑
(u,i)∈T

|ru,i − r̂u,i|

|T |
(8)

RMSE =

√√√√
∑

(u,i)∈T

(ru,i − r̂u,i)2

|T |
(9)

where T contains all user-item pairs in the test set. |T | is the
number of (u, i) pairs.

In the top-N recommendation scenario, we care more about
suggesting a short list of items to the given user than predicting
precisely. Therefore, two maturely used metrics in information
retrieval, precision and recall [23], are applied to measure the
classification accuracy of recommender systems. Since an item
can be either interesting or uninteresting to the given user,
there are four possibilities between the ground truth value and
predicted value, namely, true positive (TP), false positive (FP),
true negative (TN) and false negative (FN). If we define a
rating ru,i is less than the set threshold t, it suggests that
user u is not interested in item i, and vice versa. Then true
positive can be denoted by TP = {(u, i)|(u, i) ∈ T, ru,i ≥
t, r̂u,i ≥ t}, which contains all interesting (u, i) pairs in test
set that are classified correctly, while true negative contains
all uninteresting (u, i) pairs that are classified correctly, where
TN = {(u, i)|(u, i) ∈ T, ru,i < t, r̂u,i < t}. Similarly,
false positive is the set of uninteresting (u, i) pairs that are
classified into interesting ones, witch can be denoted by
FP = {(u, i)|(u, i) ∈ T, ru,i < t, r̂u,i ≥ t}. The others are
included in FN = {(u, i)|(u, i) ∈ T, ru,i ≥ t, r̂u,i < t}. Here,
we set t = 3. Consequently, precision and recall can be defined
as follows

precision =
|TP |

|TP |+ |FP |
(10)

recall =
|TP |

|TP |+ |FN |
(11)
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where "| |" is the size of the set.

Often, the relationship between precision and recall is in-
verse. Therefore, a combination between precision and recall is
usually used to better understand this type of recommendation
quality, which is named F-measure [18]

F -measure =
2 · precision · recall

precision+ recall
(12)

C. Comparison Algorithms

The performance of the proposed methods is compared
against that achieved by item based CF (ICF) [12], unweighted
ICF (UICF), SlopeOne [25], SVD+ [16] and SVD++ [16].
With different similarity methods to calculate similarity be-
tween items, there are several variants of ICF, namely Co-
sine based ICF, Pearson Correlation based ICF and Jaccard
Coefficient based ICF. UICF uses similarities to find k most
similar items for each item, and then takes the average as the
prediction rather than the weighted average. Similarly, UICF
also has three variants. SVD+ and SVD++ are two variants of
matrix factorization, the former is closely related to PureSVD
[23], but it uses SGD for minimizing the regularized squared
error on the training set. SVD++ is an improved version of
SVD+ by taking user and item biases into account. This set
of methods constitute the current state-of-the-art for rating
prediction task in recommendation. Therefore, they form a
good set of methods to evaluate our proposed methods.

V. EXPERIMENTAL RESULTS

The experimental evaluation consists of three parts. First,
we study the effect of the number of nearest neighbours and
various similarity methods of our proposed approaches on
the prediction accuracy. Second, the effect of various item
similarity learning methods is studied. Finally, due to the
lack of space and the same results and conclusions carried
over to two datasets, MovieLens1M is chosen to represent
the comparison results with other competing methods (Section
IV-C) on both error and classification metrics.

A. Effect of the Number of Nearest Neighbours

When the number of nearest neighbours k is set to be small,
the prediction may be failed or inaccurate due to the lack of
items rated by the given user in this small neighbourhood.
Particularly, if user u did not rate at least one item of i’s k most
similar items, (u, i) pair in test set can not be predicted. Here,
we define the predictable pairs in proportion to all candidate
pairs as the predict rate. Since the results are meaningful
only when the predict rate is high enough, in this paper, the
thresholds are 99% and 90% for MovieLens100k and Movie-
Lens1M respectively due to the difference of data sparsity
(see Table I). Fig. 1 shows the performance comparison of
ICF with three similarity methods. The Jaccard Coefficient
based ICF can achieve high predict rate with smaller k than
the others. This is because the popular items always get the
high Jaccard Coefficient similarities, and these items have high
probabilities to be rated by the given user. Moreover, ICF
performs difference with different similarity methods, and the
results tend to be worse as k increases to a certain size since
the rating with low similarity becomes noise data.
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(a) MovieLens100k dataset
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Jaccard Coefficient based ICF

(b) MovieLens1M dataset

Fig. 1: The MAE comparison of ICF with different similarity
methods.

