
Harvesting Unique Characteristics in Packet
Sequences for Effective Application Classification

Zhenlong Yuan
Department of Automation

Tsinghua University

Beijing, China

Email: yuanzl11@mails.tsinghua.edu.cn

Yibo Xue
Tsinghua National Lab for

Information Science and Technology

Beijing, China

Email: yiboxue@tsinghua.edu.cn

Yingfei Dong
Department of Electrical Engineering

University of Hawaii, Honolulu

HI 96822, USA

Email: yingfei@hawaii.edu

Abstract—Network traffic classification is critical to both
network management and security. Identifying application traffic
at the flow level with signature matching has been widely used
as the most efficient method due to its reliability and robustness.
However, due to the increasing number of applications and their
frequent updates, we have to constantly regenerate application
signatures, which is both resource intensive and time consuming.
To address this issue, we propose to explore the unique charac-
teristics in packet sequences and discovered two types of packet
sequence signatures. We introduce our design and implementation
of an automated packet-sequence signature construction (APSC)
system, based on association rule mining and data clustering
technologies. This system can not only automatically generate
traditional signatures from individual packet payloads but also
construct new packet sequence signatures based on payloads or
features from packet sequences, even for encrypted flows. To
the best of our knowledge, this is the first practical and effi-
cient system that supports automated packet sequence signature
construction. Our experimental results show that the proposed
system can automatically construct high quality signatures for a
variety of application with limited overhead.

Keywords—Traffic classification, network management, packet
sequence signature, automated signature construction.

I. INTRODUCTION

Associating traffic with its corresponding applications has
a great influence on network management (e.g., Quality of
Service) and security (e.g., network intrusion detection sys-
tems). It allows network administrators to know exactly which
applications are running and then take timely actions, such
as assigning higher flow priority or limiting flow transmission
rates. If undesired or malicious traffic is detected, administra-
tors can filter them to protect their networks.

Because of such practical use, various traffic classification
techniques have been developed, such as early port-based
techniques, subsequently signature-based techniques, and later
statistics-based techniques [1]–[3]. Among these schemes,
signature-based techniques are usually considered the most
reliable and efficient due to the uniqueness and robustness
of signatures, especially in industry for classifying real-time
network traffic. In practice, due to the increasing number of
applications and their frequent updates, application traffic may
change frequently and significantly change, and the effective-
ness of static signatures become limited. Consequently, we
have to repeatedly regenerate application signatures. Currently,

application signatures are generally derived by manually or
semi-manually analyzing large amounts of traffic over long
periods, which is both resource intensive and time consuming.

Although automatically generating signatures has been
studied in many projects [4]–[7], researchers mostly focused
on finding signatures in individual packet payload. Very little
efforts have been done in exploiting the characteristics in
packet sequences. Based on our experimental investigation, we
have found that such sequence signatures of application flows
can help us improve the accuracy and efficiency of classifying
applications.

In this paper, we first introduce two types of packet
sequence signatures that we have discovered, and then present
our design and implementation of an automated packet-
sequence signature construction (APSC) system, based on
association rule mining and data clustering technologies. Our
experimental results show that APSC can generate high-quality
traditional signatures and new packet sequence signatures for
many applications. To the best of our knowledge, this is the
first practical and efficient work on automatically generating
application signature based on packet sequences, instead of
solely based on individual packets. The main contributions of
this paper include:

1) Identify unique characteristics in packet sequences. From
our experimental observations and analysis, we discov-
er payload-based and feature-based signatures based on
packet sequences. Our idea of feature-based packet se-
quence signature is derived from the common Machine
Learning (ML) C4.5 decision tree algorithm.

2) Design an automated signature construction system. We
have designed and implemented APSC based on asso-
ciation rules mining and divisive hierarchical clustering.
Both traditional signatures and the newly proposed packet
sequence signatures can be constructed automatically with
limited overhead.

3) Develop efficient schemes to apply the new packet se-
quence signatures. We have developed an efficient regex-
engine method to apply packet sequence signatures on
real-time traffic with practical overhead.

The reminder of this paper is organized as follows. We
first briefly review the related work in Sec.II, and then present
our key observations in Sec.III. We present the design and
implementation of the proposed system in Sec.IV, and evaluate
the system in Sec.V. We conclude this paper in Sec.VI.

IEEE Conference on Communications and Network Security 2013

978-1-4799-0895-0/13/$31.00 ©2013 IEEE 493

II. RELATED WORK

A. Network Traffic Classification

Network traffic classification has been evolving with the
development of Internet. Port-based techniques are the earliest
methods to classify traffic based on well-known port num-
bers [8]. However, such techniques have become ineffective
due to the widely use of random port numbers in applications
(e.g., Bittorrent). To address this issue, payload signature-
based techniques are developed to identify application traffic
by matching packet payloads with known string patterns and
regular expressions [9]–[12]. Because of the reliability and
robustness of these signatures, these techniques are widely
adopted in many fields, such as L7-filter for application layer
packet classification [13] and Snort for network intrusion
detection [14]. In industry, signature-based techniques are also
considered as the most efficient, especially when dealing with
real-time traffic. We have to acknowledge that signature-based
solutions are still one of the most indispensable elements for
traffic classification.

Since the seminal paper by McGregor et al. [15] on
applying ML techniques for traffic classification with the
Expectation Maximization algorithm, various statistics-based
techniques have been developed in the past decade, explor-
ing flows statistics instead of only packet payload patterns,
based on various ML algorithms such as Bayesian [16], [17],
Support Vector Machine [18], [19] and C4.5 [20], [21]. These
techniques generally assume that flows generated by different
applications have unique statistical characteristics. However,
when we apply these techniques to deal with high traffic
loads (e.g., on backbone networks), where million of flows
to be classified in a second, the precision and efficiency of
such methods are seriously decreased, proved by our previous
experiments [22], [23]. They are unable to meet the real-time
requirements and process heavy traffic.

