
Keep Forwarding: Towards K-link Failure Resilient
Routing

Baohua Yang∗†‡ Junda Liu§, Scott Shenker¶‖, Jun Li‡∗∗ and Kai Zheng∗
∗ IBM China Research Laboratory, Beijing, China, 100193

† Dept. of Automation, Tsinghua University, Beijing, China, 100084
‡ Research Institute of Information Technology, Tsinghua University, Beijing, China, 100084

§ Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043
¶ Dept. of EECS, University of California, Berkeley, CA 94704

‖ International Computer Sciences Institute (ICSI), Berkeley, CA 94704
∗∗ Tsinghua National Lab for Information Science and Technology, Beijing, China, 100084

{baohyang, zhengkai}@cn.ibm.com, junda@google.com, shenker@eecs.berkeley.edu, junl@tsinghua.edu.cn

Abstract—Handling link failures is the fundamental task of
routing schemes. Routing protocols based on link state (e.g.,
OSPF) require a global state advertisement and re-computation
when link failure happens, and will cause inevitable delivery
failures. To improve the routing resilience without introducing
significant extra overhead, we propose a new routing approach,
Keep Forwarding (KF) to achieve k-link failure resilience using
inport-aware forwarding. KF is (i) flexible to handle multiple
failures (or k-failure) with only small path stretch, (ii) efficient
in recovery speed by instant and local lookup, (iii) bounded on
memory requirement. Besides, the proposed approach is compat-
ible with existing Internet protocols and routing infrastructures
(e.g., requires no packet labeling or state recording), and the
pre-computation has a linear temporal complexity. Experimental
results on real ISP and datacenter networks reveal that KF guar-
antees near-optimal resilience (99.9%∼100% for single failure
and over 99.7% for multiple failures), with the average path
stretch increment less than 5%.

I. Introduction

With the rapid development of IP networking techniques,
the Internet has already become the basic infrastructure for var-
ious information applications. More and more critical services
are deployed in IP networks, requiring reliable packet delivery
on top of the best-effort nature. Delivery disruptions, as short
as several hundred milliseconds, may cause severe degradation
in service quality. However, widely deployed routing schemes
like OSPF [1] and IS-IS [2], both require global message
exchanges and computation before packet delivery can be
recovered from link failure. In addition, the re-computation
time demanded is usually unacceptable [3]. More recently,
centralized routing solutions [4]–[6] suggest that all routing
computation is carried by a controller, who then pushes the
results to affected routers. But there is an inevitable delay of at
least the round trip time between the routers and the controller.
Thus a Local Failure Resilient (LFR) routing method, which
can provide fast failure recovery without the aid of neighboring
routers or the controller, has more potential to meet the
stringent reliability requirements.

Existing LFR works fall into two categories by whether
the packet labeling is needed. Schemes with packet labeling

generally store extra bits into packets, e.g., the forwarding
history, and rewrite or remove them when necessary. Although
they may provide good resilience, the change to data plane im-
plies high cost for practical deployment. Label-free solutions,
otherwise, only utilize information already available to routers,
e.g., destination IP and incoming port. They introduce minimal
changes and cooperate with traditional IP routing. However,
existing approaches can only handle single failure, while real
networks may occur multiple failures simultaneously [7].

We argue that a practical LFR solution should address the
following issues. i) Resilience: guarantee connectivity from
single failure to multiple failures, while restricting the path
stretch. ii) Latency: reduce the time interval before an alter-
native choice is deployed when a failure is detected. Ideally,
it should be short enough so that no packet will be lost. iii)
Storage: keep a moderate number of states in the router, so
that existing router hardware can support effortlessly. This is
especially important for production networks. iv) Compatibili-
ty: stay compatible with today’s network protocols and existing
infrastructure.

In this paper, we propose a novel labeling free LFR routing
framework named as “Keep Forwarding”. KF is designed to
provide effective failure resilience for the general k-link failure
case, and is built upon a new network model called Partial
Structural Network (PSN). The advantages of the proposed
approach and the contributions of this paper are summarized
as follows.

• Flexible Resilience. The proposed approach provides
good resilience from single-failure to multi-failure
cases with negligible path stretch.

• Fast Recovery. After failure happens, new forwarding
choice is taken promptly from local table, which
promises a line-speed recovery on existing router
hardware.

• Linear Scalability. The temporal complexity of the
pre-computation is proven linear, and the memory is
also linearly bounded to the routing table.

• Compatible Forwarding. The proposed approach is
well compatible with the traditional rule based routing978-1-4799-3360-0/14/$31.00 c©2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 1617

(a) MST (b) DAG (c) PSN

Fig. 1. Comparison between MST, DAG and PSN, where “E” is the
destination.

without any extra costs such as packet labeling or
status recording.

• Theoretical Contributions. A new graph traversal (KF
traversal) and a new network model (PSN) are pro-
posed. Based on them, the Imperfectness Theorem is
first proven on the k-failure resilience problem.

The remainder of this paper is organized as follows.
Section II introduces the theoretical model for the k-failure
resilience problem. Section III describes the routing design
while the evaluation results are given in section IV. Section V
summarizes the related efforts. At last, we conclude the paper.

II. Problem Formulation and Theory

This section first presents the PSN model and the KF
traversal. After that, the k-failure resilient routing related
theorems are presented. The detailed proofs of all theorems
are given in the Appendix section.

A. Basic Assumption

For a given network W, the topology is modeled as a
graph G(V, E), where V, E means the set of nodes (or vertexes)
and edges (or links) in G respectively. For every e ∈ E, e is
bidirectional if there is no special indication.