Take RanCF as an example, the performance compared
against that achieved by ICF and UICF with different similarity
methods are illustrated in Fig. 2 and Fig. 3. It shows that
the proposed method can outperform the traditional ICF no
matter which similarity method is based on. To reveal the
improvement more clearly and fair, the optimum result for
each method is chosen. For example, the optimum MAE value
is 0.60 for Cosine based RanCF, and 0.68 for Cosine based
ICF, on MovieLens1M dataset. Therefore, the improvement
is over 10% ((0.68 − 0.6)/0.68 = 11.76%) in terms of
MAE. The results are illustrated in Fig. 4. The same results
and conclusions are reached by SimCF and ConCF. Besides,
we can find that UICF achieves comparatively even better
performance than ICF, which suggests that the similarities
calculated by these popular similarity measurement methods
are inaccurate. This motivates us to improve the ICF by
learning more accurate item similarities.

B. Effect of Similarity Methods

Since different similarity methods may generate different
k nearest neighbours for each item, the initial weight ma-

trix Ω
n×k for item similarity learning methods will not be

the same (Because Ω
n×k is replaced by Simn×k firstly.).

Intuitively, the results achieved by the proposed approaches
may be quite different. However, Table II shows that RanCF
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TABLE II: The MAE comparison of RanCF with three similarity methods generating k neaerest neighbours

Dataset k 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

MoiveLens100k

Cosine 0.774 0.767 0.766 0.767 0.770 0.773 0.776 0.777 0.779 0.778 0.777

Pearson 0.794 0.778 0.773 0.769 0.771 0.771 0.772 0.771 0.770 0.770 0.774 0.775

Jaccard 0.768 0.763 0.765 0.767 0.771 0.773 0.775 0.776 0.777 0.778 0.778 0.778 0.778 0.779 0.778

MoiveLens1M

Cosine 0.629 0.615 0.605 0.602 0.601 0.604 0.608 0.612 0.617 0.622 0.627 0.631

Pearson 0.672 0.652 0.640 0.632 0.630 0.630 0.631 0.633 0.635 0.638 0.641 0.644

Jaccard 0.671 0.668 0.669 0.671 0.673 0.674 0.676 0.677 0.678 0.679 0.680 0.681 0.681 0.682 0.682
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Fig. 2: The MAE comparison of RanCF, ICF and UICF with different similarity methods on MovieLens100k dataset.
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Fig. 3: The MAE comparison of RanCF, ICF and UICF with different similarity methods on MovieLens1M dataset.

performs slightly difference (especially on MovieLens100k
dataset) with different similarity methods generating k nearest
neighbours. This is because the proposed methods aim to
learn more accurate similarities by minimizing the prediction
error regardless of the similarity values calculated using the
similarity methods introduced in Section II.

Besides, as k increases, the MAE value falls down and
then up. The reason is that small neighbourhood does not
have enough rated items for prediction, on the contrary, big
neighbourhood will bring noise data which may decrease
the performance. The optimum k for Cosine and Pearson
Correlation based RanCF are much bigger than the one of
Jaccard Coefficient based RanCF. It is still because Jaccard
Coefficient similarity method tend to give higher similarities
to popular items which have higher probabilities to be rated by
users. Therefore, Jaccard Coefficient based RanCF can easily
get enough data to make optimum prediction even with small
k. However, Jaccard Coefficient based RanCF performs worse

than other two RanCF variants. This appears more obvious on
the sparser dataset, MovieLens1M. The results of SimCF and
ConCF are not given because of the same conclusion reached
and lack of space.