B. Automated Signature Generation

Because manually deriving signatures from large volumes
of application traffic is resource intensive and time consuming,
automatically generating signatures has become an urgent task.
Haffner et al. [4] applied three statistical ML algorithms to
automatically identify signatures for a range of applications.
Park et al. [5] focused on the string patterns in packet payloads
and proposed the LASER algorithm. Ye et al. [6] proposed
the AutoSig system which extracts multiple common substring
sequences from sample flows as application signatures. Re-
cently, Wang et al. [7] focused on generating signatures with
a subset of standard syntax rules and proposed an automatic
signature generation system. For comparison in later sections,
we name it AppID for short. The biggest difference between
their methods and ours is that we not only support traditional
signatures generation automatically but also build new packet
sequence signatures automatically for the first time.

Because of the fact that a 5-tuple flow must be generated
by an application, we do not have to identify application
flows with only a single packet payload. Just like ML-based
techniques that use the characteristics of multiple packets as
features for model building, we use a sequence of packet
payloads for application identification. For instance, although

one byte in a single packet may not be treated as a signature, a
pattern constructed by multiple bytes in a packet sequence of
an application is likely to be an effective signature. We have
confirmed this with our experiments.

III. OBSERVATIONS AND ANALYSIS

In this section, we present several crucial observations
that motivate us to build payload-based and feature-based
signatures based on packet sequences.

A. Payload-based Packet Sequence Signatures

In the past decades, researchers mostly focused on find-
ing effective signatures in individual packet payloads due
to various reasons. However, an application normally issues
a sequence of packets. We have seen almost no efforts in
exploiting such characteristics in packet sequences. Based on
our experiments, we found that such a method is feasible
to classify applications. Therefore, as ML-based techniques
that use flow-level characteristics such as the packets sizes or
packet arrival intervals, we can classify network traffic based
on characteristic in packet sequences.

S0 S1 S2 Succ

S4

S3

S1 = [\x02]
S2 = [\x0d\x1d\x2d\x3d\x4d\x5d\x6d\x7d]
S3 = [\x0f\x1f\x2f\x3f\x4f\x5f\x6f\x7f]
S4 = [\x05\x15\x25\x35\x45\x55\x65\x75]

Fig. 1: Packet Sequence Signature of Skype Media Flows.

Fig.1 shows the sequence signature of Skype media flows
we discovered. The arrow represents a sequence transition be-
tween two states, the state S0 represents for the beginning state,
and the state Sn, n = 1, 2, 3, 4 with a simple regular expression
represents the third byte hexadecimal value of a packet payload
in a Skype flow. Moreover, with the help of this new sequence
signature, the media traffic that Skype generates can be entirely
identified, including voice-calls, skypeOut, file transfer, and
video conferencing. Although various methods have been used
to classify Skype traffic, to the best of our knowledge, it was
the first time to discover such a sequence signature for Skype.
In the meantime, based on our experiments, this is probably
the easiest way to identify Skype traffic with a high accuracy.
We will present the detailed evaluation in Sec.V.

A sequence signature reflects the process of interactive
communications for an application. In general, an application
has a negotiation phase before a data transmission phase, even
if it uses encryption. We can exploit the sequence signature
in the negotiation phase to achieve early identification of such
flows.

IEEE Conference on Communications and Network Security 2013

494

P1 <= 21
| P3 <= 465
| | P1 <= 0
| | | P3 <= 27: SMTP (89.0)
| | | P3 > 27
| | | | P3 <= 35: SSH (4.0/1.0)
| | | | P3 > 35: SMTP (6.0/1.0)
| | P1 > 0
| | | P1 <= 16: FTP (100.0)
| | | P1 > 16: SMTP (5.0)
| P3 > 465: SSH (97.0)
P1 > 21
| P1 <= 68: Bittorrent (96.0)
| P1 > 68
| | P1 <= 198
| | | P2 <= 0
| | | | P4 <= 150
| | | | | P3 <= 5
| | | | | | P5 <= 90
| | | | | | | P1 <= 70: SSL (4.0)
| | | | | | | P1 > 70
| | | | | | | | P1 <= 125: HTTP (3.0)
| | | | | | | | P1 > 125
| | | | | | | | | P1 <= 148
| | | | | | | | | | P1 <= 129: SSL (2.0)
| | | | | | | | | | P1 > 129: Bittorrent (3.0/1.0)
| | | | | | | | | P1 > 148
| | | | | | | | | | P1 <= 157: HTTP (5.0/2.0)
| | | | | | | | | | P1 > 157: SSL (3.0/1.0)
| | | | | | P5 > 90: SSL (12.0)
| | | | | P3 > 5: eDonkey (8.0)
| | | | P4 > 150: SSL (56.0)
| | | P2 > 0
| | | | P1 <= 120: SSL (15.0/2.0)
| | | | P1 > 120
| | | | | P1 <= 144: eDonkey (82.0)
| | | | | P1 > 144
| | | | | | P5 <= 103
| | | | | | | P5 <= 11: SSL (4.0/1.0)
| | | | | | | P5 > 11: eDonkey (7.0)
| | | | | | P5 > 103: SSL (5.0)
| | P1 > 198: HTTP (94.0/2.0)

Number of Leaves : 22
Size of the tree : 43

P1 = '(-inf-6]'
| P2 = '(-inf-30.5]': SMTP (92.0/1.0)
| P2 = '(30.5-31.5]'
| | P3 = '(-inf-40.5]': SSH (3.0)
| | P3 = '(40.5-43]': SMTP (2.0)
| | P3 = '(43-inf)': SSH (97.0)
| P2 = '(31.5-inf)': SMTP (2.0)
P1 = '(6-18]': FTP (100.0)
P1 = '(18-44.5]': SMTP (5.0)
P1 = '(44.5-69]': Bittorrent (96.0)
P1 = '(69-127.5]': SSL (82.0/9.0)
P1 = '(127.5-146]': eDonkey (88.0/3.0)
P1 = '(146-205.5]'
| P5 = '(-inf-20]': SSL (15.0/5.0)
| P5 = '(20-175]': eDonkey (8.0)
| P5 = '(175-inf)': SSL (16.0)
P1 = '(205.5-inf)': HTTP (94.0/2.0)

Number of Leaves : 14
Size of the tree : 18

P0 P1 P2 Succ

P2'

P2''

P1'