B. Partial Structural Network

Several novel models have been proposed for network
routing, such as the Minimum Spanning Tree (MST) and the
Directed Acyclic Graph (DAG). For each destination, MST
based schemes [1], [2] only utilize selected links (the ones on
the spanning tree) and set them with determined directions.
DAG based schemes [8], [9] utilize all links and set every one
with a determined direction. DAG based schemes is proven
to guarantee more routing resilience in our previous work [9].
Based on DAG, the Partial Structural Network (PSN) model
is proposed, which utilizes all links but only sets determined
directions to selected links.

Note that the PSN model is also per-destination based,
thus with the same network, respective PSNs are generated
for every destination. Fig.1 shows an example to compare PSN
with MST and DAG. In the figure, “E” is the destination. In
MST (Fig.1(a)), only the links on the shortest path are taken
as the outgoing link. Hence each node has only one outgoing
link. Once the outgoing link is down, the node will fail to

B

D

A

C

E

(a) KF traversal

B

D

A

C

E

#1

#2

1

1

1

1

1

(b) c-KF traversal

Fig. 2. A simple example of KF traversal.

deliver any packet. While in DAG (Fig.1(b)),some nodes (“A”
and “C”) have several outgoing links, thus a better resilience
is achieved. For example, if “A-C” fails, “A” can easily pick
up another outgoing edge (e.g., “A-D”) to recover the routing.
However, there is still some deficiency to protect nodes with
only one outgoing edge (e.g., “B” and “D”). In the PSN model
(Fig.1(c)), selected links (e.g., “A-B” and “C-D”) hold un-
directed to achieve a better resilience. For example, when
“D-E” fails, “D-C” is still available as outgoing for “D”. In
summary, PSN implies higher flexibility in failure protection.

The primitive idea of utilizing the links as un-directed is not
new, however it still remains two open problems: “Which links
should be selected as un-directed?” and “How to determine the
directions of the directed links?” The construction algorithm
of PSN will be detailed in Section III-B1.

C. KF Traversal

1) Definitions and Theorems:

Definition 1 (KF Traversal): With an undirected graph
G(V, E), for every v ∈ V and e ∈ E (e can be utilized in
both directions), KF traversal visits v at least once, and visits
e at most once in each direction. 1

There may exist more than one KF traversal for a graph.
Fig.2 shows an example, where two different KF traversals
exist on a 5-node graph. The traversals in Fig.2(a) and Fig.2(b)
generates node visiting sequences of “A-B-D-E-C-A” and “A-
B-D-E-C-D-C-A” respectively. Such visiting circuits generated
by KF traversal as KF circuits.

Another question is whether the KF traversal always exists
on arbitrary graphs. A sufficient condition is given as follows.

Theorem 2.1 (KF traversal Existence): For any undirect-
ed graph G(V, E), if G is connected, the KF traversal must
exist.

Theorem (2.1) reveals the general existence of the KF
traversal. Among all the KF traversals on a graph, the ones
visiting every e, are defined as “complete KF traversals”, or
c-KF traversals.

1We will compare the definition with Euler traversal and Hamiltonian
traversal later.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1618

B

D

A

C

E

#1

#2

1

1

1

1

1

2

2

2

2

2

43

4

3

(a) c-KF traversal

B

D

A

C

E

#1

#2

1

1

1

1

1

2

2

2

2

3

3

2

4

4

(b) c-KF traversal with
failure

Fig. 3. c-KF shows some potential in failure resilience.

TABLE I. Forwarding entries in node “D”

Incoming Edge 1st 2nd 3rd
B-D D-E D-C D-B
E-D D-C D-B D-E
C-D D-B D-E D-C

Definition 2 (c-KF traversal): With an undirected graph
G(V, E), a complete KF (c-KF) traversal is the KF traversal
that visits every e ∈ E.

Take Fig.2 for example, Fig.2(b) shows a c-KF traversal,
while Fig.2(a) does not. Similarly, the existence of c-KF
traversal is described as follows.

Theorem 2.2 (c-KF Traversal Existence): For any undi-
rected graph G(V, E), if G is connected, there must be at least
one c-KF traversal.

2) Failure Resilience: Theorem (2.2) reveals c-KF traver-
sal’s existence. A further question is how to find one for a given
graph. The solution is designed following a greedy principle:
traverse every path or circle successively based on Depth First
Search. Take Fig.2(b) for example, there are two non-inclusive
circles: #1 (“A→B→D→C→A”) and #2 (“D→E→C→D”).
Suppose the traversal starts from an arbitrary node e.g.,
“A”, in clockwise. When the traversal reaches “D” following
“A→B→D”, a new circle (#2) is met, and then traverse circle
#2 first. After the traversal on #2 (“D→E→C→D”) finished,
continue the traversal on circle #1 with “D→C→A”. At last,
we obtain the c-KF circuit as “A→B→D→E→C→D→C→A”.

The generated c-KF traversal shows a good potential in
failure-resilience. In Fig.3(a), each port can obtain an id based
on the visiting (enter or leave) order. Take “D” for example,
the traversal visits it orderly from edge “B-D” and“D-E” once,
and “C-D” twice. Then ports from “B-D” and “D-E” are set
with id 1 and 2 respectively; and port from edge “C-D” is with
id 3 and 4. Hence each node gets an ordered sequence of its
ports, e.g., “D-B, D-E, D-C” for “D”. By rotating these ports,
a forwarding table is constructed, as shown in Table (I).