C. Effect of Initial Weight

Since different similarity methods will generate different k
nearest neighbours, the items used for prediction may not be
the same. Despite this difference, they perform comparatively
and carry out the same conclusions (Section V-B). Therefore,
the Pearson Correlation based methods are only used for fur-
ther analysis. To better understand the effect of initial weight
for item similarity learning methods, Table III summarizes
the MAE comparison of Pearson Correlation based SimCF,
RanCF and ConCF. It shows that they perform about the same,
and have the same trend (The MAE value goes down and
then up). It concludes that the performance of the proposed
methods depend less on the initial weight than the similarity
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methods which decide the k nearest neighbours (Although the
dependence is also not heavy).

D. Comparison with Other Approaches

To effectively evaluate the performance of the proposed
methods, we compare them against several state-of-the-art CF
methods, namely SlopeOne and two variants of PureSVD. The
Cosine similarity measurement method is used to calculate the
similarities between items and generate k nearest neighbours
for each item. The RanCF is chosen for the comparison with
the parameters γ = 0.003, λ = 0.04 and maxIter = 30. On
the dataset of MovieLens1M, k is set 400 so that Cosine based
CF can achieve the optimum performance, while k is 800 for
Cosine based RanCF. The performance comparison is shown
in Fig. 5.

Fig. 5(a) shows that Cosine based RanCF performs compar-
atively with the state-of-the-art methods, SVD+ and SVD++, in
terms of error metrics. Moreover, RanCF greatly outperforms
SlopeOne, ICF and UICF with more accurate prediction.
In Fig. 5(b), it can conclude that the precision and recall
have inverse relationship. The precision values of RanCF and
SVD+, SVD++, are about the same, but RanCF can achieve
higher recall than them. Therefore, RanCF outperforms SVD+
and SVD++ in terms of F-measure. Since more than 80% of
ratings are not less than 3 of both datasets and the overall mean
is bigger than 3.5, ICF will get few FN by using the weighted
sum as the prediction even though the prediction is not accurate
(High MAE and RMSE in Fig. 5(a)). This is more obvious
for UICF, which directly uses the average as the prediction.
Therefore, ICF and UICF always give prediction bigger than
3, which results in few FN and many FP. Consequently, the
precision is low, but the recall is relatively high. However, the
recall is meaningful only when precision is high enough, thus,
RanCF achieves outstanding performance compared against
that achieved by state-of-the-art methods.

E. Computational Complexity Analysis

Matrix Factorization methods need to learn at least two
factored matrices Pm×f for users and Qn×f for items, where
f is the number of latent factors. Therefore, the minimum
number of parameters is (m + n) × f . However, n × k is
the maximum number of parameters required for the proposed
methods, where k is the number of nearest neighbours for each
item, and it is in the same order compared with f . In real-world
systems, the number of users is far greater than the number
of items, namely m 	 n. Therefore, the proposed methods
require less parameters than required by Matrix Factorization
methods. Besides, for each (u, i) pair in the training set, the
computational complexity is O(l) for the proposed methods,
where l is the number of items which are rated by user u
and are simultaneously the members of item i’s k nearest
neighbours, while it is O(f) for Matrix Factorization methods

since Pm×f and Qn×f are dense. Generally, l is far less than
k. Hence, l
 f . This results in a much lower computational
complexity for the proposed methods than Matrix Factorization
methods.

VI. CONCLUSION

Due to the inaccurate similarities calculated by current
mainstream similarity measurement methods, which may bring

second-order error in prediction, we proposed a series of item
similarity learning methods to overcome this challenge. Ex-
perimental results show that the proposed approaches achieve
comparable and even better performance against that achieved
by the state-of-the-art methods, matrix factorization, and
greatly outperform item based CF which has been widely
deployed in industry. Besides, since the proposed methods
inherit the interpretability from item based CF, their recom-
mended results are more accessible than that provided by
matrix factorization based methods.

These advantages drive us to deploy them in the real-world
systems, in the future. Moreover, the Asynchronous Distributed
Stochastic Gradient Descent technology will be adopted to
learn item similarities so that the proposed methods are more
applicable.
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