P3

SMTP

P0 P1 P2 Succ

P3'

P3

SSH

P0 P1 Succ

P5'

P5

P1'

SSL

P0 P1 SuccP5

P1'

eDonkey

P0 P1 Succ

HTTP

P0 P1 Succ

FTP

P0 P1 Succ

Bittorrent

SMTP

SSH

SSL

eDonkey

HTTP

FTP

Bittorrent

APP State Interval value State Interval value State Interval value
P1
P2

P3

P1

P2
P3

P1

P5

P1

P5

P1

P1

P1

[0, 6]

(30.5, 31.5]
(40.5, 43]

(0, 6]

[0, 40.5]

(146, 205.5]

[0, 20]

(146, 205.5]

(20, 175]

(205.5, 1460]

(6, 18]

(445, 69]

(30.5, 31.5]

(18, 44.5]

[0, 30.5]

(43, 1460]

(69, 127.5]

(175, 1460]

(127.5, 146]

(31.5, 1460]

P1'
P2'

P3'

P1'

P2'
P3'

P1'

P5'

P1'

P5'

P1'

P1'

P1'

P1''
P2''

P3''

P1''

P2''
P3''

P1''

P5''

P1''

P5''

P1''

P1''

P1''

(a)

(b)

(c)

Fig. 2: Packet Sequence Signature with C4.5 Decision Tree.

B. Feature-based Packet Sequence Signatures

In recent years, statistical-feature-based methods are widely
studied for traffic classification. The rationale is that traffic
generated by different types of applications exhibits distinct
characteristics such as packet size, time interval, etc. Packets
sizes are generally regarded as the most effective features
used for ML-based techniques. Based on our observations
and analysis, the essential reason why the use of packet size
works very well in ML-based classification is due to the
different designs of various application protocols. In addition,
researchers have found that the C4.5 algorithm exhibits the
best performance under many circumstances in accuracy and
speed [1], [21]. By selecting the first five packets sizes as
features, Fig.2(a) shows the C4.5 training model generated
on the Weka platform [24]. We can see that the classification
process is actually identifying the intervals that packets sizes
fall into. To make it more intuitive, although C4.5 itself has
involved an entropy-based discretization technique to deal with
numeric and continuous features, we employ an entropy-based
minimum-description-length discretization technique to deal
with features before inputting them to the C4.5 algorithm. Our
experimental results show that both discrete and continuous
input data show similar classification accuracies.

As Fig.2(b) shows, the classification issue is indeed be-
coming an interval judgment problem. Hence we can infer
that it is the different interval distribution of packet sizes
that substantially contributes to the high accuracy in packet-
size-based traffic classification. Furthermore, comparing with
Fig.2(a), in Fig.2(b) (i) both the number of leaves and the size

of C4.5 decision tree are decreased, and (ii) the tree breadth is
increased while the tree depth is decreased. The reason for the
changes from Fig.2(a) to Fig.2(b) is due to the input discrete
features, not the traditional continuous features. Furthermore,
due to the usage of discrete features, the C4.5 decision tree
does not need to judge the same packet size many times as
before. Note that the depth of C4.5 decision tree in Fig.2(b)
is less than that in Fig.2(a). As a result, if we employ discrete
features for training a C4.5 decision tree, the classification
speed must be improved effectively. In fact, the above practice
increases the tree breadth in exchange for a smaller depth.

In the past, without considering the statistical features in
packet sequences for online real-time traffic classification, the
classification techniques have to wait for collecting all the
necessary features and then input the feature values to ML
models for identification. However, the packet sequence num-
ber actually stands for a time sequence in a flow. So, we can
construct a deterministic finite automaton (DFA) for each ap-
plication flow based on the decision tree shown in Fig.2(b) by
taking the packet sequence number as a time sequence signal.
Moreover, all the DFAs derived from Fig.2(b) can merge into
to a composite DFA. Fig.2(c) shows the feature-based DFAs,
where Pn, P

′
n, or P ′′

n represents the matching condition for the
n-th packet in a flow with an interval value, n = 1, 2, 3, 4, 5. In
most matching conditions, the interval value is relatively large
because a large one is enough to classify the limited number
of applications. Nevertheless, according to our observations,
a great number of network applications indeed have fixed
small intervals or even determined values for some packets

IEEE Conference on Communications and Network Security 2013

495

sizes. Considering that the intervals or determined values are
just like signatures for application identification, we use them
as the feature-based packet sequence signatures for traffic
classification. The detailed experimental evaluation will be
presented in Sec.V.

To the best of our knowledge, this is the first work to use
feature-based packet sequence signatures for traffic classifica-
tion. In this method, instead of wasting time and memory to
gather a large number of packets sizes and then inputting them
to the ML model, we just need to maintain one status number
of the composite DFA for each flow. Therefore, comparing
with traditional ML techniques, the proposed packet sequence
feature-based signature can not only improve the classification
speed but also reduce memory consumption considerably.

IV. APSC SYSTEM

In this section, we introduce the proposed APSC system
which can automatically construct packet sequence signatures
for various network applications. It is based on association
rules mining technology and data clustering technology. APSC
is motivated by our observations discussed in the above sec-
tion, and it can build both traditional single-payload signatures
and our new packet sequence signatures. In the following,
we discuss the key requirements for automated signature
construction system, introduce the related terminology and
definitions, and then present the system architecture in detail.

A. System Goals

To classify traffic with signatures in a real-time for high-
speed networks, we need an automated signature construction
system that meets the following requirements.

High-accuracy. For large-scale traffic classification, we
need unique and robust signatures for high accuracy and low
misclassification rate. For example, for a backbone router at
230 Gbytes per second [25], 1% of classification error rate will
result in incorrect classification of 2.30 Gbytes per second.
It may heavily affect network administrators’ actions and
seriously degrade user experience. Therefore, high-accuracy
is critical for traffic classification.

Low-overhead. For identifying applications in real-time on
high speed links, low processing overhead and low memory
consumption are essential for signature matching. In addition,
the more network traffic we analyze, the more accurate the
signatures we can obtain. So the ability to process large
amounts of traffic with low overhead is also an indispens-
able requirement for automated signature construction system,
especially when we are facing constant application updates.
Therefore, we need both efficient signature matching and
efficient signature generating.