The first column denotes the incoming port, while follow-
ing columns indicate the forwarding candidates with priority
order. Take “B-D” as the incoming link, “D-E”, “D-C” and “D-
B” are the corresponding outgoing links in descending order.
A c-KF traversal generates such a forwarding table for each

TABLE II. Traversal Comparison*

Traversal Node Edge Each direction Existence
Hamilton = 1 0, 1 0, 1 Topo dependent

Euler ≥1 1 0, 1 respectively Topo dependent
KF ≥1 0, 1, 2 0, 1 Yes

complete KF ≥1 1, 2 0, 1 Yes
* All traversals are on undirected connected graphs.

node. As shown in Fig.3(b), when the outgoing link, e.g., “E-
C” at “E” is broken, “E” will pick the next available port, i.e.,
“E-D”,.

As a summary, Table II compares KF and c-KF traver-
sal with the well-known Hamilton traversal [10] and Euler
traversal [11]. In Table II, the first and the second column
mean the visiting times on each node and edge (on both
directions), while the third column means the visiting times
on each edge from one direction. The last column tells the
existence. Compared with both Hamilton traversal and Euler
traversal, KF traversal implies more flexibility in existence by
topology independence.

D. Reachability

There are several ways to measure the resilience of a rout-
ing scheme, e.g., the protected node ratio for single failure [12].
This paper employs reachability for comprehensive evaluation.
With D, Fk denoting the destinations and the entire failure
space respectively, the reachability R is given in Equation (1).

RW,k =
∑
Fk

∑
D

Ndelivered

/∑
Fk

∑
D

Nconnected (1)

Where Ndelivered means the number of other routers in network
W (excluding the destination itself) that successfully deliver
packets to the destination, and Nconnected is the number of other
routers that are connected with the destination. It is obvious
that 0 ≤ R ≤ 1.0, and a higher R means a better failure
resilience. When W becomes disconnected with failures, no
routing framework can protect the reachability. Hence, we
focus on the non-disconnected failure cases.

E. K-failure Resilient Routing Problem

The goal of the k-failure resilient routing problem is to
maximize R over all failure cases.

Definition 3 (“Perfect” Resilience): For an arbitrary net-
work topology G(V, E), if a routing scheme can always protect
R = 1.0 against every k-failure case, then the routing provides
“perfect” resilience.

If a “perfect” resilient routing exists, the ideal 100%
resilience will be achieved. However, the following theorem
implies that the “perfect” resilience cannot always be guaran-
teed by static rule based routing solutions2.

Theorem 2.3 (Routing Imperfectness Theorem): For an
arbitrary network topology G(V, E), if multiple failures may
happen, then there is no static rule based routing that always

2It means the forwarding decision is only based on the precomputed rules
stored in the local routing tables which will not change, and there is no extra
control information.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1619

guarantees “perfect” resilience, even when G keeps connected
after failures.

Theorem (2.3) unveils that for some W, there may exist
a non-disconnecting failure case which cannot be protected,
e.g., transient loop may exist with multiple failures. These
topologies are named as “imperfect” topologies.

It is natural to ask what type of topology is “imperfect”?
From Theorem (2.3), we can deduce Theorem (2.4) to answer
the question (see Appendix B).

Theorem 2.4 (Graph Imperfectness Theorem): For an ar-
bitrary graph G(V, E), if any component of G is “imperfect”,
there will be no static rule based routing guaranteeing the
“perfect” resilience, even G keeps connected after failures.

Theorem (2.4) proves that with the simple local rule based
routing, there is no way to guarantee the perfect resilience on
every nodes. In this paper, in order to provide near-optimal
performance while guaranteeing the simplicity, KF routing is
proposed by leveraging the PSN model’s resilience potential.

III. Routing Design

In this section, we first propose the employment of inport-
aware routing in KF, and then describe the pre-computation
of routing table and the lookup procedure. After that, the
precomputation complexity is analyzed. In the end, we discuss
several relevant problems.

A. Inport-Aware Routing

The basic procedure of the traditional IP routing can be
formulated as: “Destination→Outport(s)”3. While with inport-
aware routing, both the destination IP and the ingress port
are employed for the routing lookup. Besides, the routing
action consists of a sequence of egress ports with descend-
ing priority. Similarly, the procedure can be formulated as
“Destination+Inport→ Ordered Outport Sequence”.

Inport-aware routing is quite practical with existing router
architecture, as most existing routers maintain a routing table
at each line card of the interface for lookup efficiency [13],
[14]. The only difference is that for traditional routers, the
same tables are duplicated in different line cards, while the
inport-aware routing tables may vary in different line cards.
Thus the actual memory required by inport-ware routing is d
times of that by traditional routing (where d is the router’s
degree). Suppose the states number of traditional IP routing is
O(N) (N is the number of routers), for inport-aware routing it
will be O(d2 · N). On the other hand, the lookup complexity
is not increased, as only the corresponding routing table will
be searched for the incoming packet.

B. Routing Pre-computation

The pre-computation phase for an inport-ware routing
includes three steps. First, a PSN is built for each destination.
After that, for each PSN, every link is set with a priority. At
last, the routing table is generated based on the priority.

B

D

A

C

Des

F

H

E

G

I

Fig. 4. Example of building PSN.

1) PSN Building: The building of PSN is with each
destination. For each destination, the building procedure is
illustrated in Algorithm 1.