Early Identification. In general, accurate signatures are
needed for quick responses. For example, an ISP may like
to change the service class of a flow to provide better QoS as
soon as possible; a network administrator may take immediate
actions against undesired traffic. It is vital to make a decision at
the early stage of a flow. Otherwise, the QoS may be violated
and the undesired traffic may cause serious damages. Such

a requirement of early identification raises new challenges to
automated signature generation.

Long-term Effectiveness. With the increasing number of
network applications and their frequent updates, the traffic
pattern of applications may change frequently. Therefore,
signatures generated by automated signature construction must
be robust enough to adapt to these changes. In other words,
to avoid duplicate efforts, signatures must have long-term
effectiveness.

Unidirectional Identification. On current networks, we
usually capture only unidirectional flow-level information at
a measurement point, due to the prevalence of asymmetric
routing. As a result, only one direction of a bidirectional
communication can be used for signature matching to identify
application traffic. For this reason, an automated signature
construction system should find effective signatures for each
direction separately.

B. Terminology and Definitions

Data mining methods extract knowledge from a large
amount of data to help us identify hidden trends and pattern-
s [26]. Association rule mining technology is a well-evaluated
method for discovering interesting relations between variables
in large databases. In this project, we consider individual
elements such as byte values in packet payloads or feature
values in a 5-tuple flow descriptors as targeted variables,
and consider signatures as mining association rules. In the
association rule method, (i) a transaction database consists
of records representing transactions, while a transaction is a
list of items. (ii) an itemset is a set of items that appear together
in a transaction data set. (iii) A frequent itemset represents for
an itemset that occur frequently in large transaction datasets.
(iv) a support is an objective measure of itemset frequency,
representing the percentage of transactions from a transaction
database that a given itemset includes. (v) a confidence is
also objective measure for association rules, which assesses
the degree of certainty of the detected association.

Let I = {I1, I2, ..., Im} be a set of items. Let D, the
task-relevant data, be a set of database transactions, where
each transaction T is a set of items such that T⊆I . Each
transaction is associated with an identifier, called TID. Let
A be a set of items. Transaction T is said to contain A if
and only if A⊆T . An association rule is an implication of
the form A⇒B, where A⊂I, B⊂I , and A∩B = φ. The rule
A⇒B holds in the transaction set D with support s, where s
is the percentage of transactions in D that contain A∪B, with
a probability P (A∪B). The rule A⇒B has confidence c in the
transaction set D, where c is the percentage of transactions in
D containing A that contain B, with a conditional probability
P (B|A). That is,

support(A⇒B) = P (A∪B) (1)

confidence(A⇒B) = P (B|A) (2)

An itemset that contains k items is called k-itemset.
For example, the set {I1, I2} is a 2-itemset. The occurrence
frequency of an itemset is the number of transactions that

IEEE Conference on Communications and Network Security 2013

496

Signatures
Effective

Rules
Association

Rules
Transaction

Database
Retrieved
Records

III Flow Selection

Object: Flow table

Method: Flow analysis

Goal: Retrieve relevant data
from flow table

IV Record Transformation

Object: Retrieved flow data

Method: Data formatting

Goal: Transform flow data
into appropriate forms

V Association Mining

Object: Transaction database

Method: Clustering mining

Goal: Key process to extract
association rules

VI Rule Evaluation

Object: Association rules

Method: Rules filtering

Goal: Identify the truly
effective rules

VII Signature Presentation

Object: Effective signatures

Method: Visualization technique

Goal: Present signatures

II Session Integration

Object: Pure APP traffic

Method: TCP/IP normalizer

Goal: Analyze packets and
establish flow table

Flow
Table

I Traffic Cleaning

Object: Network computers

Method: Process-based capture

Goal: Remove noise and
inconsistent traffic

APP
Traffic

Fig. 3: Overview of APSC System.

contain the itemset. If the relative support of an itemset I
satisfies a prespecified minimum support threshold (min sup),
then I is a frequent itemset. On the contrary, if an itemset
I ′ owns the maximal frequency in a cluster, then I ′ is of
the maximal support (max sup). In this paper, we denote
support and confidence values between 0% and 100%, rather
than 0 to 1.0. From Equation (2), we have

confidence(A⇒B) = P (B|A) =
support(A∪B)

support(A)
(3)

C. System Overview

The proposed system is designed on the basis of Knowl-
edge Discovery in Database (KDD), and Fig.3 shows the
system overview. Similar as the main steps in KDD [26] [27],
there are seven processing steps in our system implementation.
(1) Traffic cleaning. The goal of this step is to obtain the pure
traffic of an application. A simple way to achieve this is to
capture traffic at the gateway with all the hosts in a network
running the same application. A better way (regarded as the
best) is to capture traffic on different computers based on the
application process with the Commview [28] tool and then mix
them together. (2) Session integration tracks and normalizes
sessions with packet analysis to establish a flow table. (3) Flow
selection. After establishing the flow table, flows relevant to the
analysis task are retrieved from the flow table for flow analysis.
(4) Record transformation. In this stage, the retrieved flow data
are transformed into transaction databases through our distinct
level data formatting techniques. The detailed data formatting
techniques appropriated for association rules mining will be
introduced later this section. (5) Association mining is the
key and essential process of our system where association
rules mining technology and clustering technology are applied
to extract association rules. (6) Rule evaluation is used for
identifying the truly effective association rules representing
signatures based on rule filtering techniques. (7) Signature
presentation. For better illustration, we use a visualization
method to present the effective association rules and signatures.

For our investigation, we emphasis on the association
mining part. Techniques for distinct level data formatting and
the process of rule evaluation are also described. The detailed
system architecture is shown in Fig.4.

D. Preprocessing Module

Considering traditional signatures and the proposed two
new packet sequence signatures, we divide the data formatting

process into two distinct levels, i.e., packet-level data format-
ting for payload-based signature generation and flow-level data
formatting for feature-based signature generation. In particular,
for feature-based signatures, we take packet sizes as features.