Algorithm 1 PSN Building
Input:

network topology G(V, E)
destination node d
empty Alayers set S

Output:
PSN p

1: /*Generate weight for every node.*/
2: for e in G do
3: w = getWeight(e, d)
4: S .add(e, w)
5: end for
6: /*Set type for every link.*/
7: for α in S do
8: p.updateMlinks(α)
9: p.updateAlinks(α)

10: end for

In Algorithm 1, the node weight is calculated based on
the distance (e.g., the hop counts) to the destination. Nodes
with the same weight are grouped into an A-layer (Aid layer).
Furthermore, links within the A-layer are named as A-links,
while links between two A-layers are M-links. M-links consist
of two types by the direction: Down-links that from higher
A-layer to lower one, and Up-links conversely.

Fig.4 shows an example, where “Des” is the destination.
“A, B, C, D” and “E, F, G, H, I” belong to A-layer #1 and
#2 respectively. “A-B, A-C, A-D, B-D, C-D, E-F, E-G, E-H,
F-I, F-H, G-H, H-I” are A-links while “A-Des, B-Des, C-Des,
D-Des, E-A, E-C, F-B, G-C, H-D, I-B” are M-links. Each M-
link is set with two directions. Take link “A-Des” for example,
“A→Des” is a Down-link, while “Des→A” is an Up-link.

With PSN, basic per-destination routing can be achieved by
forwarding along existing M-links. When there is no M-link,
the delivery is protected by the A-links.

2) Priority Calculation: For routers with several links of
the same type (e.g., A-link), a priority is needed to generate

3In the case of the Equal Cost Multiple Path (ECMP), more than one out-
port can be assigned to one destination, however, the multiple path routing is
not involved in this paper.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1620

B

A D

C

E

(a) Smart selection of Up-
link.

B

A

D

C

(b) Smart selection of
Down-link.

Fig. 5. Example of the Smart Selection Algorithms.

the routing table. An intuitive way is to calculate the potential
to reach the destination. Suppose the link quality is the same
between each other, it is clear that a link towards a high-
potential neighbor router should have a higher priority; hence
it turns out to calculate the routers’ priority. Here we propose
a basic method by the number of outgoing links. It is intuitive
that a router with more outgoing links should have higher
potential to reach the destination. Thus, the router’s priority can
be calculated with the weight summation of all the outgoing
links. Since outgoing links may vary from M-links and A-links,
different weights need to be set with different link types.

Note the priority can be calculated by other parameters,
e.g., disjoint paths, link bandwidth, to meet various require-
ments.

3) Route Table Generation: The route table is generated
for per-destination and per-inport. Since a port may connect
to router of a higher, lower or the same A-layer, the inport is
classified as Up-inport, Down-inport or A-inport respectively.
The generation will carry out according to the inport type.

Up-inport: If there are available Down-links, pick up the
one with the highest priority. If not, check available A-links. If
neither Down-link nor A-link is available, perform the smart
Up-link selection algorithm (see Section III-B4). Otherwise,
forward back through the ingress port.

Down-inport: Select a Down-link following the smart
Down-link selection algorithm. If no available Down-link exist-
s, pick the available A-link with the highest priority. Otherwise,
check the Up-links. At last, forward back through the ingress
port.

A-inport: Pick an available Down-link with the highest
priority. If failed, select an A-link by the smart A-link selection
algorithm. If failed again, check the Up-links to pick available
one with the highest priority. Otherwise, forward back.

With these three basic principles, forwarding candidates for
each inport are generated.

4) Smart Selection Algorithms: Before describing the smart
selection algorithms, we first define key router, key link and
plain router, plain link.

Definition 4 (key router, link and plain router, link): A
router is a key router if it connects more than two links or
it is the destination; otherwise it is a plain router. The link
connected to a key router is a key link; otherwise a plain link.

Plain routers and links can act as relays, thus they can
forward as a straight chain. Along a key link or a plain chain,
a key router will be reached finally, which is the true sink of
the forwarding. Links are grouped by their true sink. Based on
these definitions, the smart selection procedure is described in
Algorithm 2.

Algorithm 2 Smart Selection
Input:

ingress link in
Up link set U
Down link set D

Output:
selected link l

1: /*Smart Up-link selection.*/
2: if in.type == Up-link then
3: for l in U && not l.sinkGid == in.sinkGid do
4: if not l.isFailed then
5: return l
6: end if
7: end for
8: for l in U && l.isKeylink do
9: if not l.isFailed then

10: return l
11: end if
12: end for
13: /*Smart Down-link selection.*/
14: else if in.type == Down-link then
15: for l in D && not l.sinkGid == in.sinkGid do
16: if not l.isFailed then
17: return l
18: end if
19: end for
20: /*Smart A-link selection.*/
21: else
22: K = getKFTraversal(in.ALayer)
23: l = nextLink(K, in)
24: return l
25: end if

Fig.5(a) shows an example of the smart Up-link selection
algorithm. “B” has no available Down-links or A-links. Sup-
pose packets come from Up-link “A-B”, “B” tries to forward
packets via “B-D”, which belongs to a different group from
“A-B”. On the other hand, if “B-D” is also failed, “B” only
has two Up-links in the same group, then “B” will forward
packets via a key link, or “A-B”.

Fig.5(b) shows an example of the smart Down-link selec-
tion algorithm. The Down-link of “B” is failed. When “A”
forwards packets to “B”, “B” forwards back via “B-A”. “A”
will receives the packet from “B-A”, “A” then knows that “B”
has no available path to reach the destination, thus “A” will
pick a Down-link from a different group, e.g., “A-D”.