1) Packet-level Data Formatting: In order to extrac-
t payload-based signatures, we consider one packet as a
transaction and each byte of the packet as an item. Then a
transaction database consists of packets that belong to one
specific application. More specifically, we combine the value
of a byte with its offset in a payload to represent an item. Note
that as the length of a common packet is distributed from 0
to 1460, the number of items in different transactions changes
correspondingly.

2) Flow-level Data Formatting: Similarly, for extracting
feature-based signatures, we consider one flow as a transaction
and each packet of the flow as an item. Then the transaction
database consists of flows that belong to one specific appli-
cation. More precisely, we combine the size of a packet with
its sequence number in a flow to represent an item. Similar to
the packet-level data formatting, as the size of flows are not
fixed, the number of items in different transactions changes
dynamically.

E. Association Rules Mining (ARM) Module

The association rules mining module process both levels
of data formatting in the same manner. In this module, we
combine a divisive hierarchical clustering method with the
association rules mining technology, i.e., we select the associ-
ation rules as the clustering criterion for divisive hierarchical
clustering. The divisive approach, also called the top-down
approach, starts with all objects in the same cluster and
processes them by multiple iterations. In each iteration, a
cluster is split into smaller clusters, until eventually each object
is in one cluster, or until a termination condition meets. In this
module, we first define the clustering criteria for clustering,
and then introduce the divisive hierarchical clustering method
for signature construction in detail.

Clustering Criteria. When a transaction database of an
application is sufficiently large, its hidden signatures will
consist of at least one or more frequent items in the transaction
database. Therefore, we select the frequent items with max sup
in a cluster as the clustering criteria.

Divisive Hierarchical Clustering. Fig.5 depicts the divisive
hierarchical clustering process. Initially, all the transactions are
classified into the same cluster. Then it begins to find the

IEEE Conference on Communications and Network Security 2013

497

Preprocessing Module ARM Module Construction Module

Pa
ck

et
 C

ap
tu

re

Pa
ck

et
 P

re
pr

oc
es

s

APP
Traffic

R
ul

es
 E

va
lu

at
io

n

Divisive Hierarchical Clustering

Tr
an

sa
ct

io
n

D
at

ab
as

e
C

re
at

io
n

M
ax

im
um

 S
up

po
rt

C
al

cu
la

tio
n

C
lu

st
er

 D
iv

is
io

n

H
ie

ra
rc

hi
ca

l
D

iv
is

io
n

Flow Table

Si
gn

at
ur

e
C

on
st

ru
ct

io
n

R
eg

ex
 E

ng
in

e
Lo

ad
in

g

APSC System

Traffic�
Classification

APP3

APP1
APP2

Packet-level
Data Formatting

Flow-level
Data Formatting

Data Formatting

Fig. 4: Architecture of APSC System.

1-itemset

2-itemset

3-itemset

… …

Discarded items

Transaction database

The End

Maximum
support

Minimum support

Fig. 5: Divisive Hierarchical Clustering.

maximal frequent item with max sup among all items. The
frequent item having max sup must be 1-itemset because any
k-itemset consists of 1-itemsets. Transactions with the maximal
frequent item can be extracted from the original cluster and
forms a new cluster. At the same time, the other transactions
form a new cluster to be divided according to new thresholds.
Eventually, we divide all the transactions into diverse clusters
until there are no frequent item. As a cluster is usually divided
into sub-clusters, we name the original cluster as the parent
node of the sub-clusters and the sub-clusters as the child nodes
of the original cluster.

The sub-clusters identified in the first iteration are consid-
ered at the first layer of divisive hierarchical clustering. We
then iteratively divide these clusters into children clusters at a
lower layer. Note that the items that have been used as the
clustering criteria in the parent nodes will not be used as
the clustering criteria in the child nodes. Therefore, in each
layer, the clustering criteria is always based on 1-itemset. The
iterative processing will not stop until a desired number of
clusters is obtained or the max sup of each cluster is within a
pre-set threshold. From Fig.5, we can see that, compared with
parent nodes, the maximal frequent itemset of child nodes adds
one more item, e.g., the maximal frequent itemset of clusters
in the first layer is 1-itemset, while that in the second layer
is 2-itemset. Clearly, after the divisive hierarchical clustering
process, a tree is produced with each node being a cluster.

Rules Evaluation. The proposed system takes signatures
as association rules and tries to extract effective signatures
by association rule mining. However, not all association rules

extracted from traffic will be effective, e.g., the payload-
based signature “Get /” is likely to occur in various kinds
of application traffic, and the feature-based signature “0x5B4”
stands for the largest packet size ”1460”. We refer to these
signatures as ineffective because they do not provide unique
information. Due to this reason, it is essential to filter out
ineffective association rules. A simple approach is to build a
filter list to collect all known ineffective signatures.

F. Construction Module

As many association rules are extracted from the trans-
action databases by the ARM module, we have to carefully
select association rules to build the most effective signatures.
In addition, we have to find a new way (different from
the traditional methods) to apply the signatures to real-time
traffic classification, especially for the new packet sequence
signatures. To address this issue, we developed a construction
module.

1) Signature Construction: We create a set of distinct trans-
action databases for various applications, and each corresponds
to many packets that have the same sequence number in flows.
We then build the payload-based signatures for both traditional
individual packet signatures and the proposed packet sequence
signatures. Similarly, when we format the transaction database
with flow-level data formatting, we can build the feature-based
packet sequence signatures.

Because the actual signature construction process is to find
out which extracted association rules are more effective than
others, we define a metric M to evaluate the effectiveness of an
association rule. As each rule can be represented by an itemset
I = {I1, I2, ..., Im}, the metric M is defined as follows:

M =
support(I)
∏m

i=1σi
(4)

where support(I) is the percentage of transactions that contain
all the items in itemset I in the transaction database, and σi is
the probability that item Ii appears in random cases. A higher
M indicates a larger difference compared with random cases.
Once the divisive hierarchical clustering process terminates,
the metric of each association rule is obtained immediately.
The rules are then sorted based on their values in a descending
order, and the signature is constructed using the first k rules. So
far, we are able to represent the feature-based packet sequence
signatures and the payload-based individual packet signatures.

IEEE Conference on Communications and Network Security 2013

498

For the payload-based packet sequence signatures, further
processing is required for a series of individual packets.
Suppose we have built signatures for n successive packets,
respectively, and every signature contains k association rules.
Specifically, the transaction dataset for the n successive packets
are built from the same set of flows, in which every flow is
marked with a flow number. Then we use the flow number
as the transaction id TID. We refer to i-sequence rule as the
rule associated with i packets. Candidate sequence signatures,
i.e., i-sequence (i = 1, 2, ...n) rules are obtained through
the combination of the k association rules of every packet.
Thus the total number of candidate i-sequence (i = 1, 2, ...n)
rules is Ci

nk
i, and each of them can be represented as

Is = {(I11, I12, ...I1e), (I21, I22, ...I2f), ..., (Ii1, Ii2, ...Iig)}.
Similarly, we define a metric Ms to evaluate the effectiveness
of these candidate sequence rules.

Ms =
support(Is)∏s

j=1σj
(5)

where support(Is) is the percentage of transactions that contain
all the items in itemset Is in the transaction database, s is the
total number of items in Is, and σj is the probability item Ij
appears in the random cases. The sequence rule with a higher
Ms is obviously more effective. Therefore, the candidate i-
sequence (i = 1, 2, ...n) rules are sorted based on the value of
Ms. Finally, the packet sequence signature is built using the
first k′ rules.

2) Regex Engine Loading: For traditional signatures, the
signature may be a string pattern or a regular expression
matching individual packet payloads. Thus we only need to
extract the payload content from the processed packet and
then use multi-pattern matching algorithms or regular expres-
sion matching algorithms to identify the application. But if
the packet sequence signatures are constructed for matching
multiple sequential packets, we will have to record much more
flow information, and the traditional matching methods do
not work as before. In order to address this issue, we load a
regex engine (DFA) with packet sequence signatures as regular
expressions and design a new structure for flow tables. The
new structure only records a DFA state number for each flow
in the flow tables. Then at the arrival of a new packet, the DFA
state number of the corresponding flow is updated. With this
method, we can match a flow with packet sequence signatures
with low memory consumption at a high speed.

In summary, our system design has the following ad-
vantages: (1) Both traditional signatures and our proposed
packet sequence signatures can be constructed automatically
with limited overhead. (2) The regex engine loading strategy
used for packet sequence signatures matching with traffic
flows is designed for practical use with low memory and low
computation overheads.

V. EVALUATION

In this section, we first compare the traditional single-
packet signatures generated by the proposed system with other
existing methods; we then present and evaluate the auto-
matically generated packet sequence signatures. Our experi-
ments are carried out on two datasets. Each is a combination

of separated traces captured at several different sites with
different network environments in two cities (Beijing and
Harbin, China). Each trace is labeled with various types of
pure application traffic, such that we can later evaluate the
accuracy and recall of different methods. One dataset is used
for automatically constructing signatures, the other is used for
evaluating the generated signatures. The reason that we did
not use public traffic traces is that they usually do not contain
any application layer data, due to privacy concerns.

First, we compared the traditional signatures constructed
by APSC with those obtained by L7-filter [13], LASER [5],
AutoSig [6], and AppID [7]. As shown in TABLE.I, our system
obtains more efficient signatures. The single packet signature
of Bittorrent contains some long string patterns, and is easily
identified by every method. For eDonkey, our signature is
much shorter than that obtained by L7-filter or AppID. For FTP
and POP3, although they have a similar matching pattern in
traffic characteristics, we can use “+OK” and “TYPE.2331” to
distinguish them. We have further verified the signatures with
RFC documents [29]. QQ is the most popular communication
tool in China, and once had more than 170 million users online
simultaneously [30]. Our signature is more specific than any
others. For DNS, we have one signature as the same as one
obtained by AppID. We did not extract other ones identified
by AppID in our trace. For SSL, the differences between our
signature and L7-filter’s are due to the deployment of new
version of SSL. Our signature is constructed based on the now
widely use of SSL3.0 [31].

TABLE II: Payload-based Signature Analysis for Applications.

APP Protocol Payload-based packet sequence signature

SMTP TCP .*->“^MAIL FROM” ->“^RCPT TO” ->“^DATA”

->“^FROM” ->“^TO” ->“^Subject”(c)

FTP TCP “^USER” ->“^PASS” ->“^ACCT” ->“^CWD” ->.*->

“^QUIT”(c)

Furthermore, to validate the effectiveness of the signatures
automatically constructed by our system, we have evalu-
ated them with the combination of three kinds of signa-
tures: traditional individual packet signature (denoted as TIP),
feature-based packet sequence signature (denoted as FPS), and
payload-based packet sequence signature (denoted as PPS).
As shown in TABLE.III, for the FPS signatures, the value of
one byte in the signature represents for the packet size; while
for the PPS signature of Skype, all the bytes in the signature
are represented for the third byte of payloads in a continuous
sequence of packets that belong to a Skype UDP flow. As
shown in the table, our signatures achieve higher precision
and recall in classifying these traffic.

Among them, Bittorrent, eDonkey, QQ, and SSL are
classified with TIP signatures. The reason that we used TIP
signatures is because each of them has strong individual packet
signatures that can be well identified. FTP, POP3 and DNS
are classified with the FPS signatures. As FTP and POP3
have the common matching pattern ‘”USER.*\x0D\x0A”, so

IEEE Conference on Communications and Network Security 2013

499

TABLE I: Traditional Signature Analysis for Applications.