C. Routing Lookup

With the generated routing table, the lookup procedure
is similar as the traditional routing lookup on every inport.
Suppose a packet comes from inport in, and the routing table
on in is Tin. The Longest Prefix Match is performed to find the
best-matched rule. After that, the first available outport will be
picked from the action field. When some link fails, the router

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1621

will remove the corresponding port from its action field. The
pseudo code is given in Algorithm 3.

Algorithm 3 Routing Lookup
Input:

arrived packet p
ingress port in

Output:
output port out

1: des = getDes(p) /*Get the destination.*/
2: rTable = getRouteTable(in)
3: rule = rTable.doLPM(des) /*Longest Prefix Match.*/
4: for egress in rule.action do
5: if not egress.isFailed then
6: out = egress
7: return out
8: end if
9: end for

D. Precomputation Complexity

In the precomputation procedure (build PSN and generate
route table), every node will be taken as the destination
once. For each destination, every link in the network will be
labeled with a type within constant operations. The theoretical
complexity should be O(|V | · |E|), where |V | · |E| means the
network size. This size-linear complexity provides a good
scalability. Evaluation results in Section IV-C supports the
inference.

E. Discussion

1) Loop Probability: One question is the probability of lo-
cal loop. As Theorem 2.4 indicated (see Section II-E), no static
rule based routing can protect resilience while guaranteeing
no loop. Although loop may happen scarcely in special failure
case, we argue that the loop will never happen in normal case.
In KF routing, as long as one M-link is available for an A-
Layer, the traffic will be forwarded to the lower A-layer finally.
In practise, the transient local loop is rarely generated by KF
(Experimental results in IV also prove this.). Moreover, the
routers can insert specific rules in advance to avoid possible
loops, or take advantages of schemes such as Time-To-Live.

2) Network Disconnection: Another question is the net-
work topology disconnection. When the network itself is
disconnected in topology, it is clear that no scheme can
protect the routing resilience. KF utilizes the Time-To-Live
mechanism to prevent exhausting the bandwidth by endless
trying. On the other hand, monitoring schemes can be taken
to help handle the issue. In graph theory there is a theorem
that every 2k-link-connected graph has k link-disjoint spanning
trees [15], thus k-link failure can be perfectly handled on
2k-link-connected graphs. However, the proposed approach is
designed not limited to specific graphs, e.g., dense graphs, but
also for general network topologies.

3) Weighted Links: Existing schemes such as OSPF/IS-
IS supports links assigned with weight (e.g., capacity). Basic
version of KF is designed based on hop counts due to several
reasons. First, compared with the recovery time (usually longer
than minute), the forwarding latency (usually milliseconds) is

TABLE III. Topologies Used for Evaluation

Name Topology Nodes Edges Avg. Degree
AS1 AS1221 83 131 3.16
AS2 AS1239 361 1479 8.19
AS3 AS1755 111 234 4.22
AS4 AS3257 151 288 3.81
AS5 AS3967 91 180 3.96
AS6 AS7018 382 1299 6.80
DC1 Cisco 76 160 4.21
DC2 FatTree 80 256 6.40
DC3 VL2 88 256 5.82

much less by several orders. Thus, we would like to overcome
the recovery time with low overhead. Besides, production
datacenter networks tends to employ techniques supporting
flat and any-to-any connectivity [16], [17], to guarantee high
performance with simple configuration. In this case, all edge
switches and paths are considered as equal with each other.

4) Traffic Optimization: Although KF is designed not
specifically for traffic optimization goal, it still protects good
network performance. First, KF always tries to deliver the
traffic along the shortest path as much as possible when failures
happen, which guarantees a shortest delivery latency. Besides,
KF supports to pickup backup paths with distributing traffic.
By examining the traffic load of each link, priorities can be cal-
culated in order to achieve better network performance. Hence,
KF is applicable in conjunction with traffic engineering.

IV. Evaluation and Analysis

A. Evaluation Setup

In order to collect reliable results, real-life topologies are
utilized. The inherent characteristics of every topology are
shown in Table III. Among the topologies, the AS series are
from ISP backbone networks [18], while the DC ones are
recommended for enterprise and datacenter networks [19].

With these real network topologies, the evaluation is carried
out under k-failure (k = 1, 2, 3) cases4. The experimental
platform is an x86 based PC (2.20 GHz CPU with 2.5 GB
memory) running Linux 2.6. All the code is written in Python,
allowing quick development at the cost of slower running
speed. We have also tried several widespread evaluation tools,
e.g., NS2 and Mininet. However, the k-failure problem is a
specific problem, requiring fast and large-scale calculation,
thus general platforms are not suitable.

B. Reachability Results

Fig.6 shows the average reachability result (the Y-axis
starts from 99%). It shows that on all topologies, KF always
keeps a high reachability very close to 100%. For k = 1 (single
failure), all datacenter topologies are perfectly protected, i.e.,
achieve 100% reachability. Among the ISP topologies, AS1
is protected with 100% reachability and other topologies are
protected with over 99.8% (mostly over 99.9%) reachability.

When k increases, the reachability remains near perfect. All
datacenter topologies have over 99.99% reachability even with

4Since the number of evaluation cases is explosively increased with k, now
we are able to collect results with k = 1, 2, 3 under the time limitation. We
have started to examine k > 3 cases, and will be able to present more results
soon.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1622

 99

 99.2

 99.4

 99.6

 99.8

 100

AS1 AS2 AS3 AS4 AS5 AS6DC1DC2DC3

R
ea

ch
a
b

il
it

y
 (

%
)

Topologies

k=1 k=2 k=3

Fig. 6. Reachability results with k-failure case.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

T
im

e
 (

s)

|V|x|E| (k)

Time Linear fit curve

Fig. 7. Results of the pre-computation time.