APP Protocol Traditional signatures generated by APSC Traditional signatures generated by other methods
Bittorrent TCP ‘‘^\x13BitTorrent protocol\x00{5}\x10\x00\x05’’(c&s)

“^Get announce php?passkey==.*info_hash==”(c)
‘‘^\x13BitTorrent protocol(ex|\x00\x00\x00\x00\x00)’’
‘‘\x00\x00\x00\x00\x00”

AutoSig

‘‘/announce?info_hash\?.*&peer_id…’’
‘‘^\x13BitTorrent protocol(ex|\x00\x00\x00\x00\x00) ’’

AppID

eDonkey TCP “^\xE3|\xC5|\xD4.\x00{3}”(c&s) ‘‘^[\xc5\xd4\xe3-\xe5].?.?.?.?([\x01\x02 …’’ L7-filter
‘‘^\xE3.\x00\x00\x00\x01\x10.*\x00[CHN]([|yourname)’’
‘‘^(\xE39\xC5).\x00\x00\x00’’

AppID

FTP TCP ‘‘^(SIZE)|(TYPE.{2}331)|(PASS\x0D\x0A)|(USER.*\x0D\x0A)’’(c) ‘‘230 logged’’ LASER
‘‘^USER .*\x0D\x0APASS”
‘‘^220(-9).*\x0D\x0A331’’

AppID

POP3 TCP ‘‘^+OK’’(s)
‘‘^(QUIT|PASS|USER|(\x43\x41\x50\x41)).*\x0D\x0A’’(c)

‘‘USER.*PASS’’
‘‘\+OK’’ (6 signatures in total)

AutoSig

‘‘^(USER|user) .*\x0D\x0APASS’’
‘‘^\+OK.*\+OK’

AppID

QQ UDP ‘‘^(\x02|\x05.+\x03$)|(\x04.{30}\x05.{9}\x00{3}.+\x03$)|(^\x05.{9}\x00{3})’’(c&s) ‘‘^.?.?\x02.+\x03$’’ L7-filter
‘‘\x03$’’ AppID

DNS UDP ‘‘^.{2}\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00’’(c) ‘‘^.?.?.?.?[\x01\x02].?.?.?.?.?.?[\x01-?]’’ L7-filter
‘‘^.{2}\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00’’
‘‘^.{2}(\x81|\x85)(\x82\x83\x80)\x00\x01\x00’’

AppID

SSL TCP ‘‘^[\x14\x15\x16\x17][\x01\x02\x03]’’(c&s) ‘‘^(.?.?\x16\x03.*\x16\x03|.?.?\x01\x03\x01?.*\x0b)’’ L7-filter

TABLE III: Performance Evaluation for Applications.

Method APP Protocol Test set Precision Recall Matching Signatures

TIP Bittorrent TCP 2000 100 100 ‘‘^\x13BitTorrent protocol\x00{5}\x10\x00\x05’’(c&s)

TIP eDonkey TCP 2000 100 100 “^\xE3|\xC5|\xD4.\x00{3}”(c&s)

TIP QQ UDP 2000 100 97 ‘‘^(\x02|\x05.+\x03$)|(\x04.{30}\x05.{9}\x00{3}.+\x03$)|(^\x05.{9}\x00{3})’’(c&s)

TIP SSL TCP 2000 100 100 ‘‘^[\x14\x15\x16\x17][\x01\x02\x03]’’(c&s)

FPS FTP TCP 2000 100 99 ^\x010\x00E.\x008(c)
^\x01B\x048\x01F\x01D\x014(s)

FPS DNS UDP 2000 99 100 ^[\x16-\x30]$(c)
^[\x28-\xF2]$(s)

FPS POP3 TCP 2000 99 99 ^\x007|\x006|\x010|\x000.{2}\x006\x006|\x008|\x000(c)
^\x057|\x05C|\x038|\x01D\x000(s)

PPS Skype UDP 2000 100 100 ^(\x02+[\x0d\x1d\x2d\x3d\x4d\x5d\x6d\x7d]*)|(\x02+[\x0f\x1f\x2f\x3f\x4f\x5f\x6f\x7
f]+[\x0d\x1d\x2d\x3d\x4d\x5d\x6d\x7d])|(\x02+[\x05\x1d\x25\x35\x45\x55\x65\x75]+
[\x0d\x1d\x2d\x3d\x4d\x5d\x6d\x7d])(c&s)

they are difficult to be distinguished by traditional individ-
ual packet signatures. Note that AppID [7] has presented a
less-desirable classification result for FTP and POP3 traffic
with traditional methods. Due to this reason, we use our
feature-based packet sequence signatures to classify them.
Our experimental results show that the FPS signatures are
very effective. For DNS, only traditional signatures for one
direction (initiator) can be generated by APSC. If we use
traditional signatures for classification, there will be a great
loss in recall. From TABLE.III, we can see that, although the
feature-based signatures for DNS are not sufficiently robust,
the precision and recall are still high. This is because a
DNS flow usually has only one packet. Skype is arguably the
most popular VoIP application, and many methods have been
developed to identify its traffic [32]–[38]. Due to the various
kinds of communication modes in Skype, such as voice-calls,
skypeOut, file transfer, and video conferencing, it is difficult
to accurately identify them from mixed traffic. In [5], LASER
was used to generate signatures for Skype traffic but failed

with no clear signature found. However, the proposed system
is able to discover the effective PPS signature for all types of
Skype media traffic. Furthermore, we present PPS signatures
for another two applications as well in TABLE.II. Due to
the limited space, more experimental evaluation for the APSC
system will be presented in our future work.

Finally, we evaluate the proposed system to validate
whether our design goals discussed in Sec.IV have been
achieved. (i) Our experimental results show that the proposed
system obtains a high classification accuracy. (ii) Our unique
design and implementation help us reduce system overhead
and memory cost. The regex-engine-based signature matching
method also improves the classification speed. (iii) Our packet
sequence signatures enable us to achieve early identification,
such that we can exploit the interactive communication in
the negotiation phase of an application, before its actual
data transmission. (iv) Our packet sequence signatures also
have relative long-term effectiveness, because the packet se-

IEEE Conference on Communications and Network Security 2013

500

quence representing the interactive communications are rarely
changed, even though some string patterns in a packet may be
changed frequently. (v) As our system can construct signatures
for traffic each direction of traffic flows, so the constructed
signatures are able to achieve unidirectional identification.

VI. CONCLUSION

In this paper, we have first presented several crucial
observations based on our experiences, which motivated us
to further investigate payload-based and feature-based packet
sequence signatures. We believe this first work applies this
idea successfully to automatically build application signatures.
The main advantages of the proposed scheme are: it is able to
identify more challenging applications compared with existing
solutions; it can also deal with frequent updates of applications
with automatic signature generation with limited overhead.
We have designed and implemented the proposed system,
which can build both traditional single-payload signatures and
the proposed new packet sequence signatures automatically.
Our evaluation on the prototype system has shown that the
proposed method is practical and effective.