 1

 1.01

 1.02

 1.03

 1.04

 1.05

AS1 AS2 AS3 AS4 AS5 AS6 DC1 DC2 DC3

P
a
th

 S
tr

et
ch

Topologies

k=1 k=2 k=3

Fig. 8. The average path stretch of KF routing.

k = 3 concurrent failures. The ISP results show two interesting
features: first, the reachability stays close to 100% even with
multiple failures. More importantly, the results are stable from
single failure to multiple failures. This implies that KF is able
to handle more complicated failure cases.

C. Pre-computation Time

Fig.7 illustrates the precomputation time on all topologies.
The precomputation time is less than 20s for most topologies
(AS1, AS3, AS4, AS5 and all datacenter ones). On very huge
topologies (AS2, AS6 are so large that no previous work can
run on them within a reasonable time), the pre-computation
time is still acceptable. In the evaluation, all the computation is
implemented without any parallel processing. However, as the
precomputation of different destinations is naturally isolated
from each other, the performance can be simply accelerated
using parallel processing. On average, the per-destination cal-
culation is less than 0.1s. Hence with parallel techniques, the
pre-computation can be completed nearly instantly.

Fig.7 also demonstrates a linear fit curve over the |E| × |V |
on all topologies. The adjusted fit coefficients R2 = 0.999. We
notice that there are two large size topologies staying far from
the other smaller ones. The curve only on the small topologies
is also fitted, where the adjusted fit coefficients R2 is nearly 0.9.
These results strongly support that the temporal complexity of
KF’s pre-computation is linear to the |E| × |V |.

D. Path Stretch

The average path length is compared between KF (with
failures) and the shortest path routing (without failure). Note
without failures, KF achieves the same path length with
the shortest path routing (see Section III-E4). Path stretch
is adopted for a clear illustration, which is defined as the
path length ratio. Fig.8 shows the results. Under all k-failure
cases among all topologies, KF only introduces insignificant
increase (less than 5%) on the average path length. All these
results demonstrated that KF routing achieves a near optimal
forwarding path length. Besides, with k increasing, the path
stretch is also increased. This is because with more failures
happened KF will explore more A-links to recovery from the
failure, which will increase the path length.

E. Compare Results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

AS1 AS2 AS3 AS4 AS5 AS6DC1DC2DC3

U
n

re
a

ch
a

b
il

it
y

 (
%

)

Topologies

MPLS-backup KF

(a) k=2 failures happen.

 0

 2

 4

 6

 8

 10

 12

 14

AS1 AS2 AS3 AS4 AS5 AS6DC1DC2DC3

U
n

re
a

ch
a

b
il

it
y

 (
%

)

Topologies

MPLS-backup KF

(b) k=3 failures happen.

Fig. 9. Comparison with MPLS-backup on un-reachability.

1) Compare with MPLS: KF is compared with the de-facto
routing protocol, Multi-Protocol Label Switching (MPLS) with
backup paths, i.e., MPLS-backup, where a backup path is
stored for each single-link failure case5. When no failure
happens, the packets will be forwarded along the shortest
path. When a failure happens, MPLS-backup will switch to the
corresponding backup path for delivery. In order to illustrate
clearly, the un-reachability (defined as 100%− reachability) is
taken as the comparison parameter. The less the un-reachability
is, the better the resilience will be. Fig.9 shows the comparison
results. From Fig.9, MPLS-backup (the blank columns) gains
at least two orders of magnitude un-reachability as KF (the
decorative columns). Take AS1 for example, with two failures,
4.10% of traffic is failed to reach the destination by MPLS-
backup, while for KF, it is less than 0.001%.

Another observation is that MPLS-back achieves better
results on AS2, AS6 (whose average degrees are large) than
on other topologies,while on the least-average-degree topology
(AS1), the result is also the worst. This implies MPLS-backup
is degree-sensitive. KF implies a much better stability.

2) Compare with SNH: In order to compare with the
best recent work SNH [12] that we know, we also show the
protected node ratio across all destinations. Notice that the
evaluations in SNH are taken 3 reduced AS topologies: AS1,
AS3 and AS5, with the average degree 2.90, 3.70 and 3.72
respectively ([12] does not provide the reduction method).

As defined in [12], a node is said to be protected with a
destination if packets from it can reach the destination under

5Although the multiple failure protection is possible on special topologies,
it requires quite complicated computation and huge storage for MPLS, which
is unacceptable for today’s routers

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1623

every single failure case. On the reduced AS1, SNH provides
less than 50% node ratio, while KF provides 100% protection
on the original topology. On the reduced AS3 and AS5,
SNH’s results are around 84% and 90% respectively, while KF
guarantees a high ratio of 96.3% and 93.6% respectively. On
other large topologies (AS2, AS4 and AS6) that SNH does not
give the evaluation results, KF also provides a good protection
of over 90%. Although SNH is not interface specific, KF only
needs an additional information, the inport. On the other hand,
SNH is NP-hard in pre-computation, which results in more
time cost. For example, SNH requires 1.82 hour on AS1 with
a Pentium Xeon 2.66 GHz machine [12].

V. RelatedWork

Improving IP network resilience has drawn great attention
from both industry and academia. Various approaches have
been proposed to improve the resilience of Internet routing,
including the IPFRR related mechanisms [20]–[24] and multi-
path or multi-homed routing [25]. Due to space limitation, we
summarize the most relevant efforts as follows.

Recent works without packet labeling include [13] and
[12]. In [13], an interface-specific forwarding scheme called
FIR is proposed, which utilizes the incoming port for backup
path computation. When only single link failure notification is
suppressed, a loop-free path is generated to forward packets to
its destination if such a path exists. However, this design only
works on the single failure case and requires a complicated
pre-computation. SNH [12] utilizes a secondary next-hop to
provide a transient backup path after failure while waiting
for the update from the centralized server . Though for single
failure it provides better resilience than previous methods [8],
[26], the results may not be good enough on real network
topologies. Besides, the multi-failure case is not discussed.

Works in [27] and [28] utilize packet labeling to be able to
handle multiple failures. The Failure-Carrying Packets (FCP)
[27] has been proposed to allow routing recovery with multiple
failures, however, this technique also requires considerable
overhead in the packet headers, as well as the extra detection
and computation cost on each router, to obtain the new path
when receiving a failure carrying packet. [28] presents a Packet
Re-cycling technique that employs extra bits in the packet
header to reroute for non-disconnecting failures. This work is
a novel rerouting approach to handle failures on an orientable
topology network. However, it brings the cost of extra bits and
packet modifications. With the diameter of the network is d,
[28] requires log2(d) extra bits in the packet header.

Table IV summarizes KF and the previous works.

VI. Conclusion

In this paper, we for the first time present a formal study
of the general k-failure resilient routing problem. A novel and
practical k-failure resilient routing framework, called “Keep
Forwarding”, is proposed, which only utilizes local static
rules to achieve fast recovery when failures happen. KF is
compatible with the existing IP networks without demanding
packet labeling or extra control message. Compared with the
shortest path routing, KF’s path length only increases slightly
under failure. Besides, the storage requirement is linearly

bounded with existing routing, and the temporal complexity of
pre-computation is linear with the network size. Experimental
results on real ISP and datacenter networks prove that KF
provides high reachability and good delivery latency with
multiple failures. Furthermore, a new network model and
several graph theorems are proposed to support the approach.

References

[1] J. Moy, “OSPF version 2,” RFC 2328, April 1998.
[2] D. Oran, “OSI IS-IS intra-domain routing protocol,” RFC 1142, Febru-

ary 1990.
[3] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving

sub-second IGP convergence in large IP networks,” ACM SIGCOMM
Computer Communication Review, vol. 35, no. 3, pp. 35–44, 2005.

[4] A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach to network
control and management,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 5, pp. 41–54, 2005.

[5] H. Yan, D. Maltz, T. Ng, H. Gogineni, H. Zhang, and Z. Cai, “Tesseract:
a 4D network control plane,” in Proceedings of the 4th USENIX
conference on Networked Systems Design and Implementation, 2007,
pp. 369–382.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[7] L. Shen, X. Yang, and B. Ramamurthy, “Shared risk link group
(SRLG)-diverse path provisioning under hybrid service level agreements
in wavelength-routed optical mesh networks,” IEEE/ACM Transactions
on Networking (ToN), vol. 13, no. 4, pp. 918–931, 2005.

[8] S. Ray, R. Guérin, K. Kwong, and R. Sofia, “Always acyclic distributed
path computation,” IEEE/ACM Transactions on Networking (ToN),
vol. 18, no. 1, pp. 307–319, 2010.

[9] J. Liu, B. Yang, S. Shenker, and M. Schapira, “Data-driven network
connectivity,” in Proceedings of the 10th ACM Workshop on Hot Topics
in Networks, 2011.

[10] William Rowan Hamilton, “Account of the Icosian Calculus,” Proceed-
ings of the Royal Irish Academy, vol. 6, 1858.

[11] L. Euler, “Solutio problematis ad geometriam situs pertinentis,” Com-
mentarii Academiae Scientiarum Imperialis Petropolitanae, vol. 8, pp.
128–140, 1736.

[12] K. Kwong, L. Gao, R. Guérin, and Z. Zhang, “On the feasibility and
efficacy of protection routing in IP networks,” IEEE/ACM Transactions
on Networking (ToN), vol. 19, pp. 1543–1556, October 2011.

[13] S. Nelakuditi, S. Lee, Y. Yu, Z. Zhang, and C. Chuah, “Fast local
rerouting for handling transient link failures,” IEEE/ACM Transactions
on Networking (ToN), vol. 15, no. 2, pp. 359–372, 2007.

[14] Cisco. Virtual routing and forwarding. [Online]. Avail-
able: http://www.cisco.com/en/US/docs/net mgmt/active network
abstraction/3.7/reference/guide/vrf.html

[15] W. Tutte, “A theory of 3-connected graphs,” Indag. Math, vol. 23, pp.
441–455, 1961.

[16] QFabric. Juniper Networks. [Online]. Available: http://www.juniper.
net/us/en/dm/datacenter/

[17] FabricPath. Cisco Networks. [Online]. Available:
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9402/
white paper c11-605488.html

[18] Rocketfuel Project. [Online]. Available: http://www.cs.washington.edu/
research/networking/rocketfuel/

[19] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings of the ACM SIGCOMM, 2009,
pp. 51–62.