ACKNOWLEDGMENT

This work was supported by the National Key Technology
R&D Program of China under Grant No.2012BAH46B04.
We would like to thank the reviewers for their insightful
comments, and people of the organizations that support our
work in evaluations.

REFERENCES

[1] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” Communications Surveys
& Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[2] A. Callado, C. Kamienski, G. Szabó, B. Gero, J. Kelner, S. Fernandes,
and D. Sadok, “A survey on internet traffic identification,” Communi-
cations Surveys & Tutorials, vol. 11, no. 3, pp. 37–52, 2009.

[3] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical ip traffic
flow classification,” Proc. of ACM SIGCOMM, 2006.

[4] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: automated
construction of application signatures,” in Proc. of ACM SIGCOMM
Workshop, 2005.

[5] B.-C. Park, Y. J. Won, M.-S. Kim, and J. W. Hong, “Towards automated
application signature generation for traffic identification,” in Proc. of
IEEE NOMS, 2008.

[6] M. Ye, K. Xu, J. Wu, and H. Po, “Autosig-automatically generating
signatures for applications,” in Proc. of IEEE CIT, 2009.

[7] Y. Wang, Y. Xiang, W. Zhou, and S. Yu, “Generating regular expression
signatures for network traffic classification in trusted network manage-
ment,” Journal of Network and Computer Applications, vol. 35, no. 3,
pp. 992–1000, 2012.

[8] Internet Assigned Numbers Authority (IANA). [Online]. Available:
http://www.iana.org/

[9] Z. Li, G. Xia, H. Gao, Y. Tang, Y. Chen, B. Liu, J. Jiang, and Y. Lv,
“Netshield: Massive semantics-based vulnerability signature matching
for high-speed networks,” in Proc. of ACM SIGCOMM, 2010.

[10] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: fast
and scalable deep packet inspection with extended finite automata,” in
Proc. of ACM SIGCOMM, 2008.

[11] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion
detection signatures with context,” in Proc. of ACM CCS, 2003.

[12] R. Smith, C. Estan, and S. Jha, “Xfa: Faster signature matching with
extended automata,” in Proc. of IEEE Symposium on Security and
Privacy, 2008.

[13] L7-filter. [Online]. Available: http://l7-filter.sourceforge.net/protocols/

[14] Snort. [Online]. Available: http://www.snort.org/

[15] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering
using machine learning techniques,” Passive and Active Network Mea-
surement, pp. 205–214, 2004.

[16] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in Proc. of ACM SIGMETRICS, 2005.

[17] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for
internet traffic classification,” IEEE Transactions on Neural Networks,
vol. 18, no. 1, pp. 223–239, 2007.

[18] B. Yang, G. Hou, L. Ruan, Y. Xue, and J. Li, “Smiler: towards practical
online traffic classification,” in Proc. of IEEE ANCS, 2011.

[19] A. Este, F. Gringoli, and L. Salgarelli, “Support vector machines for tcp
traffic classification,” Computer Networks, vol. 53, no. 14, pp. 2476–
2490, 2009.

[20] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical ip traffic
flow classification,” ACM SIGCOMM Computer Communication Re-
view, vol. 36, no. 5, pp. 5–16, 2006.

[21] Y.-s. Lim, H.-c. Kim, J. Jeong, C.-k. Kim, T. T. Kwon, and Y. Choi,
“Internet traffic classification demystified: on the sources of the dis-
criminative power,” in Proc. of ACM CoNEXT, 2010.

[22] G.-L. Sun, Y. Xue, Y. Dong, D. Wang, and C. Li, “An novel hybrid
method for effectively classifying encrypted traffic,” in Proc. of IEEE
GLOBECOM, 2010.

[23] Y. Xue, D. Wang, and L. Zhang, “Traffic classification: Issues and
challenges,” in Proc. of IEEE ICNC, 2013.

[24] Weka. [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/

[25] Statistical Report on Internet Development in China. [Online].
Available: http://www1.cnnic.cn/IDR/ReportDownloads/

[26] J. Han and M. Kamber, Data mining: concepts and techniques. Morgan
Kaufmann, 2006.

[27] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to
knowledge discovery in databases,” AI magazine, vol. 17, no. 3, p. 37,
1996.

[28] Commview Tools. [Online]. Available: http://www.tamos.com/products/

[29] Request for Comments. [Online]. Available: http://www.ietf.org/rfc.html

[30] Tencent QQ. [Online]. Available: http://im.qq.com/online/index.shtml

[31] SSL 3.0. [Online]. Available: http://tools.ietf.org/html/rfc6101

[32] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing
skype traffic: when randomness plays with you,” in Proc. of ACM
SIGCOMM, 2007.

[33] C.-C. Wu, K.-T. Chen, Y.-C. Chang, and C.-L. Lei, “Peer-to-peer
application recognition based on signaling activity,” in Proc. of IEEE
ICC, 2009.

[34] H.-S. Wu, N.-F. Huang, and G.-H. Lin, “Identifying the use of
data/voice/video-based p2p traffic by dns-query behavior,” in Proc. of
IEEE ICC, 2009.

[35] D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca, and D. Rossi, “Tracking
down skype traffic,” in Proc. of IEEE INFOCOM, 2008.

[36] K. Suh, D. R. Figueiredo, J. Kurose, and D. Towsley, “Characterizing
and detecting relayed traffic: A case study using skype,” in Proc. of
IEEE INFOCOM, 2006.

[37] M. Perényi, A. Gefferth, T. D. Dang, and S. Molnár, “Skype traffic
identification,” in Proc. of IEEE GLOBECOM, 2007.

[38] J.-L. Costeux, F. Guyard, and A.-M. Bustos, “Qrp08-5: Detection and
comparison of rtp and skype traffic and performance,” in Proc. of IEEE
GLOBECOM, 2006.

IEEE Conference on Communications and Network Security 2013

501