[20] A. Li, P. Francois, and X. Yang, “On improving the efficiency and man-
ageability of NotVia,” in Proceedings of the ACM CoNEXT conference,
2007.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1624

TABLE IV. Comparison with previous works

Approach Single-failure Multi-failure Labeling Free Compatibility* Computation Complexity Interface-specific
IPFRR Yes No Mostly Mostly Linear (Mostly) No (Mostly)

FIR Yes No Yes Yes O(|E| · |V | · log2 |V |) Yes
SNH Yes No Yes Yes NP-hard No
FCP Yes Yes No No N/A No

Re-cycling Yes Yes No No Generally NP-hard No
KF Yes Yes Yes Yes Linear Yes

* Whether the scheme requires heavy modifications to the existing router architecture or not.

[21] A. Atlas and A. Zinin, “Basic specification for IP fast-reroute: Loop-
free Alternates,” RFC 5286, September 2008.

[22] S. Kini, S. Ramasubramanian, A. Kvalbein, and A. Hansen, “Fast
recovery from dual link failures in IP networks,” in Proceedings of
the IEEE INFOCOM, 2009, pp. 1368–1376.

[23] A. Li, X. Yang, and D. Wetherall, “SafeGuard: Safe forwarding during
route changes,” in Proceedings of the ACM CoNEXT conference. ACM,
2009, pp. 301–312.

[24] M. Shand and S. Bryant, “IP fast reroute framework,” RFC 5714,
January 2010.

[25] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, pp.
27–38, 2008.

[26] C. Reichert and Y. Glickmann, “Two Routing Algorithms for Failure
Protection in IP Networks,” in Proceedings of the 10th IEEE Symposium
on Computers and Communications, 2005, pp. 97–102.

[27] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, “Achieving convergence-free routing using failure-
carrying packets,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 4, pp. 241–252, 2007.

[28] S. Lor, R. Landa, and M. Rio, “Packet re-cycling: Eliminating packet
losses due to network failures,” in Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, 2010.

Appendix A
Proof of Theorem (2.1) and Theorem (2.2)

Let G(V, E) be an arbitrary connected graph. Suppose
Cel,Ck f ,Cck f means the Euler circuit, KF circuit and complete
KF circuit respectively. If ∀v ∈ V , degree(v) is even, then G
has a Cel [9]. Let Cck f = Cel. Proof is done.

If for some v ∈ V , degree(v) is not even, combine these v as
a set V(odd), then |V(odd)| must be even, because

∑
v∈V

degree(v) =

2|E| is even. Hence v ∈ V(odd) can be combined into pairs.

Here we have a lemma.

Lemma A.1: For V(odd), there must be a pair combination,
by which for a pair i, an odd path pi(i = 1, 2 . . . , |V(odd) |

2) can be
built, so that pi and p j have no overlap e if i , j, where an
odd path means only its two ends are odd nodes.

Lemma (A.1) can be proven recursively. Consider G(V, E),
where |V(odd)| , 0, first pick an odd path,e.g., pi, then
remove every e for e ∈ pi. After that, several connected
subgraphs S G may be generated. If for every Gi(Vi, Ei) ∈ S G,
|Vi(odd)| = 0, then the proof is done. Otherwise, suppose there
is a G′(V ′, E′) ∈ S G, where |V ′(odd)| , 0. Repeat the removing
procedure on G′(V ′, E′) until for every Gi(Vi, Ei) ∈ S G,
|Vi(odd)| = 0. Because every removed e is only processed once,
there’s no e belonging to pi and p j when i , j.

With Lemma (A.1), doubling edges on each pi, a new graph
G′ is generated,which is even. Then G′ must have a Cel, which
is also a Cck f on G. Proof is done.

D

C

A

B

E

F

(a) Normal Forwarding

D

C

A

B

E

F

(b) Failure Forwarding

Fig. 10. Example for Theorem (2.3)’s Proof.

Appendix B
Proof of Theorem (2.3)

Before giving the proof, a lemma is proposed as follows.

Lemma B.1: Static rule based traversal cannot always
guarantee an overall node visiting against all failure cases with
arbitrary topology, where overall node visiting means to visit
every node at least once.

To prove this lemma, Fig.10 shows an example. To visit
every node, the traversal should visit the path p =“A-E-F-C”
from “A” or “C”, thus there must be one side from which m
nodes on p are visited, where m ≥ 2, as there are 4 nodes
on p. Suppose the traversal from “C” visit 2 nodes as “C-F”,
the entire traversal is shown in Fig.10(a). Then fail “F-C”, “F”
will be never visited, as shown in Fig.10(b). Similarly, if we
visit m ≥ 2 nodes on p from “A”, “E” will be not visitable
by failing edge “A-E”. In general, if there is a “circle-circle”
structure in the topology, the traversal is not always guaranteed
for every failures case. Such a topology is “imperfect”.

With Lemma (B.1), an example can be constructed to prove
Theorem (2.3). Consider a connected graph G(V, E), where
|V | = N + 1. N nodes of G combine as an A-layer L with
circle-circle structure, and the left node d is the destination.
∀vi ∈ L(i = 1 . . .N), let e(vi, d) connects vi and d. Suppose we
fail N − 1 arbitrary edges, e.g., e(vi, d) for 1 ≤ i ≤ N − 1. Note
G keeps connected as L is connected and e(N, d) is connected.
If the resilience is protected, then ∀vi ∈ L can reach d, or can
reach vN (because vN is the only node that can reach d). Since
vN is chosen arbitrarily, for every vi, v j ∈ L(i , j), vi should
be able to reach v j, or there must be a traversal which protects
overall node visiting after arbitrary failures, which conflicts
with lemma (B.1). Proof is done.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1625

